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Abstract—This paper presents a new problem solving approach 

that is able to generate optimal policy solution for finite-state 
stochastic sequential decision-making problems with high data 
efficiency. The proposed algorithm iteratively builds and improves 
an approximate Markov Decision Process (MDP) model along with 
cost-to-go value approximates by generating finite length trajectories 
through the state-space. The approach creates a synergy between an 
approximate evolving model and approximate cost-to-go values to 
produce a sequence of improving policies finally converging to the 
optimal policy through an intelligent and structured search of the 
policy space. The approach modifies the policy update step of the 
policy iteration so as to result in a speedy and stable convergence to 
the optimal policy. We apply the algorithm to a non-holonomic 
mobile robot control problem and compare its performance with 
other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, 
b) Watkins Q(λ), c) SARSA(λ). 
 

Keywords—Markov Decision Process (MDP), Mobile robot, 
Policy iteration, Simulation. 

I. INTRODUCTION 
E consider simulation-based methods for controlling 
stochastic sequential decision-making problems or 

learning methods for optimizing the policy of an agent 
interacting with an environment. Simulation is an effective 
tool for analyzing systems for which a perfect analytic 
representation may not be available. Simulation can be used 
for comparative evaluation of policies on the basis of 
empirically generated information for a given policy [2]. 

Trajectory based Modified Policy Iteration (TMPI) is an 
approach which, starting from the simulation of the system, 
iteratively builds up the MDP model and cost-to-go values for 
the state-action pairs and utilizes them to generate a sequence 
of policies finally converging to an optimal policy solution for 
the underlying system. It is an attempt to find a middle path 
between the methods that focus on the use of simulation to 
approximate cost-to-go values, e.g., Neuro Dynamic 
Programming (NDP) [1] and the MDP model parameters 
approximation approaches [2]. TMPI generates estimates for 
the cost-to-go values and the MDP model parameters from the 
same simulated trajectory to carry out a model based policy  
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update. It exploits the inherent structure of the MDP 
formulation, policy evaluation capabilities of TD (λ)[15] and 
ability of the simulation to focus on the most relevant parts of 
the state space to discover the optimal policy with least agent-
environment interactions.  

State space aggregation has been used to reduce the 
cardinality of the state space by suitably partitioning the state 
space into a number of aggregated state subsets. Each subset 
is then treated as a single state yielding a new aggregated 
MDP, characterized by associated rewards and transition 
probabilities. Thus any process can be modeled as a finite 
state MDP using state aggregation [2]. The new process can 
often be solved exactly by standard MDP solution techniques, 
then the process can be disaggregated and the aggregated 
solution adjusted appropriately for application on the original 
model. TMPI can be used to discover the optimal policy either 
using the real experience or simulated experience as a 
surrogate to the real experience (as used in our case), to 
update both the value function estimates and the model 
parameters. Essentially TMPI comprises of: 
(i)  Model Learning: Improve the Model. 
(ii) Direct RL: Improve the Value Function. 
   In TMPI these two learning’s occur intermittently aiding 
each other as shown below in Fig. 1: 
 
 
 
 
 
 

 
 
 
 
 

 

Fig. 1 TMPI Algorithm Representation 
Direct RL method: TD (λ) with eligibility coefficients 

 
TMPI modifies standard policy iteration algorithm [7], the 

policy update step in particular, resulting in quick 
convergence to optimal policy. Usual policy iteration 
algorithm fixes a policy μ, evaluates the associated cost-to-go 
function Jμ  using TD(λ) or any other method and then 
performs a policy update. This is the standard framework of 
“Actor/Critic Systems”, the actor uses the policy μ to control 
the system while the critic observes the rewards/costs and tries 
to compute Jμ. 

In standard policy iteration the policy μ is held fixed till the 
critic’s estimate converges to Jμ. The critic then passes this Jμ 
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value to the actor who forms a new policy by minimising the 
right hand side of the Bellman’s equation, i.e., at each state i, 
action u is chosen that minimises: 

 
1

( )( ( , ) ) ( )
n

ij
j

p u g i u J u U iμ

=
+ ∀ ∈∑                            (1) 

where U(i) = action set at state i , j is the successor state for (i 
,u) pair and n = number of feasible successor states for  state i. 

This may be highly computationally intensive as the critic’s 
evaluation may converge slowly to the true Jμ values. 
Optimistic policy iteration [5] attempts to address this issue by 
carrying out more frequent policy updates, i.e., without 
waiting for the policy update step to converge to the true Jμ  

values. The method however, assumes availability of a valid 
model. Bertsekas et. al. [1], further impose two assumptions: 
(i) The policy evaluation algorithm is sound, i.e., with policy μ 
    held fixed the J value as evaluated by critic converge to Jμ. 
(ii)The critic communicates to actor infinite number of times. 
     According to Bertsekas [1], under these assumptions, if the 
sequence of policies generated by the actor converges then the 
limit must be an optimum policy. They further state that even 
then the algorithm may converge to a value different from 
J*(optimum value) or fail to converge. When such incomplete 
Jμ evaluations are used in conjunction with a model, which is 
far from perfect, this could lead to much worse results with 
more model updates [6].  
    Fig. 2 below shows details of the TMPI system. At the end 
of a trajectory, we evaluate expected cost-to-go for all feasible 
state-action pairs and the optimal action at a state corresponds 
to the state-action pair with minimum expected cost-to-go 
value. For any state-action pair the expected cost-to-go value 
is evaluated based on the current value of all the feasible 
successor state-action pairs and current approximation for the 
one step costs and transition probabilities. 
                                                 i, j, a   

 
 
 
                   i                                                   Pμ, gμ 

a = μ(i) 
                                 P, g 
 
                                         J                                        Jμ 
 
                          S 
Fig. 2 TMPI: The critic computes approximate Jμ using restart 

TD(λ),it  further  computes Pμ, gμ .The switch S closes at the end of a 
simulated trajectory. Actor updates  policy μ based on P, g , J 
vectors. i =current state, action a  = μ(i),  j = successor state 

 
Starting with a given simulation model (or one created 

through observations as the System/Process evolves in time 
(Fig. 2), define states, actions and objective function for the 
aggregated MDP model. The TMPI approach then generates 
trajectories through the state space; each trajectory is 
generated in accordance with an updated policy. The 
trajectories are generated asynchronously, i.e., from randomly 
chosen initial states. Each time a trajectory visits a particular 

state-action pair ( , )i a  it generates a sample for Jμ(i,a) where 
μ = current policy. Within a trajectory these samples are 
combined using restart TD(λ)[15]. This estimate of Jμ(i,a) for 
the states visited by the current trajectory is suitably added to 
earlier aggregated estimate of J(i,a) from previous trajectories 
yielding current estimate of J(i,a). Similar aggregation is done 
for samples of gμ(i,a) and Pμ(i,j,a) to yield P and g estimates. 
The policy update step then uses these aggregated estimates 
for producing an improved policy to generate next trajectory 
through the state space.  

We show the effectiveness of the proposed algorithm on a 
simulated steering control of a mobile robot [8] and compare 
its performance against other benchmark RL algorithms i.e., Q 
Learning [12][14], Watkins Q(λ)[17] and SARSA(λ)[7][9]. 

II. THEORETICAL ISSUES AND TMPI DETAILS 

We consider a Markov decision process with finite state 
and action set. State space consists of finite set S = 
{1,2,…..,n} of states and finite set 
U={U(1),U(2),….U(n)},defining possible actions at each 
state. With each state-action pair (i,a) we associate transition 
probabilities Pij(a) and one step cost g(i,a)( assuming random 
one step costs). We define policy μ as a mapping μ: S → U. 
Given a policy μ, the state evolution is the well-known 
Markov chain with transition probability defined as: 

))(())}(,(|))(,({ 1 iPiixjjxP ijtt μμμ ===+                (2)

 We view a new system consisting of the original states 
(1,2,……,n) together with all pairs (i,a) where Si∈  and 

)(iUa∈ .The expected cost of a policy μ, starting from initial 
state ))(,( ii μ for finite horizon case, i.e., for N stage 
problem: 

∑
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where ( , ( )) Terminal CostN
N NG i iα μ =

and discount factorα =  
 
A. TMPI Algorithm 
Starting with an arbitrary policy (specifying randomly 

chosen action from the set of feasible actions at each state), 
we generate a sequence of policies μ1, μ2,…… We simulate a 
trajectory through the state space as per the current policy μ, 
each starting from state action pair ))(,( ii μ  where i is the 
randomly chosen starting state and μ(i) is the action specified 
at i by μ.  

At the start of each trajectory we initialize following 
vectors: 

0=μg , 0=μP MDP Model Parameters
for policy μ

⎧
⎨
⎩

                          (4) 

 0=μJ                                                  (5) 

This represents initial lack of information of these parameters 
and values. 

System 

Actor 

CriticModel generator 

Cost to go 
generator 
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As we simulate the process, ))(,( ii μ pairs are visited and 
we update the parameters and values as: 
(i) For the Jμ updates we use the on-line variant of the restart 
TD(λ) [10]of optimistic  policy iteration: when the k-th step in 
a trajectory has been simulated, i.e., from 

1 1( , ( )) to ( , ( ))k k k ki i i iμ μ+ + .We get the temporal difference: 

))(,())(())(,( 1,1 kkkkkkk iiJiiJiigd μμαμ μμμ −+= ++
     (6) 

where ( , ( )) One -step cost of taking ( )fromk k k kg i i i iμ μ μ=  
We then update Jμ values for the ))(,( ii μ  pairs visited by 

the trajectory as: 

kkkkk diieiiiiJiiJ ))(,(())(,())(,())(,(1 μμγμμ μμ +=+
        (7) 

( , ( )) ( , ) pairs of the trajectoryi i i aμ∀ ∈  
where
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                          ))(,( iiNk μ = Number of visits to a 
))(,( ii μ pair within the trajectory for policy μ and 

))(,(( iiek μ = eligibility coefficient for ))(,( ii μ  pair which 
are determined as per restart TD(λ) as: 

1

1 if ( , ( )) ( , ( ))
(( , ( ))
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Thus the eligibility of ))(,(( ii μ pair is the degree to which 
it has been visited in the recent past within a given trajectory. 
(ii) One step costs are updated as: 

1( , ( )) ( , ( )) ( , ( ))[ ( , ( )) ( , ( ))]

where ( , ( )) random one step reward cost
k k k k k k k k k k kk k k

k k

g i i g i i i i g i i g i i
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μ
+ = + −
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                                                                                         (9)      
(iii) Pμ update: 
Let μ

α
N = number of visits to ))()(,( iaai μα == by the 

simulated trajectory      under the policy μ and let μ

αβ
N  = 

number of simulated transitions from 
( , ) to ( , )( ( ))i a j b b jα β μ= = = . We define transition 

probability as: 

    

a

a

N
N
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α

αβ
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≅

≅
                         (10) 

Next we show that the probability as defined above reduces 
to that defined for a transition from state i to state j (defined 
on original state space) under action a = μ(i) if the policy is 
held fixed. Under a fixed policy μ transitions take place as: 

              )(ia μ=                 a
ijP             )( jb μ=       

 

                                        ),( aig  

                  for single action           fixed policy continued 

 

Fig. 3 Equivalence between state transition probabilities and state-
action transition probabilities 

As shown above in Fig. 3, under a fixed policy μ, we move 
from state i to (i,a)  deterministically, then next state j is 
reached with probability a

ijP  and a cost g(i,a) is incurred. Now 

if the policy is kept fixed we move deterministically to (j,b). 
Thus for a fixed policy i and (i,a) coincide and similarly j & 
(j,b) are same. 
  Thus is same as

a
a ij

ij a
i

NN
P P

N N

μ
μ αβ
αβ μ

α
≅ ≅                              (11)

 
where number of transitions from to under ( )

and number of visits to state under action ( )

a
ij
a
i

N i j a i

N i a i

Nμ
α

μ

μ

= =

= =

=

  

This empirically generated estimate (equation 11) of the 
true relative frequency (or probability) of the transition will 
become more accurate with generation of more simulated 
trajectories. The transition matrix for the MDP model consists 
of m matrices where m=max [U(i)] for i = 1,2,……n. Each 
(state-action transition) matrix corresponds to one action and 
each row in a matrix gives transition probability distribution 
for a state under that action. 

A trajectory simulated as per a policy would provide us 
with probability distribution for only a single action in each 
state. We, therefore, need to include different actions at each 
state by using some random steps (as per a random policy) in 
the initial phase of the procedure or the pseudo-stochastic 
policy. This facilitates some amount of exploration in the 
search for optimal policy. By intelligently exploring the action 
space we can eventually generate enough information to 
obtain true probability distribution for each state-action pair in 
an iterative manner. 

The TMPI algorithm makes use of the Markov property  [1] 

for combining information generated by successive 
trajectories. Markov property states that the probability of the 
state transition a

ijP  depends only on the states i, j and the 

action a and not on the previous transition history or 
alternatively state transition probability distribution is 
independent of the policy being used if two policies assign 
same action to a particular state. 

B. Aggregating Information 
We combine the estimates produced by successive policies 

/trajectories by forming a weighted sum of the contributions 
of each policy as per the amount of experience provided by a 

i,ai   j j,b

0.05m and 6
πδ α< <
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policy at a state-action pair, i.e., let η and ξ be two policies 
and a(η) and a(ξ) be the action a as applied within policy η 
and ξ respectively then: 
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The data from the current simulated trajectory is combined 
with data from all previous trajectories. Thus previously 
available data is treated as if it had come from a single 
simulated trajectory. By forming such a weighted sum, we 
would be able to capture the system behavior to a greater 
extent. This combined information is used in the policy update 
step to generate an improved policy. 

C. Policy Update Step 
In policy iteration the policy is updated as: Q factor for the 

state-action pair (i,a) is computed for the policy μ :              
 

)](),()[(),(
1

jJaigaPaiQ
n

j
ij∑

=
+= μμ α                          (13)  

    Then policy is updated as:  

),(arg)( min
)(

aiQi
iUa

μμ
∈

=                                 (14) 

where n = number of feasible successor states for i. 
 

In TMPI approach we generate Jμ (i,μ(i)) values from a 
simulated trajectory for the visited (i,μ(i)) pairs. We then form 
a weighted sum of these samples from successive trajectories 
to generate J(i,a) values ,which are more or less policy 
independent. We then perform a policy update based on these 
current J(i,a) values. Thus the policy update does not solely 
depend on the data generated by the policy followed during 
the current simulated trajectory. 

We find: 

1
( , ) ( )[ ( , ) ( , )]

Expected cost to go for pair ( , )

n
ij

j
Q i a P a g i a J j a

i a

α
=

= +
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And update the policy as: 

),(arg)( min
)(

aiQi
iUa∈

=μ                                  (16) 

Thus instead of using the current-policy dependent measure, 
i.e., ( , )Q i aμ values for updating the policy (as in standard 
policy iteration), the algorithm forms and utilizes a policy 
independent measure, i.e., ( , )Q i a values in the policy update 
step of policy iteration. 

III. SIMULATION MODEL AND RESULTS 
We give results of an experiment involving steering control 

of a simulated non-holonomic mobile robot. We attempt two 

basic problems under assumption of constant velocity 
tracking. 

(i) Reducing distance to a line. 
(ii) Trajectory tracking. 

Details of the simulation model used for the mobile robot 
can be found in [3][8]. A state is given by the distance δ in 
meters from the line and orientation α in radians with respect 
to the line [ ]ts δ α= . The state space is defined as:

 1 1
0 2

δ
α π

− ≤ ≤ +
≤ ≤

   

δ has been discretised, with a resolution of 0.05 m while 
orientation has been discretised with a resolution of 6

π or 30o, 

yielding a total of 492 states and three discrete actions at each 
state. 
 We have tried to incorporate effect of noise/disturbances by 
assuming that the incremental distance moved by the robot 
between two consecutive time steps can vary by 20± % from 
the value as predicted by the model, i.e., suppose if 

1 0.2 mk kδ δ+ − =  as given by the model then we may take 

1 (0.2 0.04 ) mk k nδ δ+ − = + ∗ where n is uniform noise in [-1 
1]. Similarly, angle of the robot α is also perturbed by 20± %.  
We carry out the model updates as well as the Value Function 
updates based on this simulated experience. At the end of an 
episode/trajectory we use the current model and value 
function approximates to generate an improved policy. 
 

A.  Robot Initialization and Trajectory Generation 
At the start of each simulated trial, the robot is initialized 

from 0.8mδ = ±  and random initial orientation. Starting from 
this state (δ, α), the robot takes actions as per the current ε-soft 
policy, i.e., with probability ε it takes uniformly random action 
and with probability (1- ε) it takes action as per the current 
greedy policy, thus generating a trajectory through the state 
space. A trial is terminated when: 
(i) The robot violates the state-space boundaries, i.e., if  

    This is reckoned to as a negative result. 
(ii) The robot correctly tracks the target for 10 consecutive 
     steps. This is reckoned to as a positive result. 
(iii) If the maximum trajectory length (120 robot steps) is 
     exceeded. 
Two tasks have been attempted: 
(a) Distance Reduction: After initialization, the robot has to 
reduce distance to the line x=0 and satisfy 0.05mδ <  for 10 

consecutive steps.  
(b) Trajectory Tracking: Track a reference trajectory (e.g., + 
ve x-axis) for 10 consecutive steps, i.e., satisfy: 

At the end of a trajectory, estimates from the current 
trajectory are combined with the estimates from previous 
trajectories to generate aggregate estimate of the model 
parameters and then carry out the policy update using the 
current aggregated estimates. The updated policy is used to 
generate next trajectory. A trial consists of generating a fixed 
number of such trajectories (500 in our case). Each trial starts 

1mδ >
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with no a-priori knowledge of the system, i.e., no transition 
information. Results have been averaged for 10 trials for 
comparison between TMPI and other algorithms. 

The basis of comparison being: 
1. Data efficiency, i.e., minimum number of robot transitions 
needed to learn robust behavior or no negative result. 
2. Degree of optimality of the optimal policy discovered, i.e., 
average number of robot steps to achieve the goal (averaged 
over 25 trajectories). 
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Fig. 4 Algorithm Comparison: Degree of Optimality of 

discovered policy for the Distance Reduction task 
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Fig. 5 Algorithm Comparison: Robustness of discovered 

policy for the Distance Reduction task 
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Fig. 6 Algorithm Comparison: Degree of Optimality of 

discovered policy for the Trajectory Tracking task 
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Fig. 7 Algorithm Comparison: Robustness of discovered 

policy for the Trajectory Tracking task 
 

TABLE I  
DISTANCE REDUCTION TASK: PERFORMANCE COMPARISON 

 
TABLE II 

TRAJECTORY TRACKING TASK: PERFORMANCE COMPARISON 

 
TMPI as well as other approaches have been implemented 

and simulated using MATLABTM. The discount factor α is 
set to 0.9 as in [3],λ is set to 0.6 and simulation step-time T is 
taken as 0.1 sec for all the trials. The results as depicted in 
Tables I, and II have been averaged over 10 trials with each 
trial consisting of 500 trajectories and each trajectory has 120 
simulated steps of the robot.  

As can be seen from Fig. 4 to 7 and Tables I to II, TMPI 
approach discovers the optimal policy with less transition 
information, i.e., with a smaller number of interactions 
between robot and environment and the degree of optimality 
of the policy discovered by TMPI is comparable to those 
found by the other RL algorithms. With a proper choice of 
trajectory length the degree of optimality of the policy 
(minimum average steps to achieve goal) can be further 
improved upon. Finally, in TMPI implementation high 
exploration level is required only during the initial stages 
while in all other algorithms we need to maintain exploration. 

Algorithm Min 
steps 

Avg. steps 
 (min steps) 

Avg. steps 
 (robust policy) 

TMPI 32.5 5407 7081 

Q 34.5 10986 Not Achieved 

Q(λ) 32 7002 Not Achieved 

SARSA(λ) 31.5 6567 Not Achieved 

Algorithm Min steps Avg. steps 
(Min steps) 

Avg. steps 
 (Robust policy) 

TMPI 32 5557 4714 
Q 38 9584 Not Achieved 
Q(λ) 35 9562 Not Achieved 
SARSA(λ) 34 6902 Not Achieved 
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IV. CONCLUSION 

This paper presents a new approach to solve sequential 
stochastic decision-making problems termed as Trajectory 
based Modified Policy Iteration (TMPI), which uses the 
simulation of the original system/process to create and update 
an approximate aggregate Markov Decision Process (MDP) 
model and cost-to-go values. These approximations of the 
MDP model parameters and cost-to-go values act as inputs to 
a modified policy iteration procedure to generate a sequence 
of improving policies that finally converge to an optimal 
policy for the aggregated simulated system. Instead of 
evaluating policy dependent value function ( , )Q i aμ  as in the 
standard “Actor-Critic” framework, TMPI tries to 
approximate a policy independent value function ( , )Q i a  to 
update the policy. As the agent gains more experience by 
“Agent-Environment” interactions the approximating MDP 
model becomes a fairly rich and robust sequential 
optimization model. 

The performance of the policies generated by TMPI for a 
simulated mobile robot steering control problem is compared 
against other benchmark RL algorithms, i.e., Q Learning, 
Watkins Q(λ) and SARSA(λ). For the robot control task it is 
observed that TMPI requires less experience to achieve a 
robust behavior, i.e., no negative results, in comparison to 
other RL algorithms. TMPI could be applied on high 
dimensional state spaces by suitable choice of aggregation-
disaggregation schemes and/or use of generic function 
approximtors (Neural Networks) [11] to generalize beyond 
experienced states. The proposed approach as a solution 
methodology deserves additional research and testing on more 
complex domains.  
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