
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4065

Abstract—This paper presents a new problem solving approach

that is able to generate optimal policy solution for finite-state
stochastic sequential decision-making problems with high data
efficiency. The proposed algorithm iteratively builds and improves
an approximate Markov Decision Process (MDP) model along with
cost-to-go value approximates by generating finite length trajectories
through the state-space. The approach creates a synergy between an
approximate evolving model and approximate cost-to-go values to
produce a sequence of improving policies finally converging to the
optimal policy through an intelligent and structured search of the
policy space. The approach modifies the policy update step of the
policy iteration so as to result in a speedy and stable convergence to
the optimal policy. We apply the algorithm to a non-holonomic
mobile robot control problem and compare its performance with
other Reinforcement Learning (RL) approaches, e.g., a) Q-learning,
b) Watkins Q(λ), c) SARSA(λ).

Keywords—Markov Decision Process (MDP), Mobile robot,
Policy iteration, Simulation.

I. INTRODUCTION
E consider simulation-based methods for controlling
stochastic sequential decision-making problems or

learning methods for optimizing the policy of an agent
interacting with an environment. Simulation is an effective
tool for analyzing systems for which a perfect analytic
representation may not be available. Simulation can be used
for comparative evaluation of policies on the basis of
empirically generated information for a given policy [2].

Trajectory based Modified Policy Iteration (TMPI) is an
approach which, starting from the simulation of the system,
iteratively builds up the MDP model and cost-to-go values for
the state-action pairs and utilizes them to generate a sequence
of policies finally converging to an optimal policy solution for
the underlying system. It is an attempt to find a middle path
between the methods that focus on the use of simulation to
approximate cost-to-go values, e.g., Neuro Dynamic
Programming (NDP) [1] and the MDP model parameters
approximation approaches [2]. TMPI generates estimates for
the cost-to-go values and the MDP model parameters from the
same simulated trajectory to carry out a model based policy

Manuscript received March 18, 2005.
R. Sharma is a research scholar with the Electrical Engineering

Department, Indian Institute of Technology, Delhi and a faculty at NSIT,
Delhi, India. (Phone: (91) 011- 27943497; fax: (91) 011- 25099022; e-mail:
rajneesh496@rediffmail.com).

M. Gopal, is a Senior Professor with the Department of Electrical
Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi,
India. (e-mail: mgopal@ee.iitd.ernet.in).

update. It exploits the inherent structure of the MDP
formulation, policy evaluation capabilities of TD (λ)[15] and
ability of the simulation to focus on the most relevant parts of
the state space to discover the optimal policy with least agent-
environment interactions.

State space aggregation has been used to reduce the
cardinality of the state space by suitably partitioning the state
space into a number of aggregated state subsets. Each subset
is then treated as a single state yielding a new aggregated
MDP, characterized by associated rewards and transition
probabilities. Thus any process can be modeled as a finite
state MDP using state aggregation [2]. The new process can
often be solved exactly by standard MDP solution techniques,
then the process can be disaggregated and the aggregated
solution adjusted appropriately for application on the original
model. TMPI can be used to discover the optimal policy either
using the real experience or simulated experience as a
surrogate to the real experience (as used in our case), to
update both the value function estimates and the model
parameters. Essentially TMPI comprises of:
(i) Model Learning: Improve the Model.
(ii) Direct RL: Improve the Value Function.
 In TMPI these two learning’s occur intermittently aiding
each other as shown below in Fig. 1:

Fig. 1 TMPI Algorithm Representation
Direct RL method: TD (λ) with eligibility coefficients

TMPI modifies standard policy iteration algorithm [7], the

policy update step in particular, resulting in quick
convergence to optimal policy. Usual policy iteration
algorithm fixes a policy μ, evaluates the associated cost-to-go
function Jμ using TD(λ) or any other method and then
performs a policy update. This is the standard framework of
“Actor/Critic Systems”, the actor uses the policy μ to control
the system while the critic observes the rewards/costs and tries
to compute Jμ.

In standard policy iteration the policy μ is held fixed till the
critic’s estimate converges to Jμ. The critic then passes this Jμ

Trajectory-Based Modified Policy Iteration

R. Sharma, and M. Gopal

W

Critic: policy update

Experience: real
 or simulated Value Approximation

Model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4066

value to the actor who forms a new policy by minimising the
right hand side of the Bellman’s equation, i.e., at each state i,
action u is chosen that minimises:

1

()((,)) ()
n

ij
j

p u g i u J u U iμ

=
+ ∀ ∈∑ (1)

where U(i) = action set at state i , j is the successor state for (i
,u) pair and n = number of feasible successor states for state i.

This may be highly computationally intensive as the critic’s
evaluation may converge slowly to the true Jμ values.
Optimistic policy iteration [5] attempts to address this issue by
carrying out more frequent policy updates, i.e., without
waiting for the policy update step to converge to the true Jμ

values. The method however, assumes availability of a valid
model. Bertsekas et. al. [1], further impose two assumptions:
(i) The policy evaluation algorithm is sound, i.e., with policy μ
 held fixed the J value as evaluated by critic converge to Jμ.
(ii)The critic communicates to actor infinite number of times.
 According to Bertsekas [1], under these assumptions, if the
sequence of policies generated by the actor converges then the
limit must be an optimum policy. They further state that even
then the algorithm may converge to a value different from
J*(optimum value) or fail to converge. When such incomplete
Jμ evaluations are used in conjunction with a model, which is
far from perfect, this could lead to much worse results with
more model updates [6].
 Fig. 2 below shows details of the TMPI system. At the end
of a trajectory, we evaluate expected cost-to-go for all feasible
state-action pairs and the optimal action at a state corresponds
to the state-action pair with minimum expected cost-to-go
value. For any state-action pair the expected cost-to-go value
is evaluated based on the current value of all the feasible
successor state-action pairs and current approximation for the
one step costs and transition probabilities.
 i, j, a

 i Pμ, gμ

a = μ(i)
 P, g

 J Jμ

 S
Fig. 2 TMPI: The critic computes approximate Jμ using restart

TD(λ),it further computes Pμ, gμ .The switch S closes at the end of a
simulated trajectory. Actor updates policy μ based on P, g , J
vectors. i =current state, action a = μ(i), j = successor state

Starting with a given simulation model (or one created

through observations as the System/Process evolves in time
(Fig. 2), define states, actions and objective function for the
aggregated MDP model. The TMPI approach then generates
trajectories through the state space; each trajectory is
generated in accordance with an updated policy. The
trajectories are generated asynchronously, i.e., from randomly
chosen initial states. Each time a trajectory visits a particular

state-action pair (,)i a it generates a sample for Jμ(i,a) where
μ = current policy. Within a trajectory these samples are
combined using restart TD(λ)[15]. This estimate of Jμ(i,a) for
the states visited by the current trajectory is suitably added to
earlier aggregated estimate of J(i,a) from previous trajectories
yielding current estimate of J(i,a). Similar aggregation is done
for samples of gμ(i,a) and Pμ(i,j,a) to yield P and g estimates.
The policy update step then uses these aggregated estimates
for producing an improved policy to generate next trajectory
through the state space.

We show the effectiveness of the proposed algorithm on a
simulated steering control of a mobile robot [8] and compare
its performance against other benchmark RL algorithms i.e., Q
Learning [12][14], Watkins Q(λ)[17] and SARSA(λ)[7][9].

II. THEORETICAL ISSUES AND TMPI DETAILS

We consider a Markov decision process with finite state
and action set. State space consists of finite set S =
{1,2,…..,n} of states and finite set
U={U(1),U(2),….U(n)},defining possible actions at each
state. With each state-action pair (i,a) we associate transition
probabilities Pij(a) and one step cost g(i,a)(assuming random
one step costs). We define policy μ as a mapping μ: S → U.
Given a policy μ, the state evolution is the well-known
Markov chain with transition probability defined as:

))(())}(,(|))(,({ 1 iPiixjjxP ijtt μμμ ===+ (2)

 We view a new system consisting of the original states
(1,2,……,n) together with all pairs (i,a) where Si∈ and

)(iUa∈ .The expected cost of a policy μ, starting from initial
state))(,(ii μ for finite horizon case, i.e., for N stage
problem:

∑
−

=
+=

1

0
))](,())(,([))(,(

N

k
kk

k
NN

N iigiiGEiiJ μαμαμμ (3)

where (, ()) Terminal CostN
N NG i iα μ =

and discount factorα =

A. TMPI Algorithm
Starting with an arbitrary policy (specifying randomly

chosen action from the set of feasible actions at each state),
we generate a sequence of policies μ1, μ2,…… We simulate a
trajectory through the state space as per the current policy μ,
each starting from state action pair))(,(ii μ where i is the
randomly chosen starting state and μ(i) is the action specified
at i by μ.

At the start of each trajectory we initialize following
vectors:

0=μg , 0=μP MDP Model Parameters
for policy μ

⎧
⎨
⎩

 (4)

 0=μJ (5)

This represents initial lack of information of these parameters
and values.

System

Actor

CriticModel generator

Cost to go
generator

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4067

As we simulate the process,))(,(ii μ pairs are visited and
we update the parameters and values as:
(i) For the Jμ updates we use the on-line variant of the restart
TD(λ) [10]of optimistic policy iteration: when the k-th step in
a trajectory has been simulated, i.e., from

1 1(, ()) to (, ())k k k ki i i iμ μ+ + .We get the temporal difference:

))(,())(())(,(1,1 kkkkkkk iiJiiJiigd μμαμ μμμ −+= ++
 (6)

where (, ()) One -step cost of taking ()fromk k k kg i i i iμ μ μ=
We then update Jμ values for the))(,(ii μ pairs visited by

the trajectory as:

kkkkk diieiiiiJiiJ))(,(())(,())(,())(,(1 μμγμμ μμ +=+
 (7)

(, ()) (,) pairs of the trajectoryi i i aμ∀ ∈
where

1(, ())
(, ())

Step size coefficient for pair (, ())

k
k

i i
N i i

i i

γ μ
μ

μ

=

=

))(,(iiNk μ = Number of visits to a
))(,(ii μ pair within the trajectory for policy μ and

))(,((iiek μ = eligibility coefficient for))(,(ii μ pair which
are determined as per restart TD(λ) as:

1

1 if (, ()) (, ())
((, ())

(, ()) otherwise
k k

k
k

i i i i
e i i

e i i
μ μ

μ
α λ μ−

=⎧
= ⎨
⎩

 (8)

Thus the eligibility of))(,((ii μ pair is the degree to which
it has been visited in the recent past within a given trajectory.
(ii) One step costs are updated as:

1(, ()) (, ()) (, ())[(, ()) (, ())]

where (, ()) random one step reward cost
k k k k k k k k k k kk k k

k k

g i i g i i i i g i i g i i

g i i /

μ μ μμ μ γ μ μ μ

μ
+ = + −

=

 (9)
(iii) Pμ update:
Let μ

α
N = number of visits to))()(,(iaai μα == by the

simulated trajectory under the policy μ and let μ

αβ
N =

number of simulated transitions from
(,) to (,)(())i a j b b jα β μ= = = . We define transition

probability as:

a

a

N
N

N
NP

α

αβ

μ
α

μ
αβμ

αβ

≅

≅
 (10)

Next we show that the probability as defined above reduces
to that defined for a transition from state i to state j (defined
on original state space) under action a = μ(i) if the policy is
held fixed. Under a fixed policy μ transitions take place as:

)(ia μ= a
ijP)(jb μ=

),(aig

 for single action fixed policy continued

Fig. 3 Equivalence between state transition probabilities and state-
action transition probabilities

As shown above in Fig. 3, under a fixed policy μ, we move
from state i to (i,a) deterministically, then next state j is
reached with probability a

ijP and a cost g(i,a) is incurred. Now

if the policy is kept fixed we move deterministically to (j,b).
Thus for a fixed policy i and (i,a) coincide and similarly j &
(j,b) are same.
 Thus is same as

a
a ij

ij a
i

NN
P P

N N

μ
μ αβ
αβ μ

α
≅ ≅ (11)

where number of transitions from to under ()

and number of visits to state under action ()

a
ij
a
i

N i j a i

N i a i

Nμ
α

μ

μ

= =

= =

=

This empirically generated estimate (equation 11) of the
true relative frequency (or probability) of the transition will
become more accurate with generation of more simulated
trajectories. The transition matrix for the MDP model consists
of m matrices where m=max [U(i)] for i = 1,2,……n. Each
(state-action transition) matrix corresponds to one action and
each row in a matrix gives transition probability distribution
for a state under that action.

A trajectory simulated as per a policy would provide us
with probability distribution for only a single action in each
state. We, therefore, need to include different actions at each
state by using some random steps (as per a random policy) in
the initial phase of the procedure or the pseudo-stochastic
policy. This facilitates some amount of exploration in the
search for optimal policy. By intelligently exploring the action
space we can eventually generate enough information to
obtain true probability distribution for each state-action pair in
an iterative manner.

The TMPI algorithm makes use of the Markov property [1]

for combining information generated by successive
trajectories. Markov property states that the probability of the
state transition a

ijP depends only on the states i, j and the

action a and not on the previous transition history or
alternatively state transition probability distribution is
independent of the policy being used if two policies assign
same action to a particular state.

B. Aggregating Information
We combine the estimates produced by successive policies

/trajectories by forming a weighted sum of the contributions
of each policy as per the amount of experience provided by a

i,ai j j,b

0.05m and 6
πδ α< <

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4068

policy at a state-action pair, i.e., let η and ξ be two policies
and a(η) and a(ξ) be the action a as applied within policy η
and ξ respectively then:

ξ
α

η
α

ξ
αβ

η
αβ

α

ξ
αβ

η
αβ

ξ
α

ξ
αβ

α

ξ
α

η
α

η
αβ

α

η
α

ξ
αβα

ξ
αη

αβα

η
α

αβαβ

ξ
α

ξ
αβξ

αβη
α

η
αβη

αβ

NN

NN

N

NN

N
N

N
N

N
N

N
N

PN
NPN

NNP

N
N

P
N

N
P

aaaaggregatea

aa

+

+
=

+
=

∗+∗=

∗+∗==

==

)()()(

)()((12)

The data from the current simulated trajectory is combined
with data from all previous trajectories. Thus previously
available data is treated as if it had come from a single
simulated trajectory. By forming such a weighted sum, we
would be able to capture the system behavior to a greater
extent. This combined information is used in the policy update
step to generate an improved policy.

C. Policy Update Step
In policy iteration the policy is updated as: Q factor for the

state-action pair (i,a) is computed for the policy μ :

)](),()[(),(
1

jJaigaPaiQ
n

j
ij∑

=
+= μμ α (13)

 Then policy is updated as:

),(arg)(min
)(

aiQi
iUa

μμ
∈

= (14)

where n = number of feasible successor states for i.

In TMPI approach we generate Jμ (i,μ(i)) values from a
simulated trajectory for the visited (i,μ(i)) pairs. We then form
a weighted sum of these samples from successive trajectories
to generate J(i,a) values ,which are more or less policy
independent. We then perform a policy update based on these
current J(i,a) values. Thus the policy update does not solely
depend on the data generated by the policy followed during
the current simulated trajectory.

We find:

1
(,) ()[(,) (,)]

Expected cost to go for pair (,)

n
ij

j
Q i a P a g i a J j a

i a

α
=

= +

=

∑ (15)

And update the policy as:

),(arg)(min
)(

aiQi
iUa∈

=μ (16)

Thus instead of using the current-policy dependent measure,
i.e., (,)Q i aμ values for updating the policy (as in standard
policy iteration), the algorithm forms and utilizes a policy
independent measure, i.e., (,)Q i a values in the policy update
step of policy iteration.

III. SIMULATION MODEL AND RESULTS
We give results of an experiment involving steering control

of a simulated non-holonomic mobile robot. We attempt two

basic problems under assumption of constant velocity
tracking.

(i) Reducing distance to a line.
(ii) Trajectory tracking.

Details of the simulation model used for the mobile robot
can be found in [3][8]. A state is given by the distance δ in
meters from the line and orientation α in radians with respect
to the line []ts δ α= . The state space is defined as:

 1 1
0 2

δ
α π

− ≤ ≤ +
≤ ≤

δ has been discretised, with a resolution of 0.05 m while
orientation has been discretised with a resolution of 6

π or 30o,

yielding a total of 492 states and three discrete actions at each
state.
 We have tried to incorporate effect of noise/disturbances by
assuming that the incremental distance moved by the robot
between two consecutive time steps can vary by 20± % from
the value as predicted by the model, i.e., suppose if

1 0.2 mk kδ δ+ − = as given by the model then we may take

1 (0.2 0.04) mk k nδ δ+ − = + ∗ where n is uniform noise in [-1
1]. Similarly, angle of the robot α is also perturbed by 20± %.
We carry out the model updates as well as the Value Function
updates based on this simulated experience. At the end of an
episode/trajectory we use the current model and value
function approximates to generate an improved policy.

A. Robot Initialization and Trajectory Generation
At the start of each simulated trial, the robot is initialized

from 0.8mδ = ± and random initial orientation. Starting from
this state (δ, α), the robot takes actions as per the current ε-soft
policy, i.e., with probability ε it takes uniformly random action
and with probability (1- ε) it takes action as per the current
greedy policy, thus generating a trajectory through the state
space. A trial is terminated when:
(i) The robot violates the state-space boundaries, i.e., if

 This is reckoned to as a negative result.
(ii) The robot correctly tracks the target for 10 consecutive
 steps. This is reckoned to as a positive result.
(iii) If the maximum trajectory length (120 robot steps) is
 exceeded.
Two tasks have been attempted:
(a) Distance Reduction: After initialization, the robot has to
reduce distance to the line x=0 and satisfy 0.05mδ < for 10

consecutive steps.
(b) Trajectory Tracking: Track a reference trajectory (e.g., +
ve x-axis) for 10 consecutive steps, i.e., satisfy:

At the end of a trajectory, estimates from the current
trajectory are combined with the estimates from previous
trajectories to generate aggregate estimate of the model
parameters and then carry out the policy update using the
current aggregated estimates. The updated policy is used to
generate next trajectory. A trial consists of generating a fixed
number of such trajectories (500 in our case). Each trial starts

1mδ >

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4069

with no a-priori knowledge of the system, i.e., no transition
information. Results have been averaged for 10 trials for
comparison between TMPI and other algorithms.

The basis of comparison being:
1. Data efficiency, i.e., minimum number of robot transitions
needed to learn robust behavior or no negative result.
2. Degree of optimality of the optimal policy discovered, i.e.,
average number of robot steps to achieve the goal (averaged
over 25 trajectories).

0 0.5 1 1.5 2 2.5

x 104

25

27

29

31

33

35

37

39

41

43

45

47

49

Cumulative Robot Steps

A
ve

ra
ge

 S
te

ps
 to

 tr
ac

k
Ta

rg
et

TMPI
Q
SARSA
Q(Lambda)

Optimal Path Length : Distance Reduction Task

Fig. 4 Algorithm Comparison: Degree of Optimality of

discovered policy for the Distance Reduction task

0 0.5 1 1.5 2 2.5

x 104

0

2

4

6

8

10

12

14

16

18

20

Cumulative Robot Steps

N
um

be
r o

f F
ai

lu
re

s

TMPI
Q
SARSA
Q(Lambda)

Robustness : Distance Reduction Task

Fig. 5 Algorithm Comparison: Robustness of discovered

policy for the Distance Reduction task

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

Cumulative Robot Steps

A
ve

ra
ge

 S
te

ps
 to

 T
ra

ck
 T

ar
ge

t

TMPI
Q
SARSA
Q(Lambda)

Optimal Path Length : Trajectory Tracking

Fig. 6 Algorithm Comparison: Degree of Optimality of

discovered policy for the Trajectory Tracking task

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

-1

1

3

5

7

9

11

13

15

17

19

21

23

25

Cumulative Robot Steps

N
um

be
r o

f F
ai

lu
re

s

TMPI
Q
SARSA
Q(Lambda)

Robustness : Trajectory Tracking

Fig. 7 Algorithm Comparison: Robustness of discovered

policy for the Trajectory Tracking task

TABLE I
DISTANCE REDUCTION TASK: PERFORMANCE COMPARISON

TABLE II

TRAJECTORY TRACKING TASK: PERFORMANCE COMPARISON

TMPI as well as other approaches have been implemented

and simulated using MATLABTM. The discount factor α is
set to 0.9 as in [3],λ is set to 0.6 and simulation step-time T is
taken as 0.1 sec for all the trials. The results as depicted in
Tables I, and II have been averaged over 10 trials with each
trial consisting of 500 trajectories and each trajectory has 120
simulated steps of the robot.

As can be seen from Fig. 4 to 7 and Tables I to II, TMPI
approach discovers the optimal policy with less transition
information, i.e., with a smaller number of interactions
between robot and environment and the degree of optimality
of the policy discovered by TMPI is comparable to those
found by the other RL algorithms. With a proper choice of
trajectory length the degree of optimality of the policy
(minimum average steps to achieve goal) can be further
improved upon. Finally, in TMPI implementation high
exploration level is required only during the initial stages
while in all other algorithms we need to maintain exploration.

Algorithm Min
steps

Avg. steps
 (min steps)

Avg. steps
 (robust policy)

TMPI 32.5 5407 7081

Q 34.5 10986 Not Achieved

Q(λ) 32 7002 Not Achieved

SARSA(λ) 31.5 6567 Not Achieved

Algorithm Min steps Avg. steps
(Min steps)

Avg. steps
 (Robust policy)

TMPI 32 5557 4714
Q 38 9584 Not Achieved
Q(λ) 35 9562 Not Achieved
SARSA(λ) 34 6902 Not Achieved

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4070

IV. CONCLUSION

This paper presents a new approach to solve sequential
stochastic decision-making problems termed as Trajectory
based Modified Policy Iteration (TMPI), which uses the
simulation of the original system/process to create and update
an approximate aggregate Markov Decision Process (MDP)
model and cost-to-go values. These approximations of the
MDP model parameters and cost-to-go values act as inputs to
a modified policy iteration procedure to generate a sequence
of improving policies that finally converge to an optimal
policy for the aggregated simulated system. Instead of
evaluating policy dependent value function (,)Q i aμ as in the
standard “Actor-Critic” framework, TMPI tries to
approximate a policy independent value function (,)Q i a to
update the policy. As the agent gains more experience by
“Agent-Environment” interactions the approximating MDP
model becomes a fairly rich and robust sequential
optimization model.

The performance of the policies generated by TMPI for a
simulated mobile robot steering control problem is compared
against other benchmark RL algorithms, i.e., Q Learning,
Watkins Q(λ) and SARSA(λ). For the robot control task it is
observed that TMPI requires less experience to achieve a
robust behavior, i.e., no negative results, in comparison to
other RL algorithms. TMPI could be applied on high
dimensional state spaces by suitable choice of aggregation-
disaggregation schemes and/or use of generic function
approximtors (Neural Networks) [11] to generalize beyond
experienced states. The proposed approach as a solution
methodology deserves additional research and testing on more
complex domains.

REFERENCES
[1] D.P. Bertsekas and J.N. Tsitsiklis, Neurodynamic-Programming, Athena

Scientific, Belmont MA, 1996.
[2] C.W. Zobel and W.T. Scherer, “Simulation-Based Policy Generation

Using Large Scale Markov Decision Processes”, IEEE Transactions on
Systems, Man and Cybernetics-Part A: Systems & Humans, Vol. 31,
No-6, November 2001.

[3] Stephan Ten Hagen, “Continuous state-space and Q learning for control
of Non-linear systems”, Ph. D. Thesis, Amsterdam University, 2001.

[4] C.G. Atkenson and J.C. Santamaria, “A Comparison of Direct and
Model-Based Reinforcement Learning”, Tech. Rep. GA 30332-0280,
College of Computing, Georgia Institute of Technology, Atlanta.

[5] J.N Tsitsiklis, “On the Convergence of Optimistic Policy Iteration”,
Journal of Machine Learning Research 3 , pp. 59-72, 2002.

[6] Leonid Kuvayev, “Model-Based Reinforcement Learning with an
Approximate Learned Model”, Master’s Thesis, Department of
Computer Science, University of Massachusetts, 1997.

[7] L.P. Kaelbling, M.L. Littman and A.W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research 4, pp.
237-285,1996.

[8] R. Fierro and F.L.Lewis, “Control of a Non-holonomic Mobile Robot
using Neural Networks”, IEEE Transactions on Neural Networks, Vol.
9, No.4, July 1998.

[9] A.G. Barto, S.J. Bradtke and S.P. Singh, “Learning to Act Using Real-
Time Dynamic Programming”, Artificial Intelligence, 72(1), pp. 81-138,
1995.

[10] S.P. Singh & R.S. Sutton, “ Reinforcement Learning with Replacing
Eligibility Traces”, Machine Learning, 22, pp.23-158, 1996.

[11] J.N. Tsiksiklis and B.V. Roy, “ An Analysis of Temporal Difference
Learning with Function Approximation”, IEEE Transactions on

Automatic Control 42(5), pp. 674- 690,1997.
[12] C.J.C.H. Watkins and P.Dayan, “ Technical Note: Q-Learning”,

Machine Learning, 8(3/4), pp. 279-292, 1992.
[13] R.S.Sutton, “ Learning to predict by the Methods of Temporal

Differences”, Machine Learning, 3, pp. 9-44,1988.
[14] C.J.C.H.Watkins, “ Learning from Delayed Rewards”, Ph.D. Thesis,

Cambridge University, Cambridge, England, 1989.
[15] R.S.Sutton & A.G.Barto, “ Reinforcement Learning: An introduction”,

MIT Press, Cambridge, Massachusetts, 1998.
[16] R.E.Bellman, “Dynamic Programming”, Princeton University Press,

Princeton NJ, 1957.
[17] P.Dayan, “The convergence of TD(λ) for general λ”, Machine Learning,

8, pp. 341- 362,1992.

