
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

63

Abstract—Traffic Management and Information Systems, which

rely on a system of sensors, aim to describe in real-time traffic in
urban areas using a set of parameters and estimating them. Though
the state of the art focuses on data analysis, little is done in the sense
of prediction. In this paper, we describe a machine learning system
for traffic flow management and control for a prediction of traffic
flow problem. This new algorithm is obtained by combining Random
Forests algorithm into Adaboost algorithm as a weak learner. We
show that our algorithm performs relatively well on real data, and
enables, according to the Traffic Flow Evaluation model, to estimate
and predict whether there is congestion or not at a given time on road
intersections.

Keywords—Machine Learning, Boosting, Classification, Traffic
Congestion, Data Collecting, Magnetic Loop Detectors, Signalized
Intersections, Traffic Signal Timing Optimization.

I. INTRODUCTION
RANSPORTATION systems are an integral part of a
modern day society, designed to provide efficient and

economical movement between the component parts of a
country and offer maximum possible mobility to all citizens.
Road transportation is a critical link between all the other
modes of transportation and their proper functioning.
Signalized intersections, as a critical element of an urban road
transportation system, regulate the flow of vehicles through
urban areas. As a result, traffic flowing through signalized
intersections is filtered by the signal system causing vehicular
delays, which increases the total travel time through an urban
road network, thus resulting in a reduction in the speed,
reliability, and cost-effectiveness of the transportation system.
Furthermore, longer delays yield to degradation of the
environment by increasing air and sound pollution. For all
these reasons, it is important to predict and minimize these
delays. The model commonly used to evaluate traffic
congestion called the “Traffic Flow Evaluation” model, see
[13]. To obtain training data, most systems rely on a network
of sensors to estimate traffic parameters in real-time.
Currently, the dominant technology for this purpose is the use
of magnetic loop detectors, which are embedded underground
at almost every urban intersection and measure traffic

Guy Leshem, PhD student is with Department of Statistics, The Hebrew
University of Jerusalem, Israel (e-mail: gleshem@cc.huji.ac.il).

Ya'acov Ritov, Professor is with Department of Statistics, The Hebrew
University of Jerusalem, Israel (e-mail: yaacov@mscc.huji.ac.il).

parameters of vehicles passing above them. In this model, the
criterion of interest for prediction is the Level Of Service
(LOS) for each intersection, namely at which cycle of the
signal light a vehicle will cross the intersection in mean. This
quantity depends on the signal cycles (red and green lights)
and also on the occupancy value, which is the average time a
given car stands over the detector per signal cycle. Note that
the occupancy value and the signal setup depend on many
other important parameters such as, for example, the hour and
day of measurements; we refer to [13] for an exhaustive
description of all parameters. According to the Division of
Transportation and Highways Engineering determination,
traffic flow will be considered as congestion if No. of signal
cycles till the vehicle will cross the junction > 4. Several
software, such as ''PATH'' (UC Berkeley) and ''NISS Digital
Government II'' (DGII) have been developed to deal with the
computation of the LOS. Nevertheless, they focus more on
data analysis, whereas little is done in the sense of prediction.
Namely, these methodologies take the time information into
little account, thus losing valuable information for traffic
control. The objective of this study is to provide an advanced
methodology of identification and prediction of urban traffic
obstructions. In this contribution we present a methodology in
order to predict and minimize incoming traffic flow
congestion. The paper is organized as follows: Section 2
presents an overview of Adaboost (see [16]) and Random
Forests introduced in [1]. Section 3 details our model and the
proposed method of prediction; this approach uses Random
Forests as a first predictor (also called weak learner in further
sections) and combines it within a committee framework
AdaBoost, in order to boost its accuracy. The proposed
algorithm can be used as well for the optimization of the
signal settings over time. An application on real data is
presented in Section 4, which shows the adequacy of the
proposed method, and shows experiment and results. Section
5 details our conclusions.

II. ALGORITHMIC PART

A. AdaBoost
The main idea of boosting algorithms is combining many

simple and moderately accurate classifiers (called weak
classifiers) into a single, highly accurate classifier for the task
at hand. The weak classifiers are trained sequentially and,
conceptually, each of them is trained mostly on the examples,

Traffic Flow Prediction using Adaboost
Algorithm with Random Forests as a Weak

Learner
Guy Leshem, and Ya'acov Ritov

T

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

64

which were most difficult to classify, by the preceding weak
classifiers. The boosting algorithm takes as input a training set
of m examples S={(x1,y1),…,(xm,ym)} where each instance xi
is a vector of attribute values that belongs to a domain or
instance space X, and each label yi is the class label associated
with xi that belongs to a finite label space Y. In this
contribution we will only focus on binary classification
problems, that is Y={-1,+1}. The final classifier, h, is
constructed by a weighted vote of the individual classifiers
h1,h2,…,hm. Each classifier is weighted according to its
accuracy for the distribution pl that it was trained on. We
present as a reminder the pseudo-code of the "classic"
Adaboost, and refer to [9] for further results on this algorithm.
• Input: a set S, of m labeled examples:

S=((xi,yi),i=(1,2,…,m)), with labels in Y.
• Learn (a learning algorithm)
• A constant L.
[1] Initialize for all i:

m
iwl

1)(= initialize the weights

[2] for l=1 to L do
[3] for all i:

∑
=

i
l

l
l iw

iwip
)(

)()(compute normalized weights

[4] hl:=Learn(S,pl) call Learn with normalized weights
[5])]([)(iil

i
ll yxhip ≠= ∑ε call Learn with normalized weights

[6] thenif l 2
1>ε calculate the error of hl

[7] L=l-1
[8] go to 12
[9]

l

l
l ε

εβ
−

=
1

[10] for all i:]([1
1)()(iil yxh

lll iwiw ≠−
+ = β compute new weights

[11] end for
[12] Output: ∑

=∈
==

L

l
l

lYy
final yxhxh

1

])()[1(logmaxarg)(
β

As we can see in this algorithm, it is necessary to define at
first a learning algorithm. For instance, we can choose
Random Forests algorithms, which are detailed in the
following section.

B. Random Forests
Breiman [1] has developed an ensemble classification

approach that displayed outstanding performance with regard
prediction error on a suite of benchmark datasets. This
development, known as “Random Forests”, is a combination
of tree predictors such that each tree depends on the values of
a random vector sampled independently and with the same
distribution for all trees in the forest. The generalization error
for forests converges a.s. to a limit as the number of trees in
the forest becomes large. The error of a forest of tree
classifiers depends on the strength of the individual trees in
the forest and the correlation between them. Internal estimates
monitor error, strength, and correlation and these are used to
show the response to increasing the number of features used

in the splitting. The common element in all of these
procedures is that for the k-th tree, a random vector kθ is
generated, independent of the past random vectors 11 −kθθ K ,
but with the same distribution, and a tree is grown using the
training set and kθ , resulting in a classifier h(x, kθ) where x is
an input random vector. For instance, in bagging, the random
vector θ is a random sample of size N chosen with
replacement from the N examples of the training set. After a
large number of trees are generated, they “vote” for the most
popular class. The pseudo-code of Random Forests is as
follows:
[1] Initially select the number K of trees to be generated.
[2] For k=1 to K do
[3] A Vector kθ is generated
[4] Construct Tree),(kxh θ= using any decision tree

 algorithm.
[5] Each Tree casts 1 vote for the most popular class at X.
[6] The class at X is predicted by selecting the class with
 max votes.
[7] Return a hypothesis lh .
[8] End For

One practical interest in Random Forests is that it performs
nicely even in the case of missing data in X, since some rules
of replacement for the missing data can be plugged-in, like the
median of all obtained values as stated in Breiman [1]. This
often occurs in our situation; say if some loop detectors are
broken. Another advantage of the Random Forest paradigm is
that there is no need for cross-validation or a separate test set
to get an unbiased estimate of the test set error. Indeed, this
error is estimated internally, during the run, as follows: each
tree is constructed using a different bootstrap sample from the
original data. About one-third of the cases are left out of the
bootstrap sample and not used in the construction of the k-th
tree. We put each case left out in the construction of the k-th
tree down the k-th tree to get a classification. That way, a test
set classification is obtained for each case in about one-third
of the trees. At the end of the run, take j to be the class that
got most of the votes every time case n was oob (out-of-bag).
The proportion of times that j is not equal to the true class of n
averaged over all cases is the oob error estimate. This method
has proven to be unbiased in many tests [1].

III. METHODOLOGY: THE ADABOOST-RANDOM FOREST
PROCEDURE

 When combining Adaboost and random forest methods, we
can distinguish two possible ways. The first one is “boost in
forest”, where an AdaBoost classifier is built for each random
vector kθ (i.e., a collection of variables), and to get by that
sequences of “simple” AdaBoost classifiers, each with small
number of variables. Instead, we chose a second approach,
which uses Random Forests as a weak learner. The
philosophical idea of the weak learner algorithms is to find
quickly weak assumptions with moderate error rate, since it is

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

65

clear from a numerical point of view that AdaBoost would
work faster with simple weak learners than with learners that
build forests of trees, which is of interest in our real-time
application.

A. Advantages of the Combination
 The final classifier of this approach (AdaBoost

algorithm with random forest as weak learning)
combines the good performances of Random Forests
and Adaboost, we can therefore expect it to be very
accurate with minor misclassification and strong
predication ability.

 It has an effective method for dealing with missing
data and maintains accuracy when a large proportion
of the data are missing.

 It is an effective method for predication of multi-
class classification problems.

 Note also that using Random Forests as a weak
learner in AdaBoost enables to choose, in Step 6 of
the Random Forest algorithm, a way of prediction
depending on the weights, which could give better
results.

 Because the new algorithm using random forests as
weak learner and boosting unbiased classification,
there is no need for cross-validation for “Adaboost-
RandomForests” algorithm.

We present results on a known dataset (satimage), in order

to validate the proposed method experimentally. Fig. 1
illustrates the differences between a standard weak learner
(namely, a threshold) and a Random Forest used a weak
learner. We can see that the choice of Random Forest leads to
better results on the test error. Note also that Drucker obtained
in [3], using C4.5 decision trees as weak learners a test error
of 0.1 on the same dataset, for a number of cycles of the same
magnitude. The proposed method thus performs relatively
well, compared to a more refined approach as decision trees.

Fig. 1 Error curve for AdaBoost algorithm with classical weak-
learner (threshold), and with Random Forest as weak learners

Fig. 2 illustrates the performances of the proposed

algorithm in the case of missing data. In this experiment we

randomly withdrew about 20% of the train and test data.
Following Breiman [1], a possible way to replace missing data
is to take the median of all explicit variables of X. Here we
used a nearest neighbors approach, that is replace the missing
data by the mean of the nearest components of X around this
missing value. This makes sense physically, as each line of X
also characterizes in our application a line of the road, thus it
is reasonable to assume that the traffic state in a highway is
the same in every line. We can see that missing data do not
affect much the efficiency of the method.

Fig. 2 Error curve for AdaBoost algorithm with Random Forest as
weak learners, with (median of all explicit variables, and the mean

of the nearest components of X around this missing value) / without
missing data

B. Use of AdaBoost-Random Forest for Prediction
We now discuss how the proposed algorithm can be used in

order to predict traffic congestion. In order to do that, it is
necessary to explain more explicitly how our data depend on
time. Clearly traffic information can vary according to both
days and hours. In this section, we will denote by tdnmX ,,× a

dataset of size m with n features, collected on day d and at
hour t and by tdmY ,,1× the class labels associated to tdnmX ,,× .

The problem of prediction is therefore, given a dataset

tdnmX ,,× known for every t, to estimate ttddmY Δ+Δ+× ,,1~ , where

Δd and Δt respectively define a variation of day and a
variation of hour. The proposed estimation procedure can then
be decomposed in four steps:

i. Collect two samples of data, tdnmX ,,× and

ttdnmX Δ+× ,, , Δt > 0,

ii. Compute the class labels ttdmY Δ+× ,,1 ,

iii. Compute a new training set dnmZ ,1+× , using

tdnmX ,,× and ttdmY Δ+× ,,1 by concatenation,

that is

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

66

];[,,1,,,1 ttdmtdvmdnm YXZ Δ+××+× = ,

iv. Collect the test set tddnmX ,,~ Δ+× (Δd > 0),

and compute ttddmY Δ+Δ+× ,,1~ using the

AdaBoost-Random Forest algorithm on

dnmZ ,1+× and tddnmX ,,~ Δ+× .

IV. APPLICATION TO TRAFFIC ANALYSIS AND PREDICTION
As mentioned, control of signalized intersections is a

critical element to optimize urban road transportation systems.
We present in this section an application of our prediction
method to the minimization of time delays at intersection.
Indeed, if predicted early enough, say half an hour before the
congestion actually happens; traffic control systems can
change the signal timing plans according to optimization
process of signalized intersections, thus allowing
circumventing traffic congestion before it actually happens.
We briefly describe in the next section data collection for
traffic control, and present results on the proposed method.
The reader interested in a complete description of how to
build a dataset in that framework should refer to [13].

A. Data Set Collection: A Quick Overview
Traffic management and information systems (TMIS)

currently rely on a system of magnetic loop detectors, which
are buried underneath at almost every urban intersections and
which measure traffic parameters of vehicles passing over
them. Table I is an example of the data set (training and
testing set) collected by Jerusalem Traffic Flow Management
Control and used by our system.

TABLE I

EXAMPLE TO TRAIN FILE / TEST FILE
DAY TIME INT DET LINK POS GRE DIS VOL OCC Y

1 7:00 20 20-
24

24 2 25 40 24 21 1

1 7:00 30 30-
33

33 1 20 35 76 33 -1

1 7:00 40 40-
42

42 3 30 40 18 12 1

.

We briefly describe the explanatory variables in a train or
test file: Day is the day number (from 1=Sunday to
7=Saturday), Time is the time when a vehicle passes over a
given detector, Gre is the green light duration, Vol is the
number is vehicles passing a detector per light cycle, Occ is
the average that a car spends on a given detector and Y is our
label class, with value 1 if congestion happens and -1
otherwise. The variables Det (Detector ID), Dis (distance
between the detector and the stop line), Int (Intersection ID),
Pos (detector position from right (1=right, 2= two from
right...)) and Link (lane ID) characterizes a given intersection,
and their description will be omitted here.

B. Traffic Flow Evaluation Model (Determination of
Hypothesis Class for Train File)

Data collected from detectors regarding traffic flow in
signalized intersections are evaluated according to the
following model, which was developed in [13]. Shortly,
identification of traffic congestion is based on the occupancy
value (which may be deduced from the measurements) and the
saturation level value, which depends on the programming of
traffic light and capacity and is calculated according to the
green light duration allowed to each vehicle. The main
disadvantage of using the saturation level as a measure of
performance is that it is impossible to measure demand on the
detectors, instead we have access only to the volume of traffic
that succeeded in passing over them. The capacity constitutes
an upper bound approximately to this value. Upon entrance to
signalized intersections, where detectors are in use and during
the red light period, the routine queue arrives to the detector,
the absolute value of occupancy that identifies traffic
congestion is nonexistent. The interconnection between the
occupancy measured on the detectors and the quality of the
traffic flow depend on the green light duration allowed each
vehicle upon entrance to the junction. Therefore, the
determination that occupancy value confirms traffic
congestion is not an absolute determination and is only
relative to the expected value, which reflects the duration of a
green light for each vehicle upon entrance to the junction. For
identification of traffic congestion and determination of
''critical occupancy value'' defined as expected occupancy in
the situation demand (per lane) is identical to capacity. This
given values can be calculated. The decision making process
for the determination of traffic flow quality will be executed
according to the following stages:
1. A calculation of critical occupancy value and

saturation level.
2. An estimation of traffic flow quality in the lane based

on the comparison between actual occupancy and
critical occupancy, and saturation level.

3. An estimation of traffic flow quality in the segment
(link) based on traffic flow situation in lane.

Assuming that at the end of the green light period there is no
queue on the stop line, it is possible to describe traffic
phenomenon in the access to the junction in as follows: at the
beginning of the red light period, the vehicles passing over the
detector with free speed, slow down near the stop line, and
stop at the edge of the queue which begins to form near stop
line. In this time period, the volume of vehicles measured by
the detector is identical to the demand, and critical occupancy
is identical to the capacity. Continuation of this red light
period, when the edge of the queue begins to approach the
detector (assuming that the distance between the detector and
the stop line ''35m''), the speed of the vehicles begin to reflect
approach to the queue, which means that the speed is slower
than the speed of free journey. Therefore progressively the
vehicles increase traffic volume. At certain values of distance
between the detectors and the stop line, and during the red
light period, a queue may approach the detector, and for this

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

67

short while Volume =0 and Occupancy =100%. This
phenomenon continues until the end of the red light period
and on the beginning of the green light period. At this time,
two phenomena occur in parallel. In the stop line, the process
of queue release begins and vehicles continue to arrive and
join the edge of the queue. Two these phenomena can be
describe as shock wave. When two shock waves meet, the last
car in the queue begins to move. The speed characteristics of
the vehicles passing over the detector during the release of the
queue are similar to the speed characteristics of queue
accumulation, but in inverse direction. The speed of a vehicle
increases until it reaches free speed. A simplified calculation
of critical occupancy was carried out and three types of
situations were defined:
1. Journey at free speed on the detector in the worth volume
 to the capacity.
2. Journey at queue release speed on the detector and in the
 volume of saturation flow.
3. Stopping on the detector (Volume =0).

Fig. 3 is a graphical summary pf all possible situations
taken into account in our procedure.

Fig. 3 The graph describes process of accumulation of the queue and
his release (as in Mahalel and Gal-Tzur [13])

In this theory the vehicles joining the queue move rapidly

and steady until joining the queue, and also depart rapidly and
steady immediately upon release from the queue. We can see a
point in the time and in the expanse at which the queue arrives
at the detector, and a point at which the queue begins to exit,
the point of the shocks wave of queue release reaches the
detector. The time period between these two points is the
range that the vehicles stand on the detectors. This model
allows to calculation of Level of Service (LOS) of the
intersection, or simply ''at which cycle of the signal light the
vehicle will cross the intersection''. According to the Division
of Transportation and Highways Engineering determination,

traffic flow will be considered as congestion if the vehicle will
cross the intersection at the fourth or more cycle of the signal.
Consequently, given traffic parameters previously described,
it is possible to compute the Level of Service (LOS), roughly
1 if LOS considers it as under-congestion and -1 otherwise.
Those data will be used as labels.

C. Experimental Setup and Results
The idea of the prediction procedure, which is explained in

the previous section, can be decomposed in these two steps:

)(

)(

,,1~,,~

,,1,,

*

fileTestYX

filetrainYX

ttdmtdnm

ttdmtdnm

Δ+××

Δ+××

→

→

Jerusalem Traffic Management and Information Systems
collected the data used in our experiment. The algorithm is
trained on this train file (X is the samples of traffic data, with
matrices size m x n which were produced from specific date d
and specific time t with class labels m* which were produced
from same date d but from different time t+Δt), and the test
samples (m~ which produce from latterly date d* and specific
time t) were classified by the trained classifier. Because the
algorithm classifier labels of future times, it is actually
predication of traffic flow. Back to our experiment, training
sets contains samples of data for one week (d=1.10-7.10)
computed at (t=07:00) with class labels obtained using the
''evaluation of the traffic flow in the signal intersection model''
at time (t+Δt=07:30). Test sets contain samples of data
collected the following week (d+Δd=8.10-15.10) at (t=07:00)
in order to predict class labels for (d+Δd) at time (t+Δt). The
results are displayed in Fig. 4.

Fig. 4 First prediction results on Jerusalem data set: one week predict

one week later

We also used a test set made of data for one day
(d+Δd=10.10) at (t=07:00) in order to predict the class labels
(d+Δd) at time (t+Δt). Results are displayed in Fig. 5.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:1, 2007

68

Fig. 5 First prediction results on Jerusalem data set: one week predict

one day later

In order to check the quality of the traffic prediction, we

also used the microscopic traffic simulator MITSIM [14]. This
simulator represents networks at the lane level and simulates
movements of individual vehicles using car-following, lane
changing, and traffic signal response logic. Network of
Jerusalem transportation system with approximately 100
intersections, with real data of signal timing and similar
vehicles movements to the testing set were implemented to
simulate traffic in Jerusalem. The cross-validation was done as
follows: (a) run the simulator with different types of origin-
destination data and gets output, (b) create train files for the
machine learning from the output, (c) creation of the test files
from origin-destination data, (d) predict traffic congestion, (e)
run the simulation with test files as origin-destination data,
and get output, and (f) compare the output of test files with the
predicted values. We found an error rate of approximately 7%.
In comparison, the naive predictor (consisting in the
estimation of the future class labels by its current value) gives
an error rate of 16%.

V. CONCLUSION
In this paper we addressed the issue of traffic congestion

prediction, using a hybrid Adaboost-Random Forest
Algorithm. A new method of prediction was proposed, which
gives very promising results on both simulations and real data.
The optimization of traffic lights according to given
predictions, at well as a numerical study of its efficiency,
should be investigated in further contributions.

REFERENCES
[1] Breiman Leo. (2001) {Random Forests} Machine Learning 45 (1), 5-32

(Original Article).
[2] Breiman Leo. (2003) {Manual on setting up, using, and understanding

random forestsv3.1}.
[3] Drucker H, Wu D, Vapnik V. (1999) {Support vector machines for spam

categorization}. IEEE Transactions on Neural Networks.
[4] Katja Remlinger. (2002) {Paper report base on Breiman, L.(2001)

Random Forests}. Machine Learning, 35, 5-32.
[5] Iyer R, Lewis D, Schapire R, Singer Y and Singhal A (2000) {Boosting

for document routing}. In Proceedings of the Ninth International
Conference on Information and Knowledge Management.

[6] J. R. Quinlan. {Bagging, boosting and C4.5}. Proc. of 13th AAAI, pp.
725730, 1996.

[7] J. Friedman, T.Hastie, R. Tibshirani. (1998) {Logistic Regression: a
Statistical View of Boosting}. Tech. report July 23.

[8] Marko Robnik-Sikonja. (2004) {Improving Random Forests}. In J.F.
Boulicaut et al.(eds): Machine Learning, ECML 2004.

[9] Schapire E. Robert. (1990) {The Strength of Weak Learnability}.
Machine Learning, 5, 197-227.

[10] Theodoro Koulis. (2003) {Random Forests: Presentation Summary}.
April 1.

[11] T. G. Dietterich. (1999) {An experimental comparison of three methods
for constructing ensembles of decision trees: Bagging, boosting, and
randomization}. Machine Learning, Vol. 32, No.1, pp.122.

[12] Transportation Research Board.{Highway Capacity Manual, National
Research Council, Washington, DC}, 2.

[13] Mahalel David, Gal-Tzur Ayelet, (2003) {Evaluation of the traffic flow
In the signalized intersections. Final report of the Division of
Transportation and Highways Engineering, Technion Institute}.

[14] Yang Qi, (1997) {A Simulation Laboratory for Evaluation of Dynamic
Traffic Management Systems. Ph.D. Thesis, at Department of Civil and
Environmental Engineering}.

[15] Anil Kamarajugadda, Byungkyu Park, (2003){Stochastic Traffic Signal
Timing Optimization. Final report of ITS Center project: Signal timing
algorithm}.

[16] Y. Freund, R. E. Schapire (1996), Experiments with a New Boosting
Algorithm. In Machine Learning: Proceedings of the Thirteenth
International Conference.

