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     Abstract—Traffic density, an indicator of traffic 
conditions, is one of the most critical characteristics to 
Intelligent Transport Systems (ITS). This paper investigates 
recursive traffic density estimation using the information 
provided from inductive loop detectors.  On the basis of the 
phenomenological relationship between speed and density, the 
existing studies incorporate a state space model and update the 
density estimate using vehicular speed observations via the 
extended Kalman filter, where an approximation is made 
because of the linearization of the nonlinear observation 
equation. In practice, this may lead to substantial estimation 
errors. This paper incorporates a suitable transformation to 
deal with the nonlinear observation equation so that the 
approximation is avoided when using Kalman filter to 
estimate the traffic density. A numerical study is conducted. It 
is shown that the developed method outperforms the existing 
methods for traffic density estimation.  
 

Keywords—Density estimation, Kalman filter, speed-density 
relationship, Traffic surveillance.  

I. INTRODUCTION 
N both developing and developed countries, major cities 
continue to struggle with increasing traffic congestion and 

related problems. Often complex Traffic Management 
Systems (TMS) are employed to help manage the flow of 
traffic. These TMS’s fuse traffic surveillance related 
information from multiple supporting systems.  

A TMS including Intelligent Transport Systems (ITS) 
requires real-time information to make effective control 
decisions and to deliver trustworthy information to users. 
Transportation planning and analysis need a detailed study of 
transport variables such as traffic flow, vehicle speed, travel 
time, congestion level etc. One of the most commonly used 
pieces of information for transportation planning is the traffic 
flow within a highway segment. Traffic flow (counts) of 
vehicles and their speed measurements can be available from 
surveillance sensors such as magnetic loop detectors. 
However, the problem of estimating the number of vehicles 
traversing a highway segment (traffic link) presents an 
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important issue which has attracted a great deal of research in 
the recent decades.  

Generally, it is believed that traffic density estimation or 
prediction is difficult. The reason behind this is due to the type 
of sensors employed. Inductive loop detectors are commonly 
used which are point sensors while density is a range concept. 
Location, weather, vehicle types, etc. are some of the 
disturbances to density estimation. As a matter of fact, traffic 
density is very difficult to be measured/estimated accurately in 
real-time although they are required in traffic control in 
practice, such as coordinated ramp metering and variable 
speed limit control [1]. 

The Kalman filter is an efficient recursive technique to 
update the estimates of the state vectors of linear dynamic 
systems from a series of noisy measurements. It is widely used 
in the traffic studies (see, e.g., [2] and [3]). The speed-density 
relationship is usually serves as the observation equation of 
state space models for the density estimation problem. As the 
speed-density relationship in the Drake’s model [4] is 
nonlinear, the existing methods utilize the extended Kalman 
filter to rapidly update the traffic state vectors for online 
traffic surveillance. As noted in [5], however, the extended 
Kalman filter involves an approximation when the nonlinear 
system is linearised. This may sometimes cause substantial 
estimation errors.  

In this research, the approach presented in [2] have been 
followed and speed-density relationship is used to estimate 
vehicle counts recursively by employing the Kalman filtering 
technique. To avoid the linearization in the extended Kalman 
filter used in the existing methods, some suitable 
transformation have been employed and it has been shown that 
the accuracy of traffic density estimation is greatly improved.  
vehicle density estimation 

Vehicular density plays a vital role for managing and 
controlling traffic operations in urban networks. As an 
instantaneous and range concept, traffic density is primarily 
defined by considering into a snapshot photo of the traffic by 
an aerial camera along a stretch of freeway [6], [7]. The 
density here is simply the number of vehicles divided by the 
length of the selected road segment. Average density over 
lanes is naturally deduced by further dividing the number of 
lanes. Note that this concept can be described as continuous in 
space but discrete in time. However, practical traffic network 
systems, particularly freeway networks, do not have aerial 
cameras to continuously monitor the traffic in real-time. 
Although dense point sensor systems (inductive or magnetic 
loop detectors) could approximate continuous measurement in 
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space, the cost is prohibitive in general. In practice, point 
sensors such as inductive loop detectors are popularly used for 
traffic detection, which could continuously count vehicle 
numbers in traffic streams in real-time at the sensor locations 
[1]. The vehicular density information may be derived from 
raw counts obtained from inductive loop detectors or other 
detection devices. However, these counts are subject to errors, 
which can degrade the density estimates substantially.  

To improve count estimates, the study in [8] carried out in 
the early 70s used a filtering technique, an extended version of 
Kalman filter. Their algorithm assumes a discrete-time control 
system which re-linearises the dynamics of each new estimate 
as it becomes available. Since then the Kalman filtering has 
been employed quite frequently in the literature. Different 
versions of Kalman filter including extended Kalman filter 
([2], [3]), mixture Kalman filter [9], and linear Kalman filter 
[10] have been used to estimate traffic densities over highways 
and roadways. This work is based on the model in [2] where 
the extended Kalman filter was applied to obtain density 
estimates. Note that to employ the extended Kalman filter in 
[2], a Taylor expansion of the original nonlinear systems was 
used. However, this linearization can sometimes lead to biased 
results and therefore can distort the actual traffic flow model. 

II. METHODOLOGY 
Consider a typical freeway section as schematically shown 

in Fig 1. Consider that there are number of sections of a 
freeway with embedded inductive loop detectors. Traffic flow 
over the freeway must be regulated for various segments of 
the freeway to avoid traffic congestion. Clearly, effective real 
time control of freeway traffic relies on information regarding 
the number of vehicles in different sections of the freeway. 
Using the traffic speed-flow relationship and traffic 
information from inductive loop detectors, the Kalman filter 
can be employed to improve the vehicle count estimates.  

This paper considers a multi-section roadway with N 
different sections in tandem. The idea behind selecting such a 
situation is that the traffic density estimate can be improved by 
considering the fact that the counting error for vehicles leaving 
a given section is the same as the error for the vehicles 
entering the very next section. 

 

 

Fig. 1 A schematic plot showing two sections of a freeway 

A.  State Space Model for Density Estimation  
The problem of the estimation of traffic density is 

formulated as follows. The number of vehicles  jky ,  in each 
section j of a multi-section roadway at the kth time step 
(k=1,…,K) is considered as a state variable. For ease of 
exposition, a two section problem is considered but the results 
can be extended to the general situation where the roadway is 
split into N section. The state equations for the state variables 
are given by  
 

1,,1,,,,1 +++ −+−+= jkjkjkjkjkjk uuyy εε   ( j=1,2),    (1) 
    
where quantities uk,j and uk,j+1 are the numbers of vehicles 
entering and leaving section j at the kth time step respectively. 
The εk,j is the counting error for the quantity uk,j. Following 
[2], assume εk,j has a normal distribution with zero mean and 
variance 2σ . The variance of detectors is assumed to be the 
same for all detectors, i.e. 2

, )var( σε =jk . It is straightforward 
to obtain 
      
   2

, 2)var( σ=jky , 
and      

2
1,, ),cov( σ−=+jkjk yy . 

 
Let 1,,, +−= jkjkjk uuw  and 1,,, +−= jkjkjk εεξ . Then the 

state equation can be written in a matrix form: 
 

   kkkk ξwAyy ++=+1 ,           (2) 
 
where A is a 2-dimentional identity matrix. T

kkk yy ],[ 2,1,=y . 

kw  and kξ  are similarly defined. ),0(~ Qξ Nk , with 
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Next, the observation equation is considered. Following [2] 

and [3], observations of traffic density are obtained from the 
Drake’s model [4] which is a phenomenological relationship 
between speed and density:  
 

]2/))/((exp[ 2
,0,,, jjjkjfjk Lnyvv −=   ( j=1,2),       (3) 

 
where vk,j is the speed measurement in section j at the kth time 
step and vf,j  represents the free flow speed. Lj is the length of 
section j. n0,j  is the density corresponding to the maximum 
flow in section j. 

The Kalman filter is an efficient recursive filter that 
estimates the state of linear dynamic system from a series of 
noisy measurements. To apply the Kalman filtering technique, 
the above observation equation was linearised in [2]. 
Unfortunately the linearization can sometimes produce un-
reliable results where the estimates of the state variables were 
totally off the track.  

In order to overcome this problem, this paper proposes 
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some suitable transformation to the observation equation to 
yield a linear form so that the approximation is completely 
avoided. As shown later in this paper, this approach is more 
robust and accurate.  

Specifically a transformed speed observation is defined: 
 

2/1
,,, )}/{log( jkjfjk vvz = .           (4) 

 
From equation (2), we obtain jkjjjk yLnz ,,0, )]2/(1[= . By 

taking into account measurement errors, the transformed 
observation equation can be written: 
 

jkjkjjjk yLnz ,,,0, )]2/(1[ η+= , 
 
where the errors ηk,j are assumed to approximately follow a 
normal distribution, i.e. ),0(~ 2

, τη Njk . The free speed vf,j   
required in the transformation can be estimated prior to the 
Kalman filter is applied. Alternatively, following [2] these can 
be treated as tuning parameters in practice.  

Define IR 2τ=  and }2/,2/{ 22,011,0 LnLndiag=H , 
where I is a two-dimensional identity matrix. The observation 
equation can thus be written in a matrix form: 
 

kkk ηHyz += ,              (5) 
 
where T

kkk zz ],[ 2,1,=z  and kη  is similarly defined. 
),0(~ Rη Nk . 

              

B. Density Estimation – A Kalman Filter Approach 
In this subsection the Kalman filtering technique is applied 

to update the estimate of traffic density. 
Let kk ,ŷ  and kk ,1ˆ +y  denote the updated estimate and one-

step forecast of the state vector at time step k, and kk ,P  and 

kk ,1+P  denote the corresponding covariance matrices. The  
estimation of a multi-section roadway vehicle density is 
carried out as follows: 

Step 1. Iinitialization:    

00,0 ˆˆ yy = , 00,0 PP =  and k=0.        (6) 
              

Step 2. One-step forecast of the state vector: 
 

kkkkk wyAy +=+ ,,1 ˆˆ ,              (7)
                   

QAAPP +=+
T

kkkk ,,1 .              (8) 
                            

Step 3. Computing the Kalman gain matrix  
 

1
,1,1 )( −

++ += RHHPHPM T
kkkk .               (9) 

                    
Step 4. Updating the state vector and its covariance matrix  
 

)ˆ(ˆˆ ,1,11,1 kkkkkkk ++++ −+= yHzMyy ,              (10)
                          

kkkkkk ,1,11,1 ++++ −= MHPPP .            (11) 
 

Step 5. Let k=k+1 and return to Step 2. 
 
It can be seen that the main difference between the 

developed method and the method in [2] is that instead of 
applying the extended Kalman filter and carrying out the 
linearization of the speed-density relationship, a suitable 
transformation is applied to avoid the approximation caused 
by linearization.  

III. SIMULATION 
The developed method will be tested in this section via 

microscopic simulation. One major advantage of carrying out 
simulation studies is that ‘true’ values of traffic densities are 
known a priori so that it is straightforward to assess the 
performance of a method in terms of accuracy [5]. 
 

A. Simulation Description  
A self developed microscopic simulator was used to 

simulate traffic in a single lane having multiple segments. 
Two sections of roadway were considered with 400 and 500 
meters long respectively. The simulation scenario was with 
duration of 2 hours and the estimation time step was 20s. 
Following [2], the density corresponding to the maximum 
flow in both sections,  n0,j , were set equal to 32. The initial 
guess of the numbers of vehicles in the two sections was set 
equal to  Lj*n0j /2, i.e. 50% of the maximum traffic counts. 
Free speeds for two sections were set to be 104.76 km/h [2].   

The real time traffic counts entering section j,  uk,j, were 
simulated using Poisson variates with a mean of λ and the 
error terms εk,j for traffic counts and ηk,j for speed 
measurements were simulated as normal variates with zero 
means of covariance matrices Q and R respectively.  

The parameters in the simulation varied from experiment to 
experiment to reflect different scenarios. Each experiment was 
repeated 100 times. The evaluation of each method was based 
on the following Root Mean Square Error criterion: 
 

2/12

1

1 })]()(ˆ[{ kNkNKRMSE
K

k

−= ∑
=

− , 

 
where )(kN  and )(ˆ kN  are simulated and estimated vehicle 
counts in a section.  
 

B. Simulation Results  
Fig 2 and Fig 3 display simulated vehicle counts (broken 
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line) and the estimated vehicle counts (real line) in an 
experiment for the two sections with two different scenarios 
where the parameters of the error terms in the state equation 
and observation equation differ,  i.e. σ=3 and τ=1 for Fig 2, 
and σ=2 and τ=2 for Fig 3. Also note that Fig 2 represents the 
scenario that the traffic is light (the average number of 
vehicles arrival is 3 per 20s). In contrast, in Fig 3 the average 
number of vehicles arrival is increased to 8 per 20s. It is clear 
that the developed method performed well: the estimated 
traffic density was close to the simulated traffic density. 
 

  
Fig. 2 Simulated traffic counts (broken line) and the corresponding 
estimated traffic counts (real line) using the developed method for 

section 1 (left) and section 2 (right) with σ=3, τ=1 and λ=3 

 
Fig. 3 Simulated traffic counts (broken line) and the corresponding 
estimated traffic counts (real line) using the developed method for 

section 1 (left) and section 2 (right) with σ=2, τ=2 and λ=8 

It is also of interest to investigate the impact of the error 
parameters σ and τ on the accuracy of estimation. TABLE I 
displays RMSE values for different scenarios using the 
developed method. It can be seen that overall the estimated 
traffic counts are quite accurate. When the parameters σ and τ  
are small, the average estimation errors are about one vehicle 
per 20s. When the two parameters become larger, the average 
estimation errors increase but are still at a low level. 
 

TABLE I 
 AVERAGE RMSES FOR TWO ROADWAY SECTIONS OVER 100 SIMULATION 

RUNS USING THE DEVELOPED METHOD WITH λ=10 
  τ=1 τ =2 τ =3 

σ=1 0.6410;  
0.7826 

0.6148;  
0.7439 

0.6104;  
0.7309 

 σ=2 0.9740;  
1.1959 

0.9777;  
1.1704 

0.9663;  
1.1639 

σ=3 1.2684;  
1.5394 

1.2805;  
1.5597 

1.2717;  
1.5495 

σ=5 1.7792;  
2.1775 

1.8221;  
2.2382 

1.8289;  
2.2420 

σ=8 2.4677;  
3.0314 

2.5343;  
3.0887 

2.5344;    
3.0996 

 

C. Comparison with the Existing Method 
Next the performance of the developed method with that of 

the method in [2] is compared where the density was 
estimated using the extended Kalman filter. TABLE II 
displays the RMSE values for different scenarios using the 
method in [2].  

It can be seen that the developed method has a better 
performance than that in [2]. This is not surprising as pointed 
out earlier the method in [2] is an approximate method. It is 
not unusual in the simulation experiments that this method 
completely broke down (i.e. greatly deviated from the 
trajectory of actual vehicular density) even if all the conditions 
were favorable. 
 

TABLE II 
AVERAGE RMSES FOR THE TWO ROADWAY SECTIONS OVER 100 SIMULATION 

RUNS USING THE METHOD IN [2] WITH λ=10 
  τ=1 τ =2 τ =3 

σ=1 0.9273;    
0.9842 

4.8887;    
4.3649 

11.1270;   
10.0727 

 σ=2 1.1069;    
1.3109 

3.4771;    
3.5431 

7.4076;    
8.0536 

σ=3 1.3905;    
1.6450 

3.4038;    
3.1777 

6.5289;    
7.0746 

σ=5 1.8530;    
2.3127 

3.2032;    
3.4549 

6.2301;    
6.7294 

σ=8 2.5397;    
3.2299 

3.6254;    
3.8918 

5.9113;    
6.6841 

 
To have a closer look at the performance of the method in 

[2], the density estimation using the method in [2] is 
considered for the same data in Fig 2 and Fig 3. The results 
are displayed in Fig 4 and Fig 5 respectively. It can be seen 
that the estimates obtained using the method in [2] have a poor 
performance for this particular data. This is due to the 
approximation made by the linearization in the extended 
Kalman filter.  

 
Fig. 4 Simulated traffic counts (broken line) and the corresponding 

estimated traffic counts (real line) using the method in [2] for section 
1 (left) and section 2 (right) with σ=3, τ=1 and λ=3

Fig. 5 Simulated traffic counts (broken line) and the corresponding 
estimated traffic counts (real line) using the method in [2] for section 

1 (left) and section 2 (right) with σ=2, τ=2 and λ=8 
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D. Light Traffic Scenario 
Finally the above results are compared where the 

congestion level was medium with the light traffic scenario 
where the average number of vehicles is 3. 

For the following simulation experiments with λ=3 and the 
specified values of σ and τ, each experiment was repeated 
times. The resulting RMSEs averaged over the 100 runs using 
the developed method and the method used in [2] are 
displayed in TABLE III and TABLE IV respectively. 

It can be seen that, compared with the results in TABLE I 
and TABLE II, the estimation errors are slightly larger for 
both methods. It is also clear that the developed method 
outperformed the method in [2]. This shows that the 
developed method is robust: its accuracy is better than the 
existing method under different road traffic conditions.  
 

TABLE III 
 AVERAGE RMSES FOR THE TWO ROADWAY SECTIONS OVER 100 SIMULATION 

RUNS USING THE DEVELOPED METHOD FOR λ=3 
  τ=1 τ =2 τ =3 

σ=1 0.7732;  
1.0101 

2.6739;  
3.3629 

2.5701;    
3.1999 

 σ=2 1.1497;  
1.4981 

1.0701;  
1.3357 

1.0069;   
1.2217 

σ=3 1.4915;  
1.9521 

1.3765;  
1.7362 

1.3245;    
1.6160 

σ=5 2.0804;  
2.7015 

1.9414;    
2.4607 

1.8726;    
2.2930 

σ=8 2.8170;  
3.6798 

2.6766;   
3.3546 

2.6074;    
3.2090 

 
TABLE IV 

 AVERAGE RMSES FOR THE TWO ROADWAY SECTIONS OVER 100 SIMULATION 
RUNS USING THE METHOD IN [2] FOR λ=3 

 

IV. CONCLUSIONS 
In this paper, the recursive estimation of traffic density is 

investigated using vehicular speed-density relationship. The 
proposed recursive estimation method uses a suitable 
transformation so that the state space system become linear to 
avoid the linearization of observation equation used in the 
existing method. Hence it is not surprising that the developed 
method has a better performance than the method in [2]. The 
simulation study suggests that the developed method is not 
affected by road traffic conditions and performs satisfactorily 
in different scenarios.  

For ease of exposition, the developed method is presented 
for two sections in tandem. However this approach can be 
extended to estimate traffic density for multi-section freeways. 
Provided enough vehicle detectors installed in the network, the 
developed method can effectively identify traffic density on a 
real time basis. The estimated traffic density can facilitate 
effective traffic management of networks, and also provide 
inputs for planning and controlling both short term and long 
term urban transport.  
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  τ=1 τ =2 τ =3 
σ=1 

1.2804;  
1.2807 

3.8987;    
4.1185 

6.1428;  
6.5683 

 σ=2 1.4714;  
1.7192 

3.9889;    
4.1615 

7.5427;  
8.2706 

σ=3 1.7161;  
2.1688 

4.0599;    
4.5865 

7.0270;  
7.2755 

σ=5 2.2637;  
3.0050 

3.9614;    
4.4617 

6.2814;  
6.4598 

σ=8 3.0616;  
4.1422 

4.0412;    
4.7097 

5.8344;  
6.7040 


