
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2332


Abstract—Maintaining factory default battery endurance rate

over time in supporting huge amount of running applications on
energy-restricted mobile devices has created a new challenge for
mobile applications developer. While delivering customers’
unlimited expectations, developers are barely aware of efficient use
of energy from the application itself. Thus, developers need a set of
valid energy consumption indicators in assisting them to develop
energy saving applications. In this paper, we present a few software
product metrics that can be used as an indicator to measure energy
consumption of Android-based mobile applications in the early of
design stage. In particular, Trepn Profiler (Power profiling tool for
Qualcomm processor) has used to collect the data of mobile
application power consumption, and then analyzed for the 23
software metrics in this preliminary study. The results show that
McCabe cyclomatic complexity, number of parameters, nested block
depth, number of methods, weighted methods per class, number of
classes, total lines of code and method lines have direct relationship
with power consumption of mobile application.

Keywords—Battery endurance, software metrics, mobile
application, power consumption.

I. INTRODUCTION

INCE most of the mobile applications that introduced to
the market place are highly consume energy due to the

high usage of processing power, energy efficiency of mobile
application is an important concern for energy restricted
embedded system. While resource constraint has creating a
limitation for diverse and complex functions execution on
mobile application [5], several research works are done to
optimize the power usage from hardware perspective such
as processor idleness to reduce power consumption.
However, such improvement does not be sufficient by them
since poorly written applications can cruelly drain the extra
battery power over a long period of time. In the past,
software developers were concentrating on standard

Ching Kin Keong is a postgraduate student in the Faculty of Computer
Science and Information Technology.

Koh Tieng Wei is a senior lecturer in the Department of Software
Engineering and Information Systems under the Faculty of Computer Science
and Information Technology, University Putra Malaysia (Corresponding
Author; Tel: +603-89471799; fax: +603-89466576; e-mail:
twkoh@upm.edu.my).

Abdul Azim Abd. Ghani is a professor in software engineering, and he is
also with the Faculty of Computer Science and Information Technology (e-
mail: azim@upm.edu.my).

Khaironi Yatim Sharif is a is a senior lecturer in the Department of
Software Engineering and Information Systems under the Faculty of
Computer Science and Information Technology, University Putra Malaysia (e-
mail: khaironi@upm.edu.my).

software quality characteristics such as maintainability and
reliability of the software rather than focus on power
consumption of the application that was designed and
delivered. The possible reason that can explain this
phenomenon is lacking of available technique and approach
from the software engineering society to support their need.
As a result, power hungry applications were developed and
delivered to the market place [1]. In fact, these type
applications can drain 30 to 40% of a mobile device's
battery [2]. There are some studies have pay attention on
the power consumption issue of software applications,
however, they are mainly focus on source code-based
analysis. Although this type of power consumption analysis
and related estimation methods provide similar results to
the actual power consumption of mobile devices, there are
often too late for rework and it is language-dependent [30].
On the other hand, based on our observation, some of the
software product metrics can be used for power
consumption analysis instead of using source-code based
power consumption analysis. In this paper, these software
product metrics were identified and analyzed to suggest the
new opportunity for measuring power consumption of
mobile applications.

Organization of the paper is arranged as the following.
Section II describes related works on power consumption
reduction and estimation techniques. Section III describes
our case study preparation procedure, data collection
process and results analysis. Concluding remark and further
work are discussed in Section IV.

II. RELATED WORKS

Most of the previous research works found in the literature
were presenting approaches that can minimize energy
consumption by investigating on executable application
instead of during the design stage. In [22], designs of Dynamic
Voltage and Frequency Scaling (DVFS) [27], [35], [37] and
offloading cloud computing [16], [21], [31], [38], [39] are
among the most popular power reduction research focus. Ma
et al. [35] was reported that DVFS power control mechanism
can use to adjust frequency and voltage according to the
system state of a device. Mobile devices can dynamic adjust
the CPU and DSP frequency. Liang et al. [37] established a
table-based DVFS mechanism for frame decoding. They
exploit the frame decoding complexity to minimize the power
consumption of a processor, and adopt the runtime
information of the hardware performance counters to evaluate

Towards the Use of Software Product Metrics as an
Indicator for Measuring Mobile Applications Power

Consumption
Ching Kin Keong, Koh Tieng Wei, Abdul Azim Abd. Ghani, Khaironi Yatim Sharif

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2333

the complexity of the decoding process to reduce energy
consumption for 9 to 17 percent. Kyosuke et al. [36] proposed
another power reduction method with the consideration of
performance in Android terminals. They dynamically adjust
CPU clock frequency at runtime by gaining feedback
information from applications. They claim that the drawing
framework save more energy than methods without dynamic
CPU clock frequency adjustment. Silvén and Jyrkkä [15]
presented the key differences between the implementation of
computing solutions used in mobile communications
equipment are found at the chip level: mobile devices low
leakage silicon technology and lower clock frequency are used
but they are essentially the same as those in personal and
mainframe computers.

Kong et al. [38] show that by offloading some partition to
the cloud can help in reducing energy of mobile devices. They
proposed a dynamic computation offloading framework that
can partition the Android application into two parts, local
phone and server at the compile stage automatically. The
partition that sends to server will be executed on the cloud and
execution time on the mobile device will be reduced. Pan et al.
[39] presented Learning-on-Cloud (LoC) policy to exploit
cloud computing for power management. They offload
sophisticated learning engines from local devices to the cloud
with the least amount of communication data to reduce
runtime overhead. That is, all learning data from many devices
and with one thousand devices are connected to the cloud, the
LoC agent is able to converge within a few iterations. They
also claim that learning-based policies have less latency
penalty. Chen et al. [4] proposed a new energy consumption
model for cloud computing and can be integrated into Cloud
systems to observe energy consumption and help in static or
dynamic system-level improvement by measure energy
consumption in Cloud environment with different run time
task. Papageorgiou et al. [33] claim that by determine the time
intervals between the logic of Web service response caching
and Web service invocations can support the minimization of
energy consumption of mobile Web service-based
applications.

Others energy reduction techniques include network
communication [13], [14], [24], [25], adaptation [5], [17],
context awareness [11], [12], display [19], [26], resource
scheduling [9], [18] and platform [29]. Harjula et al. [32]
claimed that it is necessary to reduce the need for time
consuming measurements with real-life networks and devices
to facilitate designing energy-efficient networking solutions.
They presented an advanced (e-Aware) that makes a
difference between media transfer for maximizing the
accuracy and signaling to estimate how application layer
protocol properties influence the energy consumption of
mobile devices. They are measuring energy in two perspective
which are in 3G (WCDMA) and WLAN (802.11) networks.
By using the device-specific coefficients, the model is fined-
tuned for different devices. Besides, transport layer protocol is
also being used to minimize energy consumption. Kravets and
Krishnan [20] claim that power usage can be reduced through
transport layer protocol. They choose the short period of time

to turn off the communication device and suspend
communication by using their design and implementation of
innovative transport level protocol. The important task of
deciding when to restart communication, and queuing data for
future delivery during periods of communication suspension
has been managed.

Chen et al. [5] claimed that battery endurance is one of the
most significant user experiences for mobile devices. The
limitations on mobile devices have restricts the functional
design of hardware architecture and applications. Thus, they
proposed an Anole framework. It is a framework that uses a
set of APIs and adaptation policies to create an energy
adaptation layer to change application and system state
dynamically based on the energy status and the user
expectation. They use the concept of adaptation to add an
energy adaptation layer by providing a set of APIs and
policies on top of their previous study when some events is
occur through the energy profiling that they have made[23].

Brandolese [30] claim that previous software performance
estimation approaches (instruction-level simulation and static-
time source characterization) are either accurate but slow or
flexible but independent. Therefore, they propose a hybrid
approach that combines the strength of two approaches to
make a fully automatic method to estimate the C program
execution time and energy used. Bornholt et al. [7] created
power modelling tools that can be uses to estimate power draw
based on previous measured correlations between metric and
power by using utilization metric. Z.X. Liao et al. [28]
claimed that by using Temporal-based Apps Predictor (TAP)
one can determine the apps usage of mobile phone to reduce
energy consumption. Thompson et al. [34] presented that
application developers will only be able to measure energy
consumption characteristics of a design after implementation
due to multiple layers of abstractions and middleware
problem. They proposed a model-driven methodology for
accurately matching the power consumption of smartphone
application architectures to fix this issue. They use the System
Power Optimization Tool (SPOT) to automate power
consumption emulation code generation and simplify analysis
of power consumption early in the lifecycle of mobile
applications. Zhang et al. [10] had proposed an automated
power model construction technique that uses built-in battery
voltage sensors and knowledge of battery discharge behavior
to monitor power consumption while explicitly controlling the
power management and activity states of six components:
CPU, LCD, Wi-Fi, cellular interfaces, GPS, and audio. Flinn
and Satyanarayanan [8] show that applications can
dynamically change their behavior to conserve energy. They
demonstrated the collaborative relationship between the OS
and application can be used to meet user-specified goals for
battery duration. It is able to select the correct tradeoff
between energy conservation and application quality by
monitoring energy supply and demand. The results show that
this approach can meet goals that extend battery life up to
30%. Some researchers create power modelling tools to
estimate power consumption.

It is reasonably to conclude that most of the previous

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2334

inventions are focus on hardware, network and
communication protocol. Our direction in this topic obviously
differs significantly. That is, we find an opportunity from
software engineering perspective by investigating and
proposing a set of valid power consumption indicator which
should be available early in the application design phase. A
power consumption estimation model can be derived from
these indicators to assist software engineer to predict the
energy usage in design phase and deliver better quality
software product to the market place.

III. CASE STUDY PREPARATION AND SETUP

Our case study is focusing on Android mobile
applications. Android operating system is a world known
mobile OS. There are over 1,300,000 mobile applications
have been developed and place in Google play store. It is
the largest free mobile applications platform compare to
other mobile platform such as Apple Store and Windows
store. Mobile applications are built from 4 components
which are activities, services, content provider and
broadcast receiver. An activity in a mobile application
represents a single screen with a user interface, it allow
user to interact with the phone to do something with just
touching on the screen like take a video, send a file via
Bluetooth. Each activity is independent with other activity.
Service is a component that without an interface. Services
run in the background and provide continuous operations
such as playing music and connecting to database. Content
provider is one of the main building blocks of Android
mobile applications. The main function of content provider
is providing content to applications or sharing data among
other applications. Broadcast receiver is another component
that uses to broadcast announcements without a user
interface such as E-mail notification.

A. Open Source Mobile Application Selection

There are 1474 open source applications available in
Fdroid. The FDroid repository is an installable catalogue of
Free and Open Source Software (FOSS) applications for the
Android platform. The applications in Fdroid are also
available in Google Play Store [3]. We select randomly six
mobile applications from the list of applications in the
FDroid repository [6]. That is, random table was used to get
the number of page and number of position of open source
applications. The random number tables are composed of
the digits from 0 through 9, with approximately equal
frequency of occurrence. On each digits are printed in
blocks of five columns and blocks of five rows. The six
applications being selected are "Did I?", “Coin Flip”,
“Currency Converter”, “Battery level”, “HydroMemo” and
“Applocker”.

B. Process of Empirical Study

The relationship of software product metrics and power
consumption of mobile applications is investigated
empirically. These software product metrics include McCabe
cyclomatic complexity, number of parameters, nested block

depth, afferent coupling, efferent coupling, instability,
abstractness, normalized distance, depth of inheritance tree,
weighted methods per class, number of children, number of
overridden methods, lack of cohesion of methods, number of
attributes, number of static attributes, number of methods,
number of static methods, specialization index, number of
classes, number of interfaces, number of packages, total lines
of code and method lines of code.

All tests were performed on a Google Nexus 7 with a
1.5Ghz Qualcomm Quad-Core CPU, 2GB memory and 32GB
Storage that running the default installation of Android 4.4
(KitKat). Fig. 1 summarizes the process of empirical study.

Open source mobile applications were downloaded from
Fdroid and installed into Google Nexus 7 to identify all
available functions. We analyzed the source code being used
in the mobile applications for each functions in Eclipse IDE.
In particular, we study all classes and methods in the source
code of the applications. For each method in a class file, a
break point is added in the first row of the method and run
the apps in debug mode to trace the function. This is to
identify which methods will be involved while running
specific function. Fig. 2 shows the example of identified
classes and methods that are involved in start apps function.

C. Software Product Metrics

The software product metrics were captured using the
metric plugin in Eclipse. In order to capture software
metric of particular function, all unrelated source code will
be commented or deleted while capturing software metric.
Fig. 3 shows the product metrics of start application
function.

Based on "Object-Oriented Metrics, measures of
Complexity" by Brian Henderson-Sellers, number of
classes indicates the total number of classes in the selected
scope. Number of children shows us the total number of
direct subclasses of a class. A class implementing an
interface counts as a direct child of that interface. Number
of Interfaces means the total number of interfaces in the
selected scope. Depth of Inheritance Tree (DIT) is the
distance from class Object in the inheritance hierarchy.
While number of Overridden Methods (NORM) shows the
total number of methods in the selected scope that are
overridden from an ancestor class. Number of methods
(NOM) refers to the total number of methods defined in the
selected scope. Number of Fields shows the total number of
fields defined in the selected scope. Total lines of code will
counts non-blank and non-comment lines in a compilation
unit. Method Lines of Code (MLOC) will calculates and
sum non-blank and non-comment lines inside method
bodies. Specialization index indicate the average of the
specialization index, defined as NORM * DIT / NOM.
McCabe Cyclomatic Complexity is counting the number of
flows through a piece of code. Weighted Methods per Class
(WMC) is the summation of the McCabe Cyclomatic
Complexity for all methods in a class. Lack of Cohesion of
Methods (LCOM*) is a measure for the Cohesiveness of a
class. It use the Henderson-Sellers method to calculate. If

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2335

(m(A) is the number of methods accessing an attribute A,
calculate the average of m(A) for all attributes, subtract the
number of methods m and divide the result by (1-m). A low
value indicates a cohesive class and a value close to 1
indicates a lack of cohesion and suggests the class might
better be split into a number of subclasses. Robert Martin
defines metric in the coupling perspective in "OO Design
Quality Metrics, An Analysis of Dependencies". Afferent
Coupling (Ca) shows the number of classes outside a

package that depend on classes inside the package. Efferent
Coupling (Ce) calculates the number of classes inside a
package that depend on classes outside the package.
Instability (I) use the formula Ce / (Ca + Ce). Abstractness
(A) refers to the number of abstract classes (and interfaces)
divided by the total number of types in a package and
Normalized Distance from Main Sequence calculate by | A
+ I - 1 |, this number should be small, close to zero for good
packaging design.

Fig. 1 Process of empirical study

Fig. 2 Classes and methods of start application function

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2336

Fig. 3 Software product metrics for start application function “Did I”

C. Power Consumption Data Collection and Analysis

Power consumption of mobile devices can be collected by
using energy Trepn profiler. It is an on-target power and
performance profiling tool for mobile devices for Qualcomm
processor. Before testing the application, Bluetooth, Wi-Fi, 3G
will be turned off and the device is set to airplane mode to
avoid extra power consumption being capture by energy
profiler. The baseline interval is being set to 5 seconds to
capture the Android OS power consumption and Trepn
Profiler application power consumption in order to estimate
application consumption accurately. Battery Power [μW]
(Raw), Battery Power [μW] (Delta) and time have being
collected. Battery powers are measure in unit microwatt (μW)
and time measure in unit milliseconds (ms).
 Battery Power [μW] (Raw) - Power consumption in unit

microwatt that have not been processed, actual power
consumption

 Battery Power [μW] (Delta) - Power consumption in unit
microwatt that have been processed after eliminated
Android OS and Trepn Profiler apps power consumption,
estimated apps power consumption

We use 10 seconds as an interval to separate each reading to
capture power consumption accurately for every reading. That
is, we will wait for 10 seconds after doing an action (a click or
swipe) before performing next action. Fig. 4 shows the 10
seconds interval overlay. For each function, 5 readings will be
capture to calculate the average. The data captured will be
store in the device's SD card in the form of a CSV file. Fig. 5
shows one of the exported excel file of Trepn profiler for view
about function in mobile application named Coin Flip. Time in
first column represents start time in milliseconds; battery
status shows 0 if not charging and shows 1 if charging. Time
in third column represents end time in milliseconds.

D. Average Power Consumption and Software Product
Metrics Data Collection

As we discuss in Section III, the application is installed in

Google Nexus 7. We first launch the selected application to
list down all available functions. Trepn Profiler will be launch
and we will run all selected application in Trepn Profiler. By
executing and monitoring the power usage of the application,
we collect Battery Power [μW] (Raw), Battery Power [μW]
(Delta) with a 10 seconds interval for each action performed to
get a more accurate reading as in Fig. 5 from time 2831ms to
11773ms. Reading will be 0 in these 10 seconds. Power
consumption for this function will start in 11866ms to
13679ms. We expect the power consumption for 5 readings to
be consistent as the source code and function are the same. We
then rearrange the 5 readings in the format as Fig. 5 with
overall represent overall power consumption in μW.
Applications represents applications power consumption in
μW and time used represent time frame in milliseconds.
Power of each reading consumed will be sum up, and time
taken is being calculated by using (end time of action
performed – start time of action performed) formula. Fig. 6
shows the raw power that we extract from exported excel
document. We sum up the raw power as in Fig. 7 for each of
the particular action. Then, we calculate the average of power
and total up the power used for each function. Fig. 8 shows the
average of power used and Fig. 9 shows the total average
usage of power consumption. After power consumption is
being captured as shown in Table I, we map each of these
power consumption reading with the software product metrics
gather from the Eclipse plugin as shown in Table II for the
functions F1 to F9. We then identify which metrics have high
relationship with the mobile application power consumption
based on statistical analysis.

Fig. 4 Ten seconds interval overlay

E. Data Analysis

Every single action that interacts with mobile phone
consumes power. Some action may have high power usage;
some action may have low power usage. During the mapping
process, we categorize all the functions in these 2 different
categories. Actions that involve high power usage, which have
significant spark when capturing power consumption are start
application that involved method startActivity (Intent), create
new page and create component like dialog. Actions that
involve low power usage, which have no significant spark
when capturing power consumption are a single button click
and select an item. After mapping power consumption with all
the metrics based on these 2 categories, we analyze using
SPSS statistical tool. There are 21 functions having high

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2337

power usage and 9 functions having low power usage. For
category of high power usage, the correlate bivariate shows
that McCabe cyclomatic complexity, number of parameters,
nested block depth, number of methods and weighted methods
per class, number of classes, total lines of code and method
lines of code are having significant relationship with the
application power consumption at the 0.05 level of
confidence. The values of Pearson correlation for these three
metrics are 0.662, 0.581, 0.695, 0.662, 0.707, 0.526, 0.585 and
0.526. For the number of methods that involved during the

debug process also show the result is significant and having
0.712 for Pearson correlation.

For category of low power usage, the correlate bivariate
shows that only the number of classes involved during debug
process is significant and the value of Pearson correlation is
0.699. Fig. 10 shows the bivariate correlation between Object-
oriented metrics and power consumption. Fig. 11 shows the
bivariate correlation between OO design quality metrics and
power consumption.

Fig. 5 Trepn profiler power consumption data

Fig. 6 Raw power consumption of 5 readings for edit habit function

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2338

Fig. 7 Sum of power consumption for one function

Fig. 8 Average power consumption for one function

Fig. 9 Sum of average power consumption for one function

TABLE I
AVERAGE POWER CONSUMPTION FOR EACH FUNCTION

Function Overall (μW) Apps (μW)

F1:Did I start 2337600.00 1133962.20

F2:Did I Answer question 1332600.00 52260.60

F3:Did I set alarm 4222200.00 789370.80

F4:Did I edit habit 7815400.00 1097468.00

F5:Did I add habit 5854200.00 1024560.00

F6:Did I view edit habit page 1833800.00 580836.00

F7:Did I delete habit 2743400.00 236703.20

F8:Did I view progress 1291800.00 85756.00

F9:Did I view habit 1276600.00 126127.60

IV. CONCLUSION AND FUTURE WORK

In this paper, we present a set of possible indicators that can
be used to measure power consumption of mobile application.
From the result, we can summarize that number of methods
has the highest bivariate correlation with mobile application’s
power consumption. Other software product metrics such as
McCabe cyclomatic complexity, number of parameters, nested
block depth, number of methods and weighted methods per
class, number of classes, total lines of code and method lines
of code are possible to be an valid indicator to measure mobile
applications’ power consumption for high power usage
functions. Our future work will be generating a power
consumption estimation model to estimate the power
consumption of Android mobile applications.

TABLE II
SOFTWARE PRODUCT METRICS FOR FUNCTION 1 TO FUNCTION 9

Metric/Function F1 F2 F3 F4 F5 Metric/Function F6 F7 F8 F9

Afferent Coupling 4 0 0 5 5 McCabe Cyclomatic Complexity 19 17 63 61

Efferent Coupling 4 0 0 3 3 Number of Parameters 19 19 50 38

Instability 0.5 0 0 0.375 0.375 Nested Block Depth 18 17 47 41

Abstractness 0 0 0 0 0 Depth of Inheritance Tree 13 13 15 15

Normalized Distance 0.5 0 0 0.625 0.625 Weighted methods per Class 19 17 63 61

McCabe Cyclomatic Complexity 48 20 4 23 29 Number of Children 0 0 0 0

Number of Parameters 36 10 8 22 23 Number of Overridden Methods 1 1 3 2

Nested Block Depth 34 9 3 23 27 Lack of Cohesion of Methods 0.8 1 2.238 2.422

Depth of Inheritance Tree 13 2 6 16 16 Number of Attributes 21 21 34 35

Weighted methods per Class 48 20 4 23 29 Number of Static Attributes 4 4 7 7

Number of Children 0 0 0 0 0 Number of Methods 12 10 32 27

Number of Overridden Methods 3 0 0 2 2 Number of Static Methods 0 0 0 0

Lack of Cohesion of Methods 2.967 0.955 0 1.867 1.822 Specialization Index 1.5 1.5 0.844 0.65

Number of Attributes 28 11 16 21 21 Number of Classes 4 4 5 5

Number of Static Attributes 6 0 2 5 5 Number of Interfaces 0 0 0 0

Number of Methods 24 5 3 14 15 Number of Packages 0 0 0 0

Number of Static Methods 0 0 0 1 1 Total Lines of Code 229 230 483 425

Specialization Index 1.783 0 0 4.5 4.5 Method Lines of Code 105 119 226 186

Number of Classes 4 1 1 5 5 Afferent Coupling 6 6 3 3

Number of Interfaces 0 0 0 0 0 Efferent Coupling 2 2 5 5

Number of Packages 0 0 0 0 0 Instability 0.25 0.25 0.625 0.625

Total Lines of Code 379 126 105 279 305 Abstractness 0 0 0 0

Method Lines of Code 175 70 16 133 155 Normalized Distance 0.75 0.75 0.375 0.375

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2339

Fig. 10 SPSS bivariate correlation result between OO metrics and power consumption

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2340

Fig. 11 SPSS bivariate correlation result between OO design quality
metrics and power consumption

ACKNOWLEDGMENT

This research work has been funded by the Fundamental
Research Grant Scheme (FRGS) under the Malaysian Ministry
of Education (MOE) for the project no. 08-02-13-
1360FR/5524441. The authors would like thank to the
Research Management Centre of UPM and the MOE for their
support and cooperation including students and other
individuals who are either directly or indirectly involved in
this project.

REFERENCES
[1] C. Sahin, F. Cayci, J. Clause, F. Kiamilev, L. Pollock, K. Winbladh.

"Towards Power Reduction through Improved Software Design". In
IEEE Energytech, pages 1 - 6, MAY 2012.

[2] S. Jha., Poorly written apps can sap 30 to 40% of a phone’s juice, June
2011. CEO, Motorola Mobility, Bank of America Merrill Lynch 2011
Technology Conference.

[3] Mark D. Syer et al., Revisiting Prior Empirical Findings For Mobile
Apps: An Empirical Case Study on the 15 Most Popular Open-Source
Android Apps, In proceeding of: Proceedings of the 2013 Conference of
the Center for Advanced Studies on Collaborative Research, 2013

[4] F.F Chen, J.G Schneider, Y. Yang, J. Grundy, Q. He. "An Energy
Consumption Model and Analysis Tool for Cloud Computing
Environments", in Proceedings of the 1st International Workshop on
Green and Sustainable Software (GREENS'12), 2012, pp.45-50.

[5] H. Chen, B. Luo, W. Shi. "Anole: A Case for Energy-Aware Mobile
Application Design", in Proceedings of the 41st International
Conference on Parallel Processing Workshops (ICPPW'12), 2012,
pp.232-238.

[6] Mark D. Syer, Meiyappan Nagappan, Ahmed E. Hassan, Bram Adams,
Revisiting prior empirical findings for mobile apps: an empirical case
study on the 15 most popular open-source Android apps, Proceedings of
the 2013 Conference of the Center for Advanced Studies on
Collaborative Research, November 18-20, 2013, Ontario, Canada

[7] J. Bornholt, T. Mytkowicz, K. S. McKinley. The Model Is Not Enough:
Understanding Energy Consumption in Mobile Devices", in Posters
Session of Hot Chips: A Symposium on High Performance Chips
(HC24), 2012.

[8] J. Flinn, M. Satyanarayanan. "Energy-aware Adaptation for Mobile
Applications", in Proceedings of 17th ACM Symposium on Operating
Systems Principles (SOSP'99), pp.48-63.

[9] L. Luo, W. Wu, D. Di, F. Zhang, Y. Z. Yan, Y. K. Mao. "A Resource
Scheduling Algorithm of Cloud Computing based on Energy Efficient
Optimization Methods", in Proceedings of the IEEE International Green

Computing Conference (IGCC'12), 2012, pp.1-6.
[10] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, L.

Yang. "Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones", in
Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS'10),
2010, pp.105-114.

[11] Young-Seol Lee; Sung-Bae Cho, "An Efficient Energy Management
System for Android Phone Using Bayesian Networks," Distributed
Computing Systems Workshops (ICDCSW), 2012 32nd International
Conference on, vol., no., pp.102, 107, 18-21 June 2012.

[12] Donohoo, B. K.; Ohlsen, C.; Pasricha, S., "AURA: An application and
user interaction aware middleware framework for energy optimization in
mobile devices," Computer Design (ICCD), 2011 IEEE 29th
International Conference on, vol., no., pp.168,174, 9-12 Oct. 2011

[13] N. Balasubramanian, A. Balasubramanian, A. Venkatramani. "Energy
Consumption in Mobile Phones: A Measurement Study and Implications
for Network Applications, in Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference (IMC'09), 2009,
pp.280-293.

[14] O. Arnold, F. Ritchter, G. Fettweis, O. Blume. "Power Consumption
Modelling of Different Base Station Types in Heterogeneous Cellular
Networks", in the Proceedings of the Future Network and Mobile
Summit (FNMS'10), 2010, pp.1-8.

[15] O. Silvén, K. Jyrkkä. "Observation on Power-Efficiency Trends in
Mobile Communication Devices", LNCS 3553, 2005, pp.142-151.

[16] P. Bartalos, M. B. Blake. "Green Web Services: Modelling and
Estimating Power Consumption of Web Services", in Proceedings of the
IEEE 19th International Conference on Web Services (ICWS'12), 2012,
pp.178-185.

[17] Jain, R.; Bose, J.; Arif, T., "Contextual adaptive user interface for
Android devices," India Conference (INDICON), 2013 Annual IEEE,
vol., no., pp.1,5, 13-15 Dec. 2013

[18] R. Yamini. "Power Management in Cloud Computing Using Green
Algorithm", in Proceedings of the IEEE International Conference on
Advances in Engineering, Science and Management (ICAESM'12),
2012, pp.128-133.

[19] Tan Kiat Wee, Rajesh Krishna Balan, Adaptive display power
management for OLED displays, Proceedings of the first ACM
international workshop on Mobile gaming, August 13-13, 2012,
Helsinki, Finland

[20] R. Kraves, P. Krishnan. "Application-driven Power Management for
Mobile Communication", Journal of Wireless Network, Vol.6 Issue 4,
July 2000, pp.263-277.

[21] S. A. Ahson, M. llyas, "Cloud Computing and Software Services:
Theory and Techniques", CRC Press, Boca Raton, Florida, 2011.

[22] S. Gűrűn, R. Wolski, T. Sherwood, C. Krints. "Modelling, Predicting
and Reducing Energy Consumption in Resource Restricted Computers",
PhD Dissertation in Computer Science, University of California, Santa
Barbara, 2007.

[23] T. Do, S. Rawshdeh, W, Shi. "pTop: A Process-level power Profiling
Tool", in Proceedings of the 2nd Workshop on Power Aware Computing
and Systems(HotPower'09), 2009.

[24] T. Pering, Y. Agarwal, R. Want. "CoolSpots: Reducing the power
Consumption of wireless Mobile Devices with multiple Radio
Interfaces", in Proceedings of the 4th International Conference on
Mobile Systems, Applications and Services (MobiSys'06), 2006 pp.220-
232.

[25] Y. Cui, X. Ma, H. Y. Wang, I. Stojmenonic, J. C.Liu. "A Survey of
Energy Efficient Wireless Transmission and Modelling in Mobile Cloud
Computing", Journal of Mobile Networks and Applications, Vol.18,
Issue 1, Feb 2013, pp.148-155.

[26] Dongwon Kim; Nohyun Jung; Hojung Cha, "Content-centric display
energy management for mobile devices," Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE, pp.1,6, 1-5 June
2014

[27] Pathania, A.; Qing Jiao; Prakash, A.; Mitra, T., "Integrated CPU-GPU
power management for 3D mobile games," Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE, pp.1,6, 1-5 June
2014, doi: 10.1145/2593069.2593151

[28] Z.X. Liao, W.C. Peng, Y.C. Pan, P.R.Lei. “On Mining Mobile Apps
Usage Behavior for Predicting Apps Usage in Smartphones”,
Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management, October 2013.

[29] Kadjo, D.; Ogras, U.; Ayoub, R.; Kishinevsky, M.; Gratz, P., "Towards

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2341

platform level power management in mobile systems," System-on-Chip
Conference (SOCC), 2014 27th IEEE International, vol., no.,
pp.146,151, 2-5 Sept. 2014

[30] C. Brandolese, M.Politec. “Source-Level Estimation of Energy
Consumption and Execution Time of Embedded Software”, Proceedings
of the 11th EUROMICRO Conf. Digital System Design Architectures,
Methods and Tools (DSD), pp. 115-123, 2008.

[31] Khairy, A.; Ammar, H.H.; Bahgat, R., "Smartphone Energizer:
Extending Smartphone's battery life with smart offloading," Wireless
Communications and Mobile Computing Conference (IWCMC), 2013
9th International, vol., no., pp.329,336, 1-5 July 2013

[32] E. Harjula, O. Kassinen, M. Ylianttila. "Consumption Model for Mobile
Devices in 3G and WLAN Networks", in Proceedings of the 9th IEEE
Consumer Communication and Networking Conference (CCNC'12),
2012, pp.532-537.

[33] A. Papageorgiou, U. Lampe, D. Schuller, R. Steinmetz, A. Bamis.
"Invoking Web Services based on Energy Consumption Models:, in
Proceedings of the IEEE 1st International Conference on Mobile
Services(ICMS'12), 2102, pp.40-47

[34] C. Thompson, D. Schmidt, H. Tumer, J. White. "Analyzing Mobile
Application Software Power Consumption Via Model-driven
Engineering", in Proceedings of the 1st International Conference on
Pervasive and Embedded Computing and Communication
Systems(PECCS'11), 2011, pp.101-113

[35] Yi-Wei Ma; Jiann-Liang Chen; Ching-Hesign Chou; Shyue-Kung Lu,
"A Power Saving Mechanism for Multimedia Streaming Services in
Cloud Computing," Systems Journal, IEEE, vol.8, no.1, pp.219,224,
March 2014

[36] Nagata, K.; Yamaguchi, S.; Ogawa, H., "A Power Saving Method with
Consideration of Performance in Android Terminals," Ubiquitous
Intelligence & Computing and 9th International Conference on
Autonomic & Trusted Computing (UIC/ATC), 2012 9th International
Conference on, vol., no., pp.578,585, 4-7 Sept. 2012

[37] Wen-Yew Liang; Ming-Feng Chang; Yen-Lin Chen; Chin-Feng Lai,
"Energy efficient video decoding for the Android operating system,"
Consumer Electronics (ICCE), 2013 IEEE International Conference on,
vol., no., pp.344,345, 11-14 Jan. 2013

[38] Gung-Yu Pan; Lai, B.-C.C.; Sheng-Yen Chen; Jing-Yang Jou, "A
learning-on-cloud power management policy for smart devices,"
Computer-Aided Design (ICCAD), 2014 IEEE/ACM International
Conference on, vol., no., pp.376,381, 2-6 Nov. 2014

[39] Deqian Kong; Tao Qi; Tan Yang; Yidong Cui, "A dynamic computation
offloading framework for Android," Broadband Network & Multimedia
Technology (IC-BNMT), 2013 5th IEEE International Conference on,
vol., no., pp.134,138, 17-19 Nov. 2013

