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 
Abstract—This study explores the practicality of using 

electroencephalographic (EEG) independent components to predict 
eight-direction finger movements in pseudo-real-time. Six healthy 
participants with individual-head MRI images performed finger 
movements in eight directions with two different arm configurations. 
The analysis was performed in two stages. The first stage consisted of 
using independent component analysis (ICA) to separate the signals 
representing brain activity from non-brain activity signals and to 
obtain the unmixing matrix. The resulting independent components 
(ICs) were checked, and those reflecting brain-activity were selected. 
Finally, the time series of the selected ICs were used to predict eight 
finger-movement directions using Sparse Logistic Regression (SLR). 
The second stage consisted of using the previously obtained unmixing 
matrix, the selected ICs, and the model obtained by applying SLR to 
classify a different EEG dataset. This method was applied to two 
different settings, namely the single-participant level and the 
group-level. For the single-participant level, the EEG dataset used in 
the first stage and the EEG dataset used in the second stage originated 
from the same participant. For the group-level, the EEG datasets used 
in the first stage were constructed by temporally concatenating each 
combination without repetition of the EEG datasets of five participants 
out of six, whereas the EEG dataset used in the second stage originated 
from the remaining participants. The average test classification results 
across datasets (mean ± S.D.) were 38.62 ± 8.36% for the 
single-participant, which was significantly higher than the chance 
level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which 
was also significantly higher than the chance level (12.49% ± 0.01%). 
The classification accuracy within [–45°, 45°] of the true direction is 
70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for 
group-level which may be promising for some real-life applications. 
Clustering and contribution analyses further revealed the brain regions 
involved in finger movement and the temporal aspect of their 
contribution to the classification. These results showed the possibility 
of using the ICA-based method in combination with other methods to 
build a real-time system to control prostheses.  
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I. INTRODUCTION 

OSING a limb can drastically alter one’s life due to the 
inability to perform day to day tasks. Paralysis due to 

injuries in the spinal cord can also limit one’s ability and in 
worse cases lose one’s autonomy. Development in prostheses 
presents hope in regaining some sort of normal life. Brain- 
computer interfaces (BCI) are investigated as methods to 
control prostheses [1]. Invasive methods involve implanting 
electrodes in the brain or signal amplifiers at the nerve endings 
to acquire clear signals to achieve the desired control precision 
[2]. However, due to the complexity of surgical procedures and 
long-term instability, non-invasive methods are gaining more 
traction. Electromyography (EMG) is relatively easier to record 
and translate into control commands but can be limited to the 
number of available muscles to record from. It is also difficult 
to obtain reliable signals in cases of motor impairment, spinal 
cord injury, and locked-in syndrome. An alternative is EEG 
which can record brain activity at high temporal resolution 
from the surface of the head. Furthermore, EEG sensors are 
portable and commercially available. Many studies have used 
EEG for motion control [3]-[7]. 

Since EEG electrodes are placed on the scalp, each electrode 
records the activity of a mixture of brain sources, which leads to 
a low spatial resolution. EEG signals also have low amplitude 
and are often contaminated with noise from eye movements, 
muscle artifacts, and so on. Another issue with EEG-based BCI 
is reusability and transferability from one person to the other. 
Placement of electrodes is likely to vary from one session to the 
next within the same participant. When dealing with multiple 
subject analysis, differences in the brain anatomy affect the 
conductance and therefore affect the recorded EEG. Solving 
these issues will lead to building a reliable BCI. 

ICA is widely used to unmix brain-activity signals from 
artifacts [8]-[10]. The scalp topographies of the ICs obtained 
from ICA can be represented by equivalent dipoles which will 
localize the ICs in the brain [11] and thus mitigate the issue of 
low spatial resolution. For the reusability issue, it has been 
shown that ICA decomposition is stable across sessions 
recorded at different periods within-subject [12]. Other studies 
validated the possibility of temporally concatenating EEG 
recordings of different participants for group-ICA [13], [14]. 
This suggests that a combination of ICA and an appropriate 
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machine learning algorithm can result in a modular system that 
can predict motion directions on newly recorded EEG data 
within-individual and across different individuals. However, to 
the extent of the authors’ knowledge, this approach has not 
been fully investigated yet. 

This study aims to investigate the possibility of using the 
ICA-based decoding method for real-time application. Using 
an eight-direction center-out finger movement task, movement 
directions were estimated from EEG data by applying the 
unmixing matrix obtained from ICA and a machine learning 
model obtained from a different dataset originating from either 
the same participant or a different participant. The brain regions 
involved in finger-movement were also localized and a 
classification contribution analysis was performed. 

II. MATERIALS AND METHODS 

A. Participants 

Six healthy participants performed the experiment (two 
females and four males). With a mean age of M = 40.67 years 
and SD = 7.23. The study protocol was approved by the ethics 
committee of the University of California, San Diego 
(Approval No. 14353) and carried out in accordance with the 
Declaration of Helsinki. Written informed consent was 
obtained from each participant before the experiment.  

B. Experiment 

The experiment was designed to separate the effect of the 
extrinsic and intrinsic coordinate frames. The extrinsic 
coordinate frame represents the position of an object in space 
while the intrinsic coordinate frame is a body-centered frame 
that is related to and moves with a specific body part such as a 
joint or muscle [15]. It has been shown that the extrinsic 
coordinate frame is transformed into the intrinsic coordinate 
frame in certain regions in the brain during motor control [16]. 
The experimental design referred to in this study was first 
applied in an invasive study on monkeys [15] and further 
validated in a human study [17]. 

Participants sat on a chair with their forearm and wrist 
supported and a PC screen was in front of them. They moved 
their index finger on a touchpad from the center of a circle to 
one of eight directions indicated on the screen. The eight targets 
are positioned on the circumference where the angle between 
every two consecutive targets is 45 degrees. Each participant 
performed a total of 1,280 trials divided into 40 sessions. The 
participants changed their elbow angle after every 10 sessions 
alternating between 0º and 90º. This elbow angle alternation 
dissociated the intrinsic and extrinsic coordinate frame in the 
classification analysis described later. Each trial consisted of 
two seconds of rest, then the target appears for two seconds. 
The participants were instructed to perform a single motion to 
the target regardless of whether the cursor reaches the target. 
Cursor position was recorded at a sampling rate of 30Hz. 

C. Data Acquisition 

EEG was recorded from 128 channels using Biosemi active 
two amplifier system (Biosemi, Amsterdam, Netherlands). 

Muscle activity onset was detected using EMG sensors placed 
over the right extensor indicis and flexor digitorum. EEG and 
EMG signals were recorded at a sampling rate of 2,048 Hz. The 
3D positions of the EEG sensors, the nasion, left pre-auricular 
point and, right pre-auricular were measured using a posture 
functional capacity evaluation system. (zebris Medical GmbH, 
Isny, Germany). 

D. MRI Image Acquisition and Preprocessing 

MRI images were used to generate an accurate forward 
electric model to better localize the equivalent dipoles for each 
participant. The MRI images were acquired using a General 
Electric (GE) Discovery MR750 3.0 T equipped with a 32- 
channel receiver coil. A sagittal image was acquired using a T1- 
weighted spoiled gradient recalled sequence (TR = 8.132 s; TE 
= 3.192 ms; FA = 8°; FOV = 256 ×256 mm; matrix size = 256 × 
256; 172 slices; slice thickness = 1.2 mm). The MRI images 
were used for DIPFIT as a custom MRI image. Images were 
normalized to the standard MNI brain template using SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/). 

E. EEG Preprocessing 

Raw EEG data were loaded into EEGLAB toolbox 2019.1, 
MATLAB R2017b for further processing. Data were filtered to 
eliminate baseline drift, line noise at 60 Hz, and frequencies of 
non-interest. Frequencies between 1 Hz and 40 Hz were kept. 
Data were then down-sampled to 512 Hz and channel signals 
were checked in a semi-automatic way and noisy channels - any 
channels that exceed [–500 µv 500 µv] for more than 20% of 
the time were removed. Channels were then re-referenced to 
the average. For better ICs decomposition, data were epoched 
to one second before the target appears and 2 seconds after as 
shown in Fig. 1 (a). For single-participant ICA (Fig. 1 (b)), 
datasets were divided into two sets with an equal number of 
trials in each set, and ICA was applied to each dataset 
separately using adaptive mixture ICA (AMICA) [18]. For 
group-level ICA (Fig. 1 (c)), datasets of all participants were 
down-sampled to 256 Hz and each unique combination of the 
datasets of five participants out of six was temporally 
concatenated. ICA was then applied to the concatenated sets. 

F. ICs Localization and Selection 

To localize the ICs in the brain we used EEGLAB plugin 
DIPFIT v3.3. The single-participant ICA used participant- 
specific channel locations as well as individual head MRI 
images for an accurate electric forward model. For group-level 
ICA, the standard MRI image provided with the toolbox was 
used. The ICs selection process was done in a semi-automated 
manner. 

EEGLAB plugin ICLabel [19] predicts if the IC represents 
brain activity, eye or muscle artifacts, and so on. ICs were then 
manually checked in search of properties inherent to brain 
activity. In particular, event-related potential (ERP), relevant 
peaks in the power spectrum, the position of the equivalent 
dipole, and the residual variance that remains after the fitting. 
The threshold for residual variance was initially set to 30%. ICs 
with more than a 70% chance of representing brain activity 
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were kept regardless of the residual variance. 
 

 

Fig. 1 Flowchart of the study. (a) preprocessing steps of raw EEG 
signals. (b) Single-participant ICA. (c) Group-level ICA 

G. Eight-Directions Finger Movement Classification and 
Testing 

SLR with Laplace approximation (SLR toolbox ver 1.51 
https://bicr.atr.jp//~oyamashi/SLR_WEB.html) was used to 
predict eight-finger movement directions [20]. This algorithm 
was used in many studies [17], [20], [21] for both fMRI and 
EEG data decoding mainly for its ability to automatically select 
the important features. The classifiers were trained using the 
concatenated time series of the ICs where zero to one second 
after the stimulus of each ICs was used. Due to the 

computational cost of SLR, the input was down-sampled to 64 
Hz. To predict finger movement direction in the extrinsic 
coordinate frame, the trials where the finger moved to the same 
target were labeled with the same label regardless of the elbow 
angle resulting in trials where the finger performed different 
actions (extension vs adduction) being labeled the same. The 
training was performed using leave-one-out cross-validation. 
For each single-participant set, leave-one-out cross-validation 
consisted of 80 folds and for each of the temporally 
concatenated sets, leave-one-out cross-validation consisted of 
800 folds. The performance of the classifiers was evaluated on 
the test sets. The trials were divided into bins where each bin 
contains a single trial of each direction without repeat. Each bin 
was then used once as a validation set and 79 times (799 times) 
in the training set for the single-participant sets (for the 
concatenated sets).  

The test sets were constructed as follows: ICA relates EEG 
times series and ICs time series by a mixing matrix W such that 
EEG = W × IC. The unmixing matrix is then the inverse of W 
such that IC = Wିଵ × EEG .For single-participant ICA, for 
every participant let 𝑆𝑒𝑡௡ be the EEG set for ‘participant n’ and 
Setଵ௡ and Setଶ௡ be the two halves of 𝑆𝑒𝑡௡, testଵ௡and testଶ௡be 
the test sets. ICଵ௡ = Wଵ௡

ିଵ × Setଵ௡ and ICଶ௡ = Wଶ௡
ିଵ × Setଶ௡ . 

The test sets are then: testଵ௡ =  Wଵ௡
ିଵ × Setଶ௡ 𝑎𝑛𝑑 testଶ௡ =

 Wଶ௡
ିଵ × Setଵ௡. 

For group-level ICA, let GroupSet௡ be the EEG set 
constructed from temporally concatenating all participants' 
EEG except ‘participant n’. GroupSet௡ = GroupW௡ ×
 GroupIC௡  where GroupW௡is the resulting mixing matrix. The 
test set is then test௡ =  GroupW௡

ିଵ × Set௡  
A non-parametric permutation test [22] was performed to 

evaluate the statistical significance of the classification results. 
Classifiers were trained with the same data using randomly 
generated labels to obtain accuracy distribution from the 
dataset, and p-values of the real-label dataset were calculated 
by evaluating the position of the real-label dataset in the 
distribution (Table I). Due to the computational cost, the 
permutation test was repeated 5000 times for the single- 
participant sets and 2500 times for the group-level temporally 
concatenated sets.  

H. Clustering of ICs 

The shape and size of the skull vary between individuals. 
Brains of different individuals also differ physiologically. This 
means that the same electrode may not record the same active 
brain regions across several individuals. To solve this issue, ICs 
were clustered based on the spatial properties of the equivalent 
dipoles using the EEGLAB study framework. The standard k- 
means algorithm was used [23]. Clustering was performed on 
the ICs obtained from the 12 single-participant sets, and on the 
ICs obtained from the 6 temporally concatenated group-level 
sets. The number of clusters is an open parameter and should be 
computed empirically. Each cluster should have at least 50% of 
unique sets in accordance with previous work [24]. This limited 
the maximum number of clusters to 15 for the temporally 
concatenated group-level sets and 23 for the single-participant 
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sets. The number of clusters was then varied to evaluate the 
stability of the results. The results were stable from 10 to 15 for 
the temporally concatenated sets and 12 to 18 for the single- 
participant sets. To balance the spatial resolution and the 
number of unique sets in each cluster, the number of clusters 

was 13 for the temporally concatenated sets and 16 for the 
single-participant sets. Each cluster contained 91.03% (SD = 
0.97%) of the concatenated sets and 70.83% (SD = 2.13%) of 
the single-participant sets. The centroid of each cluster was 
located in the AAL atlas [25].  

 
TABLE I 

SINGLE-PARTICIPANT ICA RESULTS 

Part1 

Participants 1 2 3 4 5 6 

Second Set classification Acc% 47.21 38.62 39.94 46.14 37.78 27.66 

Random Label Second Set % 12.51 12.48 12.48 12.49 12.51 12.49 

Adjacent Error % 30.90 31.75 30.70 29.97 29.46 33.06 

Accuracy Within [–45° 45°] % 78.10 70.37 70.64 76.11 67.24 60.71 

P-value Second Set p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 

Part2 

Participants 1 2 3 4 5 6 

First Set Classification Acc% 55.16 35.33 29.97 45.78 33.45 26.42 

Random Label First Set % 12.5 12.52 12.5 12.5 12.51 12.51 

Adjacent Error % 27.95 36.54 27.64 33.60 30.71 34.61 

Accuracy Within [–45° 45°] % 83.11 71.87 57.61 79.38 64.16 61.03 

P-value First Set p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 p < 2.00e-04 

 
TABLE II 

GROUP-LEVEL ICA RESULTS 

Set 12345 12346 12356 12456 13456 23456 

6th participant’s Acc % 28.58 32.24 26.30 19.08 25.74 31.62 

Random Labels 6th participant’s Acc % 12.48 12.49 12.50 12.49 12.51 12.49 

Adjacent Error % 39.15 35.34 34.45 32.75 34.32 36.21 
Accuracy Within [–45° 45°] % 70.77 61.08 53.53 59.06 66.56 64.80 

P-value Unseen Data p < 4.00e-04 p < 4.00e-04 p < 4.00e-04 p < 4.00e-04 p < 4.00e-04 p < 4.00e-04 

 
I. Classification Weight-Matrices Analysis 

SLR automatically selects the important features for the 
classification. By analyzing the weight matrices of the 
classifiers, the clusters most contributive to the classification 
can be defined and the time periods that were used for the 
classification can be localized. Each cluster 𝐶𝑙𝑠𝑡(𝑡)  is 

composed of “n” ICs where 𝐶𝑙𝑠𝑡(𝑡) =
ଵ

௡
∑ 𝐼𝐶௜(𝑡)௡

௜ୀଵ  where 

𝐼𝐶௡(𝑡)  is the time series of 𝐼𝐶௡ . Let 𝐼𝑚𝑝௡(𝑡଴)  be the 
importance of a time point 𝐼𝐶௡(𝑡଴) to the classification. The 
importance of a time point is defined by the number of 
classifiers that selected the time point averaged over the cross- 

validations (𝐼𝑚𝑝௡(𝑡଴) =
ଵ

௠
∑ 𝑘௠

௜ୀଵ ) where “m” is the number of 

cross-validation runs, “k” is the number of classifiers that chose 
𝐼𝐶௡(𝑡଴) for the classification in a single cross-validation run. 

Let 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௞(𝑡଴) be the importance of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௞  at time 𝑡଴ 

where 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௞(𝑡଴) =
ଵ

௡
∑ 𝐼𝑚𝑝௜(𝑡଴)௡

௜ୀଵ . The importance of 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟௞ is then the mean importance of its data points. The 
contribution of each cluster is the ratio of its importance over 
the total importance of all the clusters. 

III. RESULTS 

A. ICs Analysis 

ICA decomposition for single-participant sets resulted in 128 
ICs for each participant except for Participant 3 which had 127 

ICs due to the removal of one noisy channel. Out of 1,790 ICs, 
only 261 were kept after rejecting ICs that represented non- 
brain signals and ICs where the noise was dominant. The 
number of accepted ICs ranged from 14 to 38 per dataset. For 
group-level ICA, the noisy channel of Participant 3 needed to 
be removed from all datasets due to temporal concatenation 
resulting in 127 ICs for each dataset. Out of 762 ICs, only 150 
were kept. The number of ICs per dataset ranged from 20 to 28. 
The residual variance is a measure of how well the dipole fit 
models the data. It is the difference between the projected scalp 
map from the fitted dipole and the actual scalp map. All the 
selected ICs from the group-level ICA had a residual variance 
lower than 30%. For the single-participant ICA, some ICs 
exceeded the threshold of 30% but were included in the next 
step because they showed other properties that reflect brain 
activity such as peaks in the power spectrum at relevant 
frequencies between 5 Hz and 30 Hz and especially around 10 
Hz, a clear ERP response and, ICLabel predicted with more 
than 70% certainty that they represent brain-activity. 

B. Eight-Directions Finger Movement Classification 

The classification accuracy of the test sets averaged over the 
cross-validation runs is shown in Table I for the single- 
participant ICA and Table II for the group-level ICA. The 
average classification accuracy of the permutation test is also 
shown along with the p-values of the null hypothesis that the 
observed classification accuracy is due to random chance. The 
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classification accuracy was significantly higher than the chance 
level (p < 2.00e-04 for single-participant ICA and p < 4.00e-04 
for group-level ICA). Confusion matrix tables (supplementary 
Fig. 6 for single-participant sets part1, Fig. 7 for single- 
participant sets part2, and Fig. 8 for temporally concatenated 
sets) were analyzed to check if there was any pattern in the 
false-positives. The number of correctly classified trials and 
false-positives in each direction is shown in Fig. 2 for the 
single-participant ICA and Fig. 3 for the group-level ICA. The 
percentage of the adjacent false-positives and the classification 
accuracy within –45°, 45° of the intended direction is also 
shown in Table I. 

C. Clustering and Contribution Results 

The ICs of the 12 single-participant sets were clustered into 
16 clusters and the ICs of the 6 temporally combined sets were 
clustered into 13 clusters. The contribution to the classification 
of each cluster was computed and the centroid of each cluster 
was located in the AAL atlas (Fig. 9 for single-participant ICA 
and Fig. 10 for group-level ICA). For the single-participant 
sets, the clusters were located in the left lingual, the right 
superior occipital gyrus, the left precuneus, the right middle 
temporal gyrus, the right cerebellum crus1, the left fusiform, 
the right precuneus, the right middle frontal gyrus orbital part, 
the right superior parietal gyrus, the left middle temporal gyrus, 

the left precentral gyrus, the left superior frontal gyrus 
dorsolateral, the right superior temporal gyrus, the left 
paracentral lobule, the right superior frontal gyrus dorsolateral, 
and the left median cingulate gyrus in descending order of 
contribution to the classification. For the group-level ICA, the 
clusters were in the left lingual, the left inferior occipital gyrus, 
the right inferior occipital gyrus, the right precuneus, the right 
postcentral gyrus, the left middle frontal gyrus, the left 
supramarginal gyrus, the right superior parietal gyrus, the left 
supplementary motor area (SMA), the left cuneus 1, the left 
cuneus 2, the right superior temporal gyrus, and the left 
superior parietal gyrus in descending order of contribution. The 
importance to the classification of each time point of the cluster 
is shown in Fig. 4 (a) for single-participant ICA and Fig. 5 (a) 
for group-level ICA. To further understand the temporal 
transition of the importance to the classification, the importance 
of each four consecutive time points was averaged. The time 
periods of interest are from the cue onset at t = 0 s to the EMG 
onset around t = 220 ms and from the EMG onset to the cursor 
onset around t = 450 ms. The results are shown in Fig. 4 (b) for 
the single-participant ICA and Fig. 5 (b) for the group-level 
ICA. Ten out of 16 clusters for the single-participant ICA and 
11 out of 13 clusters for the group-level ICA were most 
contributive at t1 = [125 ms to 187.5 ms] before the EMG onset. 

 

 

Fig. 2 The number of true-positives and false-positive for each direction for the single-participant ICA. The magnitude of the arrows reflects the 
number of trials. The dark arrow represents the true direction and the gray arrows represent the false-positives 

 
IV. DISCUSSION 

This study aims to elucidate the possibility of using EEG-ICs 
to predict eight finger movement directions in a real-time 
prediction manner. In particular, the possibility of using the 
unmixing matrix 𝑊ିଵ that was obtained from applying ICA to 
an initial set to extract ICs from a different set and predict the 
finger movement direction of the latter set using classifiers 
trained using the ICs of the initial set. Single-participant ICA 
refers to when the set used for obtaining 𝑊ିଵ and training the 
classifiers and the set used for testing originated from the same 
participant while group-level ICA refers to when the set used 

for obtaining 𝑊ିଵand training the classifier consisted of the 
temporal concatenation of five sets originating from five 
different participants while the test set originated from a 
different participant. Using ICA to unmix brain-signals from 
other signals of non-interest minimizes the effect of eye 
movement and other artifacts which allows the classifiers to 
utilize information related to motion from brain activity. 
Applying ICA and training a model every time to classify 
finger motion directions is computationally expensive which 
makes it not suitable for real-life applications. Therefore, there 
is value in exploring the possibility of predicting finger 
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movement direction from an EEG set using the ICA unmixing 
matrix and the machine learning model that has been trained on 
a different set. First, this method was applied to data originating 
from the same participant. The average test classification 
accuracy from 12 unique training datasets is 38.62 ± 8.36% 
which was significantly higher (p < 2.00e-04) than 
classification accuracy from models trained with random labels 
(12.50 ± 0.01%). In the second part of this study, ICA unmixing 
matrix and the classifiers were trained using temporally 
concatenated EEG sets originating from five participants and 

tested on the remaining sixth participant. The average test 
accuracy was 27.26 ± 4.39%. The results were lower than the 
single-participant results but still significantly higher (p < 
4.00e-04) than the chance level (12.49 ± 0.01%). Further 
evaluation of the confusion tables showed that false-positives 
were concentrated on adjacent directions to the true direction 
which makes the accuracy of the classifiers within [–45°, 45°] 
of the true direction 70.03 ± 8.14% for single-participant ICA 
and 62.63 ± 6.07% for group-level ICA.  

 

 

Fig. 3 The number of true-positives and false-positive for each direction for the group-level ICA. The magnitude of the arrows reflects the number 
of trials. The dark arrow represents the true direction and the gray arrows represent the false-positives 

 

 

Fig. 4 The clusters of the single-participant ICA. (a) The importance of each data point of each cluster. (b) The average of each four consecutive 
data points of (a). The clusters are in descending order of contribution. The contribution of each cluster is indicated next to its name. The size and 
color of each point represent its importance. The unit of the color bar is the number of classifiers that selected the data point averaged over the 

number of ICs per cluster. The light-shaded area represents the time period between the cue onset at t = 0 ms and the EMG onset at t = 220 ms. The 
dark-shaded area represents the time period between the EMG onset at t = 220 ms and the cursor onset at t = 450 ms. t1= [125 ms to 187.5 ms], t2= 

[187.5 ms to 250 ms], t3= [250 ms to 312.5 ms], t4= [375 ms to 437.5 ms] 
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Fig. 5 The clusters of the group-level ICA. (a) The importance of each data point of each cluster. (b) The average of each four consecutive data 
points of (a). The clusters are in descending order of contribution. The contribution of each cluster is indicated next to its name. The size and color 
of each point represent its importance. The unit of the color bar is the number of classifiers that selected the data point averaged over the number 

of ICs per cluster. The light-shaded area represents the time period between the cue onset at t = 0s and the EMG onset at t = 220ms. The 
dark-shaded area represents the time period between the EMG onset at t = 220 ms and the cursor onset at t = 450 ms. t1= [125 ms to 187.5 ms], t2= 

[187.5 ms to 250 ms], t3= [250 ms to 312.5 ms], t4= [375 ms to 437.5 ms] 
 

Most BCI studies focus on large body parts such as 
classifying simple hand movements [4] and binary reaching 
tasks [9]. The literature about finger movement classification is 
very limited and even more so for classifying 8 finger 
movements. Some studies focused on predicting which finger is 
moving like [26] where they decoded five finger motions with 
54% accuracy while some other studies tried to decode single 
finger movements. Binary finger movement classification was 
achieved with 77.11% accuracy in [5] and left vs right index 
finger movement was classified with 62% accuracy in [27]. 
One study [28] dealt with classifying four thumb movements 
achieved an accuracy of 64.6± 3.6. All the previous studies 
were done offline and the performance in a real-time 
application was not assessed. For online studies, a cursor could 
be moved to the right or left with an average accuracy of 75% 
using invasive electrocorticogram (ECoG) signals [29]. 
Another study [30] achieved online discrimination between 
right vs left index finger movement to move a target in the 
screen to the left or the right with 80% accuracy in seven out of 
ten participants. Four motions (wrist flexion, extension, and all 
fingers open, close) were classified from the EEG signal with 
78.44% classification accuracy [31]. This study realized the 
discrimination of eight classes of movement of the same finger 
where the classification accuracy at the single-participant level 
is comparable to the classification accuracy of fewer classes in 
the present literature. Furthermore, to the best of the authors’ 
knowledge, the group-level ICA results are novel and have not 
been addressed before. The current accuracy may be suitable 
for some real-life BCI applications.  

The clustering analysis revealed the brain regions that were 
involved in finger movement and the contribution analysis 
revealed the importance of each cluster and the temporal aspect 
of the contribution to the classification. 22 out of 29 clusters 
were most contributive at 𝑡ଵ = [125 ms to 187.5 ms]  before 
the EMG onset. The most contributing clusters belonged to the 
left lingual, the right superior occipital gyrus, the left 
precuneus, and the right middle temporal gyrus for the single- 
participant ICA and the left lingual, left inferior occipital gyrus, 
the right inferior occipital gyrus, and the right precuneus for the 
group-level ICA. Some of these areas such as the lingual [32] 
are involved in visuospatial processing which is reasonable. 
The inferior occipital gyrus is a part of the dorsal visual 
pathway and the precuneus that is involved in motor 
coordination that requires shifting attention when making 
movements [33]. Areas that are involved in motor execution 
were also observed such as the precentral gyrus (M1) and SMA 

This study is a first step towards building a real-time 
eight-finger movement classification system. Future work 
would be to evaluate the classification accuracy of real-time 
EEG. 
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V. SUPPLEMENTARY FIGURES 

 

Fig. 6 Confusion tables of the single-participant ICA sets of all 
participants part 1 

 

  

Fig. 7 Confusion tables of the single-participant ICA sets of all 
participants part 2

 

 

Fig. 8 Confusion tables of the group-level ICA sets 
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Fig. 9 Locations of the centroids of the single-participant ICA clusters 
 

 

Fig. 10 Location of the centroids of the group-level ICA clusters 
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