International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:7, 2015

Towards Natively Context-Aware Web Services

Hajer Taktak, Faouzi Moussa

Abstract—With the ubiquitous computing’s emergence and the
evolution of enterprises’ needs, one of the main challenges is to build
context-aware applications based on Web services. These
applications have become particularly relevant in the pervasive
computing domain. In this paper, we introduce our approach that
optimizes the use of Web services with context notions when dealing
with contextual environments. We focus particularly on making Web
services autonomous and natively context-aware. We implement and
evaluate the proposed approach with a pedagogical example of a
context-aware Web service treating temperature values.

Keywords—Context-aware, ~CXF
computing, web service.

framework, ubiquitous

[. INTRODUCTION

ECENTLY, Web services and ubiquitous computing have

started to be among the most important technologies. That
is why the users found themselves faced with the necessity to
build self-adaptive Web services. This strategy allows them to
have more options as well as benefit not only of the
advantages of Web services such as modularity and
interoperability, but also to be aware of the user’s context.

A Web service is an accessible application that other
applications and humans can discover and invoke, and
presents the following properties [1]: independent as much as
possible from specific platforms and computing paradigms
and primarily developed for inter-organizational situations.

Web services provide a standard means of interoperation
between different software applications, running on a variety
of platforms and/or frameworks.

W3C defines a Web service as a software system designed
to support interoperable machine-to-machine interaction over
a network. It has an interface described in a machine-
processable format (specifically Web Service Description
Language “WSDL”). Other systems interact with the Web
service in a manner prescribed by its description using Simple
Access Object Protocol “SOAP” messages, typically conveyed
using Hypertext Transfer Protocol “HTTP” with an Extensible
Markup Language “XML” serialization in conjunction with
other Web-related standards.

Besides, Web services are defined as modular applications
that perform specific tasks and follow a specific format. Their
features are based on independent standards of a programming
language or on a runtime platform. Web services have many
standards as shown in Fig. 1:

Hajer Taktak is PhD student in Faculty of Sciences of Tunis, Tunisia
(phone: 216-5578-7629, e-mail: taktakhajer@gmail.com).

Faouzi Moussa is Conference Master in Faculty of Sciences of Tunis,
Tunisia (phone: 216-5590-9719, e-mail: faouzimoussa@gmail.com).

[— =
[WSDL, ‘WS-Policy. UDDI] ————
Description
i WS- Reliable .
‘WS-Security Messaging ‘WS-Transaction Quality
of Service
[SOAP sl] Other protocols :
i Other services Interaction
[XML, Encoding]

Fig. 1 Web services standards

We are going to give a brief description of the four main
layers:

e The service discovery (UDDI) centralizes services into a
common registry, and provides easy publish/find
functionalities.

e The service description (WSDL) describes the public
interface to a specific Web service.

e The XML messaging is responsible for encoding
messages in a common XML format so that they can be
understood at either ends.

e The transport layer
applications [2].

Despite the widespread use of Web services, their definition
still lacks the capacity to natively adapt their behavior to the
context of use.

Context-aware Computing is a key aspect of the future
computing environment. It aims to provide relevant services
and information to the users, based on their situational
conditions [3].

That’s why building and deploying context-aware Web
services allows systems-context interaction. It would be
possible for example to consider the environments’ aspects in
which the Web services are to be executed [4].

It also raises a new set of research challenges.

These research works are dedicated to Web services and
context-awareness. Nevertheless, these approaches are
essentially focused on services composition, context manager
and conceptual model that capture the domains’ semantics.

In order to abstract the complexity of approaches cited
below, we are going to add another layer responsible for the
context-awareness so that Web services act dependently of the
context of use. This will reduce the difficulty and the cost of
building context-aware Web services.

In this paper, we first review literature on Web services
involving context. Then, we introduce our approach for
creating natively context-aware Web services. Finally, this
approach will be illustrated by a pedagogical case study of a
context-aware Web service treating temperature values.

transmits messages between

1824

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:7, 2015

II. RELATED WORK

Research in the ubiquitous computing area has focused on
pervasive computing and human-computer interaction. Web
services technologies are designed for large-scale and loosely
coupled environments. Such environments have to meet many
requirements and must take context-awareness into
consideration.

Reference [5] defines the context as any information
describing a situation relative to persons, resources and
services in service-oriented computing. It can include all
information considered relevant in users’ and services’
interaction.

According to the observed works of [6]-[9], a context-aware
system has many components that are separated and treated
independently. These parts include context sensor, context
storage, context consumer and context reasoner.

A. The Context Manager

The context manager is a component that manages context
parameters of various entities. It also has the ability to detect
every change occurring to the context of use.

The schema below shows a global view of the context
manager’s use:

Contextual informations

Device management Context Manager

services

Service Web
Registry services

Fig. 2 Context-aware service architecture using context manager

!

Some approaches use the context manager to ensure the
communication between services and the context provider.

In fact, to deal with context-aware Web services, [10]
shows how to add to the architecture a context manager that
manages the data’s flow and transfers the main context’s
information to Web services. This technique uses essentially a
context modeling system that helps in understanding which
context is the most appropriate and what the information
exchanged among Web services are.

Besides, [11] shows how to implement a context manager
that communicates with the device and the service manager.
This Framework maintains a knowledge base that stores and
interprets the context’s information in OWL format as well as
its modeling, etc.

Reference [12] proposes a model (MUSIC) based on the
context manager and other components to coordinate the
process, support the execution, etc. Reference [13] proposes
an approach gathering the relevant context information in the
SOAP-Header. The context is extracted by this Framework
and is transferred to the invoked Web service.

The Web service communicates with a (i) context plugin
locally installed on the device and a (ii) context service

defined using WSDL standards. This approach uses a context
manager treating requests and responses.

B. The Services Composition

Reference [14] defines a context-aware pervasive Web
service composition (CAPSC) that fits the evolution of the
users’ needs, the dynamic services’ communication and the
environment’s changes.

The architecture is based essentially on two parts:
contextualization and services’ composition. In order to
correctly implement these two parts, the authors used a
Business Process Execution Language “BPEL” dealing with
the initial service’s composition with those containing context-
awareness (Web services utilities). This approach is focused
on an inference engine aware of the semantics and
dependencies between Web services. It uses information from
the BPEL application, decides which utility service to be
included in the composition, then reports its findings to the
BPEL process. Fig. 3 illustrates this work:

Client web application

I I Initial web service

BPEL Process service

/

Reasoning engine

Services

utilities

Fig. 3 Context-aware service architecture composition

Reference [15] defined a language (SVE-WSDL) improving
Web service description in presence of semantic data. This
architecture is based on a mediator allowing to deal with
heterogeneous data and to avoid conflicts of interest in a
services’ composition. Thus, this work uses a semantic
mediator to convert semantic values during exchanges
between Web services.

Table I summarizes the techniques used by the approaches
previously cited.

We compare these approaches by following several criteria:
(1) how to register the context, (ii) how to detect the context
and (iii) which tool is used to ensure the context-awareness.

We find out that the engine of the context management
remains external and this can lead to orchestration,
coordination, synchronization and execution issues.

According to these works, most approaches in the
contextual Web service area have focused their research on
how to model, store and access context information, as well as
how to deal with the context in a service composition.

In fact, the authors gather contextual information through
the intermediary of a context manager and orchestration tools
which need deeper knowledge of architectures to ensure
context-awareness in Web services.

1825

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:7, 2015

TABLE1
APPROACHES COMPARISON

[15] [14]

[13] [11]

XML tags (<message>) injected
into the WSDL file to define the
context and semantics (part) of its
use
The trigger acts on the context
between WS compounds to ensure
the cascade outputs in input.
Inference Engine Semantic mediator + Trigger

QoS No No
Composition of WS/
Elementary WS

Context registration

Context detection

Composition of WS

context base

context sensing

Composition adaptor

Composition of WS

Knowledge base managing
context information and saves
the metadata.

A context-aware Framework

Sensors that send the context
and metadata’s device to the
context manager
Composition adaptor

Soap header (block containing
the context to be treated)
Context Framework

No Yes (execution time)

Elementary WS Elementary WS

The contextualization, according to [15], uses an
architecture based on a semantic mediator to retrieve the
context values and associate them with the Web service. This
remains a valid solution in a simple composition of services.

These existing infrastructures supporting context-awareness
suffer from openness and scalability problems [16].

Key features of our approach:

- Achieving a service contextualization without resorting to
existing tools, thus avoiding their complexity and
realizing simpler solutions. Services should become
natively contextualized, thus no more need of a third
component performing this work.

- When implementing a context-aware Web service, the
developer implements its own execution context inside of
it by specifying features such as wuser, platform,
environment, etc. Thereby, the context value interception
is done inside the Web service which becomes natively
contextualized as a result.

Thus, by developing context-aware Web services, it’s
possible to take into consideration (i) environmental aspects
where Web services should be executed, (ii) users who
manipulate Web services and specify their preferences, (iii)
and a platform changing its behavior depending on the context
of use. This awareness is important because it improves the
adaptation of services and applications to situational changes
during their operations. Therefore, the main objective of this
work is to design and deploy adaptable Web services able to
change their behavior according to changes occurring to the
context. Thus, the service consumer has to invoke the
contextual Web service by specifying his context of use, such
as geographical position, mobile device, etc. The service will
automatically make the changes according to the contextual
information.

III. THE PROPOSED APPROACH

A. Model Overview

In this section, we describe the proposed approach for a
context-aware service execution.

The purpose is to integrate contextual information into the
initial definition of a Web service to avoid the complexity of
orchestration tools. We also don’t deal with complicated
architectures based on adding a context manager which
captures the context and interprets it in an understandable
language to be subsequently consumed by a Web service.

We propose a model of context-aware Web service that fits
automatically the context of use. Our model is inspired by the
SOA approach to enforce the contextualization in service
oriented architecture. It relies on the low level definition of the
Web service in order to be aware of the context. Services are
then executed and context-awareness is enforced in returned
results.

Our main idea is to define a natively and autonomous self-
adaptive Web service without the intervention of external
agents livered to treat the context.

We assume that, alongside the Web service standards such
as WSDL UDDI etc., we add another one treating the context

as shown in Fig. 4:
J Composition

j l contextual WSDL I

‘WS-BPEL

[WSDL, ‘WS-Policy, UDDI
I

Description
Context CTX j
WS-Security e Rl WS-Transaction Quality
Messaging of Service
[SOAP A L] Other protocols -
: Interaction
{XML, T J Other services

Fig. 4 Standards in a context-aware Web service

This model is inspired from the Web service’s initial
definition. The main goal is to add another layer to Web
service standards to permanently have a context-sharing
mechanism between Web services and clients.

According to our approach, the contextualization of a Web
service doesn’t introduce significant changes to the classic
Web service architecture. In fact, the Web service itself
contains implicitly the source code relative to context
management.

Every Web service becomes able to change its initial
behavior depending on the Web service consumer demand.
Thus, the Web service becomes not only a platform-
independent modular application, but also a computer program
containing information relative to the context of use.

1826

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:7, 2015

Web service
Soap request

:/) - 7 ‘ Context code | Business code ‘

contextual
Soap response wsdl

Contextual informatiofn
New inputs

Contextual Web @ publish

:) service call -
-

Web service consumer i
Soap response with Contextual Web service
‘Web service contextual .
information registry

P

Web service developer

Fig. 5 Contextual Web service discovery and invoking

Fig. 5 shows a scenario invoking a contextual Web service.

The semantic data have to be defined by the developer to
allow the service consumer to correctly interpret the service.
The service developer must specify pertinently the context
description parameters. During this work, we define the Web
service’s contextual data as a business code given by the
developer in terms of his needs and preferences. This code
will integrate the low level definition of the Web service to
create a contextual one. Actually, the initial service Si has an
input Is and an output Os. To have a context-aware result, we
add another input for the context I ¢ [1..n] leading to an output
depending on the context Os,c (assign in Fig. 6). Note that the
Web service can be executed with or without specifying the
context parameters.

S;<lIs, 0> =2 S< (I 1 crr.ny) Og, >

C

Fig. 6 The contextual Web service parameters

For example, during his reservation, a user in France may
choose to have the price of a hotel in the USA in euro when
the hotel booking web service computes the price in dollars.

Therefore, to achieve this goal, the user should enter the
date of his reservation as an initial input of the service and a
contextual input (geographical location) Ic[l.n] as a
complementary data to satisfy his needs. Thus, the developer
defines the Web service and its context so that we provide a
personalized service according to the user’s geographical
position. Let’s note that the ‘context’ and ‘initial Web service’
parts are developed separately to be able to change any of
them without impacting the initial service execution. Besides,
Web services should maintain their characteristics so that a
Web service natively context-aware remains flexible, reusable
and made with a delicate granularity.

When deploying the Web service, the system should be able
to apply the treatment relative to the context’s information in
order to have a context-aware result and an output given
according to the context data.

Fig. 7 presents the general service oriented architecture
‘SOA’ solution:

Creation of contextual
‘WSDL
Implementation of
contextual
Web services.

Discovery of the
contextual Web
service

Contextual

informations
L)

Service

provider

Service
requester

& bind 4

&)
5 &
|

Contextual
service
registry

Execution of the
contextual Web
service

Fig. 7 SOA architecture including contextual information

With such an architecture including contextual information
(assign in Fig. 7), a service provider can describe a context-
aware Web service in the contextual WSDL language to
specify how to invoke it during situational changes.

The contextual service registry creates an interoperable
platform enabling a service requester to easily locate Web
services over the Internet.

Our contributions are summarized as follows:

e We propose a context-aware Web service containing
natively contextual information. We don’t use
composition of services anymore. The context modeling
tool (ontologies) and service composition are not
required. All requirements are summarized on (i) an initial
Web service and (ii) contextual business code defined by
the developer.

* The context-aware Web service will be autonomous.

e This work was integrated in the apache CXF architecture
[17] and carried out in a thorough experimental
evaluation.

Based on a scenario, we identify the following challenges
addressed in this paper. The first one is how to guarantee
autonomous context information treatment. Even if service
consumption is not contextualized, the Web service must
maintain execution independently of context (backward
compatibility). The second one is how to preserve the Web
service criteria such as simplicity, flexibility and low coupling
and how to deal with heterogeneous data.

B. Rewriting the Web Service’s Source Code Using CXF
Framework to Take into Account the Context of Use

At this stage, the model presented extends the CXF
Framework’s architecture to which we add methods to recover
a part of the context information entered by the developer.

This extensibility comes with the necessity to add context-
awareness to the Web service under CXF Framework. As
shown in Fig. 8, we extended the CXF architecture with a
context module using both its input and output interceptors
implemented as:

* Input interceptor: handles the input SOAP (Simple Object
Access Protocol) messages and uses the methods to
extract the content’s request with the contextual data. The
Web service is invoked via the contextual CXF
Framework.

1827

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:7, 2015

e Output interceptor: intercepts SOAP responses before
their transmission to the service engine to make sure that
Web services are built with context inclusion.

The output SOAP is built and the contextual results are sent
to the service consumer.

Input Message
intercepiion

Contextual data
extraction
Get the Context Values

Change the result

CXF 3.0 pmmmT .
W Tl In interceptor
Input Output
terceptor Interceptor
‘l
Transport Transport |
Listener Sender '
‘\
‘\ -
Sorvi . Out interceptor
ervice "
\
Builder Y
‘l
~l
|
In flow T out flow

Qutput Message
interception

Services engine

Auto adaptive Web
service compilation

Quiput message
consiruction

Soap messages

Service consumer

Fig. 8 Extensions made to the CXF Framework

Fig. 9 shows how CXF Framework behaves facing
occurring changes during a contextual Web service’s
invocation.

Change soap
request Values
before

sending data
WrapperClassInlnt
ceptor Service WSDL
Builder
Service

=
consumer

e
GetContextValue
GetServiceVale ; ‘WrapperClassGenerator
Look for the ‘WrapperClassOutInter
context matching ceptor
aservice -

‘Wsdl changes
I

X Service ‘L
Business . lcﬁ
registry
Ccde @ Refersto -
relatifto contextual
context wsdl

Fig. 9 CXF Framework behavior

Every SOAP request passes through the class
“WrapperClassInlnterceptor” that handles request data and
identifies contextual information.

We extend this class with the ability to read and extract data
specifying the context of use. Indeed, this class allows
processing protocols and changing request values.

Regarding the class « WrapperClassInlnterceptor »,

« ServiceWSDLBuilder » helps to interpret the context and
to intercept operation values. Thanks to this class, we may
produce a contextual WSDL model. Thus, «
ServiceWSDLBuilder » generates the service description
containing contextual information. From the operation’s input,
this class identifies context values and creates variables to be
added as service values finally by « WrapperClassGenerator ».

Here we present a development plan of a service provider:

- Develop core functionality of a Web service and add the
classes responsible for contextual information thanks to
the annotations.

- Provide a service descriptor (WSDL) associated to the
context-aware Web service; it must contain all
information relevant to the context of use.

- Deploy and publish the self-adaptive Web service’s
specifications.

We note that contextual Web services can be used as simple
Web services if users do not need context-awareness in their
execution. Indeed, the service contextualization doesn’t affect
the current Web services’ performance.

IV. MOTIVATING SCENARIO

We are going to consider a scenario in which the user needs
to know temperature values at a given date. The scenario is
illustrated in Fig. 10:

» Inputs

Inputs

Get Temperature
Get Temperature Service
Service

Outputs

F

The result depending of
Outputs The geographical situation

°C

Fig. 10 The motivating scenario

1828

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:7, 2015

The service is composed by an operation named «
getTemperature ». This method allows us to have the
temperature’s degree at a given date. The initial output value
is not context-aware and is always in Celsius degree. It doesn’t
match the unit of measure (°C, F) associated to the appropriate
geographic position.

Based on our scenario, we assume that the first user is in
New York and wants the result converted to Fahrenheit, unlike
the second user who is in France and wants a result with
Celsius degree. Obviously, the initial service can’t do this
work by its own as its results are independent of the users’
positions and preferences.

This query can be solved by introducing the Web service to
context notions for it to be natively context-aware and able to
automatically change its behavior.

When the two service consumers call the same initial
service, they have to see two different results depending on
their positions as shown in Fig. 10. To do so, we contextualize
the initial service by adding a "Geographical Position"
variable retrieving the user’s geographic location. The
Framework intercepts the “Geographical Position” value then,
according to it, converts the operation’s return value to the
desired unit of measure.

The Web service description language is modified
according to the context (the added data). This change occurs
when deploying the Web service. Thus, making it depends not
only on the temperature but also on the context of use
(geographical position).

The framework, called Context-aware Web Service
Framework “CAWSEF”, presents a priori many contributions
and shows how performant the context-aware Web service is.

Coming works will be more focused on characteristics
managed by the quality of service (QoS). We present some of
them in Table II:

The main aspect that differentiates our contribution from
existing works is the transparent integration of context without
modifying the initial structure of either the Web service, or the
protocols, or the query languages giving access to services.
The work is also done without adding external layers to treat
the problematic.

TABLE II
VERIFIED CHARACTERISTICS OF QOS

CAWSF
Treatment of context within the Web service and

Performance elimination of external components has improved
the service’s performance
Reuse and The independence of context from the service offers
possibility of the ability to add or modify context without having
extension to change the service
Ease of

. . The Web service contains the context management.
implementation

Using interceptor offers the possibility to interact
with other systems
Adding context through an annotation retains the
Web service’s simplicity and warrants its flexibility
by dynamically interacting with its environment

Interoperability

Flexibility

The work is entirely done inside the Web service.
Developers or service consumers must enter their preferences
to get a Web service depending on their context of use.

V. CONCLUSION

In this paper, we proposed an approach integrating context-
awareness into Web service’s structure without adding new
resources. Our model exploits contextualization in the Web
service and allows for contextual Web services. We
implemented our model into the architecture CXF and
evaluated its efficiency in a context-aware Web service
scenario treating temperature values. As a future work, we
intend to work on a comparative study with a more complete
example to show all the advantages of our approach. Then we
are going to focus on the quality of service (QoS) to verify the
most relevant criteria important for the approach’s reliability.

REFERENCES

[1] B. Benatallah, Q. Z. Sheng, and M. Dumas, “The Self-Serv Environment
for Web Services Composition” In IEEE Internet Computing, 7(1),
January/February 2003.

[2] E. Cerami, “Web Services Essentials” Distributed Applications with
XML-RPC, SOAP, UDDI & WSDL Publisher: O'Reilly First Edition
February 2002, pp.11-15.

[3] Chen, H., Finin, T., and Joshi, A. “Semantic Web in the Context Broker
Architecture” In Proceedings of the Second IEEE international
Conference on Pervasive Computing and Communications (Percom'04)
(March 14 - 17, 2004).

[4] Z.Maamar, D. Benslimane and N. C. Narendra “What can context do
for web services” ACM New York, NY, USA Volume 49 Issue 12,
December 2006 pp. 98-103

[5] Schilit, B.N.,, Adams, N.I., Want, R. “Context-Aware Computing
Applications.” In: Procs of the IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA’94), Dec. 1994, Santa Cruz,
California, USA. pp.85-90.

[6] Chaari, T., Laforest, F. and Celantano, A. “Design of context-aware
applications based on Web services”, Technical report LIRIS UMR
5205 CNRS/INSA de Lyon/University” Claude Bernard, Lyon 2004.

[77 M. Keidl and A. Kemper. “A framework for context-aware adaptable
Web services.” In Proceedings of The 9th International Conference on
Extending Database Technology (EDBT’2004), Heraklion, Greece, 2004

[8] Mikalsen, M., Floch, J., Paspallis, N., Papadopoulos, G.A. and Ruiz,
P.A. (2006), “Putting context in context: the role and design of context
management in a mobility and adaptation enabling middleware”, 7th
International Conference on Mobile Data Management (MDM 2006),
Nara, [EEE Computer Society, Nara.

[9]1 Henricksen, K., Indulska, J., McFadden, T. and Balasubramaniam, S.
(2005), “Middleware for distributed context-aware systems”, OTM
Confederated International Conferences, Springer-Verlag, Heidelberg,
pp. 846-63.

[10] Hong-Linh Truong and Schahram Dustdar SURVEY PAPER“A survey
on context-aware Web service systems”. This paper is partially funded
by the EU FP6 WORKPAD, EU FP6 inContext and EU FP7 COIN
projects.

[11] Sridevi S., Sayantani Bhattacharya, Pitchiah R. “Context-aware
Framework.” MobiQuitous conference 2010: pp. 358-363.

[12] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein
Hallsteinsen, Jorge Lorenzo, Alessandro Mamelli, and Ulrich
Scholz:”"MUSIC: Middleware Support for Self-Adaptation in Ubiquitous
and Service-Oriented Environments.” Springer-Verlag Berlin Heidelberg
2009

[13] Markus Keidl, Alfons Kemper: “Towards context-aware adaptable Web
services”. WWW (Alternate Track Papers & Posters) 2004: pp 55-65.

[14] Jiehan Zhou, Ekaterina Gilman, JuhaPalola, JukkaRiekki, Mika
Ylianttila, Jun-Zhao Sun: “Context-aware pervasive service composition
and its implementation.” Personal and Ubiquitous Computing 15(3),
2011 pp 291-303.

1829

[15]

[1e]

[17]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:7, 2015

Michael Mrissa, Chirine Ghedira, Djamal Ben slimane, Zakaria
Maamar: “Context and Semantic Composition of Web Services”. DEXA
2006: pp 266-275

Aisha M. Salama Elsafty, Sherif G. Aly, Ahmed Sameh “The Context
Oriented ~Architecture: Integrating Context into Semantic Web
Services,” IEEE conference on semantic media adaptation and
personalization, Athens 2006, pp 74-79.

Naveen Balani and Rajeev Hathi “Apache CXF Web Service
Development, Develop and deploy SOAP and RESTful Web Services”
ISBN 9781847195401, pp 336

1830

