
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

413

Abstract—Database management systems that integrate user

preferences promise better solution for personalization, greater
flexibility and higher quality of query responses. This paper presents
a tentative work that studies and investigates approaches to express
user preferences in queries. We sketch an extend capabilities of SQLf
language that uses the fuzzy set theory in order to define the user
preferences. For that, two essential points are considered: the first
concerns the expression of user preferences in SQLf by so-called
fuzzy commensurable predicates set. The second concerns the bipolar
way in which these user preferences are expressed on mandatory
and/or optional preferences.

Keywords—Flexible query language, relational database, user
preference.

I. INTRODUCTION
HE amount of information managed by the database
management systems (DBMS) becomes increasingly

important. As a consequence the interrogation of database
should be more and more efficient. This performance can be
measured in terms of query time response or a delivered
information quality. In particular, taking into account user
preferences in query is a key element of relevance. The
problem of expressing and managing user preferences has
received more and more attention in the last few years [1, 5,
21, 23]. It was shown [7, 13] that the fuzzy set theory provides
efficient tools to incorporate user preferences in queries. SQLf
language is an example that illustrates this idea. More
precisely, “vague conditions” with preferences allow to
describe the personalized needs of each user. This paper aims
to introduce an extension of SQLf Language to integrate
optional user preferences in a bipolar form (tanks to a new
‘‘THEN’’ clause) and to present a brief overview of the recent
approaches in order to express user preferences in queries.

In relational mode of database, preferences are mainly
employed to filter and personalize the information sought by
users. Two general approaches are distinguished in the
literature to express preferences. The implicit approach in
which, each value of attribute is associated with a score. The
value is preferred to another if it has a better score. The

L. Lietard is with IRISA/IUT rue Edouard Branly BP 30219 LANNION,

France (e-mail: ludovic.lietardr@univ-rennes1.fr).
D. Rocacher and S-E. Tbahriti with IRISA/ENSSAT BP 447 22305

LANNION, France (e-mail: rocacher@enssat.fr, tbahriti@enssat.fr).

explicit approach in which the user directly expresses his
preferences on the various attribute values. That means the
preferences are defined by comparing the attribute values. In
addition, these preferences can be seen in a bipolar way, i.e.,
mandatory preferences (viewed as constraint) and optional
preferences –viewed as wishes). In this context, the answers
of a query must satisfy absolutely all mandatory preferences
and satisfy as possible the optional preferences.

The purpose of this paper is to specify on the one hand, the
features of the implicit and explicit approaches like that of
bipolarity. The emphasis is put on the consequences of the
obtained results, when these techniques are applied, in
particular if a total or partial order is obtained. On the other
hand, we sketch the extended SQLf language to integrate
optional preferences we are currently working on.

In the following Section we study the features of the two
approaches to express preferences and a special importance is
put on the commensurability assumption and the impact it has
on the query responses. In Section 3 we describe bipolar
concept of preferences. Section 4 is dedicated to a
presentation of the main extension of SQLf language. In
Section 5 the main interrogation systems with preferences are
investigated and positioned with two axes (preference
expression, and the bipolarity). Conclusion summarizes the
principal contribution of the paper.

II. PREFERENCES AND ORDER RELATIONS
In the context of relational database, elementary preferences

are defined on attribute values then composed to define more
sophistical preferences. Each attribute Aj has associated a
domain values Dj. A tuple ti associates to each Aj a value taken
from its domain. For a given attribute, two general ways are
used to express user preferences (the implicit and explicit
way).

In the implicit approach a scoring function is associated to
each attributes [1]. An attribute value is preferred to another if
it has obtained a better score. As an example, a score can be a
distance from an optimal value. The element having the least
distance is preferred.

Example 1. Consider the relation Car (cf. Table I). Numerical
scores are assigned to the values of “Make” attribute as
follows: (BMW = 3, Audi = 2, VW = 1). More the score is
high more the make is preferred. Thus, a preference for the
“famous makes” car is expressed.

Towards an Extended SQLf: Bipolar Query
Language with Preferences

L. Ludovic, R. Daniel, and S-E Tbahriti

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

414

The fuzzy set [24] constitutes a more specific support in
which this idea can be instantiated. The following fuzzy set
expresses thus the preference for the “famous make”:
 Famous-makes= {1/BMW, 0.7/Audi, 0.3/VW}. Each element
of this set is associated with a degree. More the degree is high,
more the element is preferred. An important effect of the use
of score functions if that they induce a total order on the
values of each attribute.

TABLE I
CAR RELATION

Tuple-id Make Price Cons. Hp. Color

t1 BMW 30000 9/100 90 Green
t2 Audi 15100 8/100 91 Green
t3 VW 15000 7/100 91 Black

In the explicit expression approach, the preferences are

explicitly defined on the attribute values (e.g., someone
prefers “green” car to “red” car), which is quite natural to the
user’s viewpoint. In this case, these attribute values ca, be
totally or partially ordered.

Generally, the aim is to classify the tuples from several
elementary preferences. Two directions can be followed; the
first point is based on the comparison of the scores, the second
based on explicit comparison inter-tuples. We present in the
two following sub-sections these directions for preferences
expression.

A. Elementary Preferences Defined by a Scoring Function
In the case where elementary preferences expressed by

scoring function [17], each tuple ti is associated with a scores
vector (s1

i,…,sn
i) Please submit your manuscript electronically

for review as e-mail attachments. Each sj
i corresponds to the

evaluation of a preference on attribute Aj of tuple ti. Two
assumptions are considered according to the
commensurability of these scores.

If the commensurability assumption holds, all scores of a
vector are based on the same scale of satisfaction in order to
be compared. Thus, scores can be combined by means of an
aggregation function f (average, weighted average, min, etc.)
to give a global evaluation to the vector. Consequently, a total
order relation is established between the score vectors. In this
case, ti is preferable to tj if and only if: f (s1

i,…,sn
i)≥ f (s1

j,…,sn
j

). Generally f is an “ad-hoc” numerical function which can be
defined by a user. Obviously f must take into account the
relative senses of the scores which it combines so that the
aggregation mechanism is meaningful. It means that f should
make, in somehow, these scores commensurable.

When fuzzy predicates are used, the scores are satisfaction
degree in [0, 1] and a logical meaning is allotted to them [4].
The functions to aggregate them use logical extended
operators [4, 18] (triangular norm, co-norm, fuzzy
implication, etc.).

Example 2. Consider the following query which has to find
the “famous make” and “not expensive” cars. Each degree
represents a satisfaction with regard to respective conditions,
“famous make” and “not expensive” (cf. Table II). These
degrees are aggregated according to a triangular norm “min”
(expressing a conjunction), which gives the final degrees: 0.2,
0.7 and 0.5. The tuple are classified as follows: t2, t3 then t1,
which mean that t2 is preferable to t3 and the last one is
preferable to t1.

TABLE II
ASSIGNEMENT OF DEGREES TO THE ATTRIBUTE VALUES

Tuple-id Make Price Degree make Degree price

t1 BMW 30000 0.9 0.2
t2 Audi 15100 0.7 0.7
t3 VW 15000 0.5 0.9

It is also possible within the fuzzy set field to apply other

mechanisms like the Leximin or Discrimin operators [14].

The Leximin operator is based on a permutation of the

scores of each vector in order ti be able to compare them. It is
defined as follows: if t* and s* are two permutations of t
respectively s so that t*

1≤…≤ t*
n and s*

1≤…≤ s*
n then t

<Leximin s ⇔ ∃ k ≤ n, ∀i <k, ti = si and t*
k > s*

k.
The Discrimin ordering between two score vectors. It is

defined as follows: if D(u, v) = {i, ui ≠ vi} is the set of index
for which the corresponding values in the scores vectors u and
v are different, u >Discrimin v , min i∈ D(u ,v)ui > min i∈ D(u ,v) vi.

In the no commensurability assumption the scores allotted

to the various attributes of a tuple are not comparable.
Consequently these scores can not be aggregated and only a
partial order can be defined on the tuples. In particular, the
Pareto order can be used.

Pareto Order. We want to compare two tuples, v and u such
as v = (vi . . . vn), u = (u1 . . . un). It is defined as follows [14,
15]: v >Pareto u ⇔ (∀i, vi ≥ ui, ∃j, vj > uj).

Example 3. Let us consider the following query which has to
find the cars of price around 15.000, with a consumption
(Cons.) around 7/100 and a horse power (Hp.) around 90. The
preferences on these three criteria are qualified by distances
(cf. Table III). Since the commensurability assumption is not
considered here, the scores on the values of various attributes
can not be compared and combined. Consequently, the score
vector of v(t1) = (15000, 2, 0) can not be compared with the
other vectors of v(t2) = (100, 1, 1) and v(t3) = (0, 0, 1). By
using the Pareto Order, the result of example 3 is given as
follows: v(t3) >Pareto v(t2) but v(t1) can not be compared neither
with v(t2) nor with v(t3). Thus, t3 is thus preferred to t2 and the
t1 can not be compared neither with t3 nor with t2 .

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

415

TABLE III
ASSIGNMENT OF THE DEGREES TO THE ATTRIBUTE VALUES

Id Price Conso. Hp Dist price Dist conso Dist Hp

t1 30000 9/100 90 15000 2 0

t2 15100 8/100 91 100 1 1

t3 15000 7/100 91 0 0 1

B. Elementary Preferences Defined Explicitly
It has been observed at a glance that implicit approach to

express preferences, has a limited expressive power, since
they can not be used to model more complex patterns of
preferences. For example, if a user wants to indicate his
preferences over paint, it is easier to compare them one by
one.

Preference over a relation database is expressed by a
collection of pairs of tuples [12]. Each pair specifies the
preference of one tuple over another one. In this case, a
preference relation ≻ is defined over R and it is a binary
relation such that ti ≻ tj. Thus ti is preferable to tj. In explicit
preferences, we just assume that tuples can be compared using
some logical expressions that, in real case, defines a partial
order over the tuples. In this context, the commensurability is
not necessary; it prohibits taking into account compensation
phenomena between various preferences (contrary to the score
approach). When several elementary preferences are
considered, the preference relation between two tuples
consists in comparing directly the values of each attribute.

Example 4. The preference a car with a green color and low
consume is defined on the both attributes “color” and
“consumption”. Each tuple is associated with a vector
composed of a color and consumption. For example, vt1 is
associated with (green, 9), vt2 is associated with (green, 8) and
vt3 is associated with (black, 7). For the comparison of
vectors, one can use a partial order relation defined by the
Pareto order. In the previous example vt1 ≻ vt2 and vt3 can not
be compared to vt1 or vt2.

III. BIPOLARITY OF PREFERENCES
User preferences are not considered at all time mandatory.

This idea has been illustrated by the concept of bipolar
information proposed by Dubois and Prade [16]. The
bipolarity concept distinguishes, on the one hand, mandatory
preferences, called constraints, from optional preferences,
called wishes: Wishes are free, but there is no guarantee that
they can all be satisfied at all times. Constraints and wishes
are respectively defined by acceptable values set, noted A, and
a desired values set, noted D. For the constraints, queries are
exact-match with hard selection criteria, delivering exactly the
desired tuple if it is there and otherwise reject the user’s
query.

Example 5. A user wants to buy a not expensive (<15000) car
and wishes it has a “green” color. The constraint “not

expensive” allows determining acceptable cars set (whose
price is <15000), then the condition on the color expresses a
wish, which if it is satisfied supports the associated answer.

The fundamental property of the constraints and the wishes
is that the set of desired values is a subset of acceptable values
(D ⊆ A). Indeed, it is incoherent to wish non-acceptable
values (a constraint defined by “an European car” is
incoherent with the whish: “a Japanese car”).

It is also possible to consider constraints and wishes are
defined by fuzzy set. In this context, the condition of inclusion
D ⊆ A is rewritten: For each tuple ti, μD(ti) ≤ μA(ti), such as
μD(ti) (respectively μA(ti)) is a satisfaction degree of ti on D
(respectively on A).

Constraints and wishes are different in nature (for example,
a non-satisfied wish, does not reject a tuple, unlike a non-
satisfied constraint). Consequently, the degrees expressing
constraints and wishes are non commensurable and can not be
combined in a logical expression. They must be treated
independently. The constraint being imperative, it is possible
to order the tuples by using a lexicographical order [2] on the
constraints and the wishes. Thus, the wishes allow to
differentiate between the tuples who are equal with respect to
the constraints and a total order can be obtained on A and D.
For the example 5, a lexicographical method classifies tuples
satisfying the constraint “not expensive“, and favoured among
of them, those, which satisfy the wish “green color”. So, ti is
classified before another tj if μA(ti) ≥ μA(tj) or (μA(ti) = μA(tj)
∧ μD(ti) ≥ μD(tj)).

IV. TOWARDS AN EXTEND OF SQLF
This section is mainly concerned with the extension of

language SQLf capabilities. First of all, we briefly set out the
base structure of SQLf language, then we present some main
extensions for this language along two axes:
1. In order to envisage a greater flexibility and delivered
response quality, we define user preferences via the set of
fuzzy predicates P= PA ⋃ PD where PA expresses mandatory
preferences and PD expresses optional preferences.
2. Concerning the optional and mandatory preferences, the
aim is that SQLf be able to distinguish these two types of
preferences. These two axes are orthogonal and can be treated
independently.

A. SQLf
The SQLf language extends the SQL language in order to

allow the user to formulate queries on atomic conditions
defined by fuzzy sets [6, 7]. Each attribute of a tuple is
associated with a satisfaction degree μ in [0, 1]. The semantic
of degrees is the same, what implies that the criteria are
commensurable.

A query in SQLf language has the following syntax:

SELECT [distinct][n|t|n,t] <attributes>
FROM <crisp relation>
WHERE <fuzzy condition>

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

416

Where fuzzy condition contains mandatory preferences
expressed by a set of commensurable fuzzy predicates PA. The
parameters n and t of the select block limit the number of the
answers by using a quantitative condition (the best answers)
or a qualitative condition (data which satisfy the query
according to a level higher than t).

B. Extended SQLf
As we have seen in Section 3, constraint and wish can not

be combined in a same logical expression. In addition, the
processing of constraint must be independent of that of the
wish. To guarantee this effect in SQLf, we consider a bipolar
query in SQLf as A then D where the satisfaction of the
wishes in D is only used for ordering tuples. For this matter,
we extend SQLf by introducing a new clause “THEN” to
express optional preferences in query, as follows:

SELECT [distinct][n|t|n,t] <attributes>
FROM <crisp relations>
WHERE <fuzzy condition>
THEN <optional preferences>

The “THEN” clause may involve both Boolean and fuzzy
predicates in PD to express optional preferences (wish)
combined by several kinds of connectors. Two cases are
considered to process optional preferences:
1. PD is a set of commensurable predicates of the same
importance level. In this case, we can utilise the Leximin or
Discrimin operator to keep, in each class (which corresponds
to a certain value of degree relative with A), only the
undominated tuples. These operators provide an order on a
response set but they do not provide scores.
2. PD is a set of hierarchical commensurable predicates. We
can use an operator of semantics “if possible then” level of
importance.

Example 6. Let us consider again an instance of the relation
car (cf. Table IV) and the following query: Find preferably,
among the “not expensive” car, those which are “famous
make”. The predicate “not expensive” allows to express
mandatory preferences A defined by fuzzy set. While
predicate “famous make” permit to describe an optional
preference D, which if it is satisfied, supports the associated
results of query. In particular, for the tuples of the employee
relation we have:

not-expensive= {0.2/30000.7/15100, 0.8/15000, 0.9/9000}
famous make= {1/BMW, 0.8/Audi0, 8/VW, 0.3/Fiat}

TABLE IV
ASSIGNMENT OF DEGREES

Tuple-id Make Price Degree make Degree price

t1 BMW 30000 1 0.2
t2 Audi 15100 0.8 0.7
t3 VW 15000 0.8 0.8
t4 Fiat 9000 0.3 0.9

Each tuple ti is associated with a vector which represents its
situation with respect to the atomic conditions (see section
2.1). The result is evaluated on two steps:

First, we selected tuples satisfying the mandatory
preferences A (“not expensive”).

Then we obtain: t4(0.9) > t3(0.8) > t2(0.7) > t1(0.2) which
means that the tuple t4 is preferable on A to t3 and last one is
preferable to t2 and so on. We keep tuples having a degree αA
higher than 0.5 (for example). Secondly, among the tuples
satisfying the mandatory preferences A with respect αA, we
select only those which satisfy the optional preferences with a
degree αD = 0.7 (for example). Thus, we obtain two classes in
which all results are totally ordered, such as class1 that
contains the tuples satisfying A and D and a class2 that
contains the tuples satisfying only A. The final result is as
follow: Since t4 does not satisfy optional condition “famous
make”, thus it is not selected, class1 = {t3 > t2}, that means t3 is
preferred to t2. class2 = {t4 > t3 > t2}.

Beyond the extension of SQLf optional preferences itself,

an important question puts relate to performances of a SGBD
accepting such queries with preferences, and thereafter an
evaluation mechanism of these queries. To enable query
processing and optimization, we present flexible query with
preferences by means of a system of transformation algebraic
rules. We will present in the next research papers the
performance experiments.

In conclusion, the predicate selection of the clause where
permits to select acceptable results that satisfying the
mandatory preferences, while “then” clause allows to express
optional preferences (wishes) and to order the selected tuples.
With this way, extended SQLf is be able to process user
preferences within a bipolar framework. In this context, such
preferences are taken into consideration through the
expression of commensurable fuzzy predicates, modelled by
fuzzy set of more or less satisfactory values and the selection
of the results is totally ordered.

V. QUERY LANGUAGES WITH PREFERENCES
User preferences can be embedded into database query

languages in several different ways. In this section, we briefly
present the principal propositions to integrate user preferences
in queries. We situate these propositions with respect to
implicit and/or explicit preferences and bipolarity.

A. Preference SQL
Queries in Preference SQL [19, 20] are mainly made of two

parts :
• a WHERE clause aiming at selecting tuples (using Boolean
conditions, also called conditions of type must),
• a PREFERRING clause to specify preferences (also called
light conditions) in order to make a discrimination between
tuples. The typical query block in Preference SQL is then:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

417

SELECT *
FROM <list of relation>
WHERE <must conditions>
PREFERRING <light conditions>

Basically, the preferences appearing in the PREFERRING

clause are defined by distances (from optimal values) or
scores (level of satisfaction) and a Pareto ordering is used to
distinguish between tuples. Preference SQL delivers to the
user the tuples satisfying the WHERE clause which are
undominated with respect to the preferences (i.e. such that no
preferred tuples can be found). If no tuples satisfy the
preferences, all tuples satisfying the WHERE clause are
delivered to the user.

Example 7. The query “find hotels from Paris with a price
around 100 and a high category” is expressed in Preference
SQL by:

SELECT *
FROM Hotel WHERE City = Paris
PREFERRING around_100(Price)

and high(Category);

where the relation Hotel is given by Table V.

TABLE V
HOTEL RELATION

Tuple-id Price Category City

t1 200 *** Paris
t2 100 ** Paris
t3 150 ** Paris
t4 50 * Lyon

The preference price around 100 is modelized by a distance
(between the price and top value 100), while the preference
high category is represented by a level (from 1 to 3,
depending on the category). This query discards hotel t4 (since
not located in Paris) and evaluates the preferences (in the form
of a vector (distance, level)) for hotels t1, t2 and t3 respectively
associated to (100, 1), (0, 2) and (50, 2). The Pareto ordering
gives: t2 Pareto t3 while t1 is not comparable with t2 and t3. As a
consequence, the non dominated tuples correspond to t2 and
hotel t1 which are presented to the user.

Preference SQL follows the bipolar model, since the must

predicates represent constraints while the light predicates
represent wishes (a tuple which does not satisfy the must
predicates is discarded and, if possible, the non dominated
tuples with respect to the light predicates are returned to the
user), but it is limited to Boolean constraints and non
commensurable preferences since elementary preferences are
distances or levels.

B. Top k-queries
In this approach, an ad-hoc ranking function f is used in

order to classify all tuples according to the preferences [8, 9,
22]. In turn, a top-k query returns k tuple with the highest
score for the query. Function f is computed on numerical
attributes values and can incorporate elementary scores (which
can be computed on non numerical attributes).

Example 8. Relation Persons (name, age, weight, height)
gathers information about people. A top-k query on relation
Persons is “find the 5 best persons according to the preference
to be over-weighted and to be young. The over-weight of a
person described by a tuple ti can be calculated by the
following function: f(ti) = ti.weight − (ti.height − 100), while a
fuzzy set Young indicates the extent to which it is young. In
this case, the ranking function f must make commensurable
the overweight and the score μY oung(ti.age and it possible to
define: f(ti) = (ti.weight − (ti.height −100))/(ti.weight +
μYoung(ti.age)), which means that the overweight is all the more
important as it is associated to a light weight. Function f is
evaluated for each person and the 5 best ones are returned.

The approach advocated by top-k queries delivers a total
order since elementary preferences are considered
commensurable and aggregated in the ranking function.
However, some elementary preferences may not be
commensurable and the definition of function f may leads, in
this case, to a result which can be difficult to justify.

C. Preference Queries
This approach provides an algebraic framework to

formulate query with preferences and an algebraic operator
“winnow” [10, 11]. This one picks the set of tuples which are
not dominated, according to a given preference relation ≻. It
is defined by the following formula: If R is a relation schema
and ≻ preference relation over R, then winnow operator is
written as w≻(r) and for every instance r of R, w≻(r) = { ti ∈ r
| ∄ tj ∈ r, tj ≻ ti}. A special case of winnow is called Skyline
[3] where preferences are predefined and limited to a set of
operations.

The interest of winnow is to be justified when the

preference relation delivers a partial order. It allows to select
elements undominated and can not be compared between
them. However, it was shown [25] that a bipolar query where
the constraints A and wishes D are Boolean conditions can be
defined by means of the winnow operator. Indeed, wR’ (σA(T))
such as T is the tuples set and R’ is the preference relation
defined by: R’ (t1, t2), P(t1) ∧ ⌉P(t2), where σ is a classical
selection and P(.) is predicates corresponding to the preferred
conditions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

418

VI. CONCLUSION
In this we have studied and presented two families of

approaches to express user preferences: the implicit and the
explicit. In the implicit approach, an elementary preference is
defined by a score (provided by a function). The aggregation
of several scores is possible only when the commensurability
assumption holds and leads to a total order of query answers.
On the other hand if the preferences are non-commensurable a
partial order is obtained since some tuples may be not
comparable. In the explicit approach the preferences are
specified by binary relation of preferences and in the majority
of the cases, a partial order is obtained on the tuples. In
addition, the preferences can be considered as constraints
(mandatory preferences) and wishes (optional preferences).

In this paper, we have presented an extension of SQLf
language in order to integrate optional preference according to
bipolar form. The extended SQLf language we are currently
working on, uses the fuzzy set theory in order to define the
preferences and consider the commensurability assumption.
This language provides a founded framework to combine
mandatory and optional preferences. We have dealt also with
the main interrogation systems which support preferences.
The processing of such systems has been discussed and
positioned with respect to two aspects (preferences expression
and bipolarity). The approaches advocated by the systems
Preference SQL and Preference Queries are based on a partial
order, consequently, they release to the user only the
undominated tuples. Preference SQL incorporates a concept of
bipolarity in the Preferring clause. In top-k queries system,
relatively little attention has been devoted to the design of
appropriate scoring functions, a problem of critical importance
since the quality and usefulness of the top-k answers for a
query are highly dependent upon the underlying quality of the
scoring technique.

Further studies can be made on the results provided by this
paper. First, it will be of interest to define more sophisticated
operators to determine the best answers in case of non
commensurable preferences. We have presented a first step to
an extended SQLf language with preferences.

REFERENCES
[1] A. Agrawal and E.L. Wimmers, “A Framework for Expressing and

Combining Preferences”. In Proc. of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas, USA, pp.
297–306, 2000.

[2] H. Andreka, M. Ryan, and P-Y. Schobbens, “Operators for Combining
Preference Relations”. In Jour. of Logic and Computation, 12(1):13–
53., 2002.

[3] S. Börzsnyi, D. Kossmann and K. Stoker, “The Skyline Operator”. In
Proc. of the 17th International Conference on Data Engineering,
(ICDE01), Heidelberg, Germany, pp. 421–430, 2001.

[4] G. Bordogna, G. Pasi, “Linguistic aggregation operators of selection
criteria in fuzzy information retrieval” In Int. Jour. of Intelligent
Systems, vol. 10(2), pp.233–248, 1995.

[5] P. Bosc, O. Pivert, “Some approaches for relational databases flexible
querying”. In Jour. of Intelligent Information Systems, 1, pp. 323–354.

[6] P. Bosc, O. Pivert, “SQLf query functionality on top of a regular
relational DBMS”. In Knowledge Management in Fuzzy Databases, O.

Pons, M.A. Vila, and J. Kacprzyk (Eds.) Heidelberg: Physica-Verlag,
2000.

[7] P. Bosc, O. Pivert, “SQLf: a relational database language for fuzzy
querying”. In IEEE Transactions on Fuzzy Systems, vol. (3) pp.1–17,
1995.

[8] N. Bruno, L. Gravano and A. Marian, “Evaluating Top-k Queries over
Web-Accessible Databases”. In Proc. of the 18th International
Conference on Data Engineering (ICDE02), San Jose, California, USA,
pp. 369–382, 2002.

[9] S. Chaudhuri, L. Gravano, “Evaluating top-k selection queries”. In Proc.
of the 25th International Conference on Very Large Databases,
(VLDB), Edinburgh, Scotland, pp. 397–410, 1999.

[10] J. Chomicki, “Querying with Intrinsic Preferences”. In Proc. of the 8th
International Conference on Extending Database Technology,
(EDBT02), Prague, Czech Republic, pp. 34–51, 2002.

[11] J. Chomicki, “Preference Formulas in Relational Queries”. In ACM
Transactions on Database Systems, (TODS’03), 28(4):1–39, 2003.

[12] P. Ciaccia and R. Torlone, “Finding the Best when it’s a Matter of
Preference”. Technical report available at: http://www/dia.uniroma3.it/
torlone/pubs/pub.htm, 2002.

[13] D. Dubois and H. Prade, “Using fuzzy sets in database systems: Why
and how?”. In Proc. of the 1996 Workshop on Flexible Query-
Answering Systems, (FQAS’96), Roskilde, Denmark, pp. 89–103, 1996.

[14] D. Dubois, H. Fargier and H. Prade, “Beyond min aggregation in multi-
criteria decision: (ordered) weighted Min, Discrimin, Leximin”. In The
Ordered Weighted Averaging Operators - Theory and Applications. R.R.
Yager, J. Kacprzyk (Eds.), Kluwer Academic Publ., Boston, pp. 181–
192, 1997.

[15] D. Dubois, “Pareto-Optimality and Qualitative Aggregation Structures”
22nd LINZ Seminar on Fuzzy Set Theory, Austria, pages 53–56, 2001.

[16] D. Dubois and H. Prade, “Bipolarity in flexible querying”. In Proc. of
the 5th International Conference on Flexible Query Answering Systems,
(FQAS’02), Copenhagen, Denmark, 2002.

[17] P.C. Fishburn, “Preference Structures and Their Numerical
representations”. Theoretical Computer Science, 217(2): pp 359–383,
1999.

[18] J. Fodor, M. Roubens, “Fuzzy Preference Modelling and Multi-criteria
Decision suppot”. Kluwer Academic Publisher, 1994.

[19] W. Kießling, “Foundations of Preferences in Database Systems”. In
Proc. of the 28th International Conference on Very Large Data bases,
(VLDB), Hong Kong, China, pp. 331–322, 2002.

[20] W. Kießling and G. Köstler, “Preference SQL - Design, Implementation,
Experiences”. In Proc. of the 28th International Conference on Very
Large Data bases, (VLDB), Hong Kong, China, pp. 990–1001, 2002.

[21] M. Lacroix, P. Lavency, “Preferences: Putting More Knowledge into
Queries”. In Proc. of 13 th International Conference on Very Large
Data Bases, (VLDB), Brighton, England, pp. 217–225, 1987.

[22] C. Li1, M.S. Soliman, C.K. Chang, I.F. Ilyas, “RankSQL: Supporting
Ranking Queries in Relational Database Management Systems”. In Proc.
of the 31th International Conference on Very Large Databases,
(VLDB), Trondheim, Norway, pp. 1342–1345, 2005.

[23] M. Öztrk, A. Tsoukia`s, P. Vincke, “Preference Modelling”. In M.
Ehrgott, S. Greco, J. Figueira (eds.), State of the Art in Multiple Criteria
Decision Analysis, Springer-Verlag, Berlin, 27–72, 2005.

[24] L. A. Zadeh, “Fuzzy sets”. In Jour. of Information and Control, vol.8,
pp. 338–353, 1965.

[25] S. Zadrozny, J. Kacprzyk, “Bipolar Queries and Queries with
Preferences”. (Invited Paper). In Proc. of the 17th International
Conference on Database and Expert Systems Applications, (DEXA’06),
Krakow, Poland, pp. 415–419, 2006.

