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Abstract—Over the years, there is a growing trend towards 

quality-based specifications in highway construction. In many 
Quality Control/Quality Assurance (QC/QA) specifications, the 
contractor is primarily responsible for quality control of the process, 
whereas the highway agency is responsible for testing the acceptance 
of the product. A cooperative investigation was conducted in Illinois 
over several years to develop a prototype End-Result Specification 
(ERS) for asphalt pavement construction. The final characteristics of 
the product are stipulated in the ERS and the contractor is given 
considerable freedom in achieving those characteristics. The risk for 
the contractor or agency depends on how the acceptance limits and 
processes are specified. Stochastic simulation models are very useful 
in estimating and analyzing payment risk in ERS systems and these 
form an integral part of the Illinois’s prototype ERS system. This 
paper describes the development of an innovative methodology to 
estimate the variability components in in-situ density, air voids and 
asphalt content data from ERS projects. The information gained from 
this would be crucial in simulating these ERS projects for estimation 
and analysis of payment risks associated with asphalt pavement 
construction. However, these methods require at least two parties to 
conduct tests on all the split samples obtained according to the 
sampling scheme prescribed in present ERS implemented in Illinois. 
 

Keywords—Asphalt Pavement, Risk Analysis, Stochastic 
Simulation, QC/QA.  

I. INTRODUCTION 
UALITY control (QC) is a procedure or set of procedures 
intended to ensure that a manufactured product adheres 

to a defined set of quality criteria or meets the requirements of 
the client or customer, whereas quality assurance (QA) is 
intended to ensure that that a product under development 
(before work is complete, as opposed to afterwards) meets 
specified requirements [1]. QA specifications are an important 
component of an organization’s commitment to overall quality 
management, and consist of several activities, including: 
process control, acceptance, and sometimes, independent 
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assurance of a product [2].   
To promote the construction of better-quality asphalt 

pavements, over the years, a number of state highway 
agencies have moved from using traditional method 
specifications to using statistically based QC/QA 
specifications [3]. In many QC/QA specifications, the 
contractor is primarily responsible for quality control of the 
process, whereas the highway agency is responsible for testing 
the acceptance of the product. These specifications are 
typically statistics based, in which methods such as stratified 
random sampling and lot-by-lot testing are used, allowing 
contractors to ensure that their operations are producing an 
acceptable product [4]. There is considerable literature 
discussing the various steps involved in developing a new QA 
specification for asphalt pavements [5]-[10]. 

Specifications for the construction of asphalt pavements can 
generally be classified into method-related specifications 
(MRS), end-result specifications (ERS), performance-related 
specifications (PRS), or combinations thereof. Method 
specifications give a set of procedures, that if followed by the 
contractor, will result in full payment for the constructed 
facility. This places a great deal of responsibility and testing 
burden on the agency rather than the contractor. End-result 
and performance-related specifications, as their names imply, 
require a contractor to achieve specified as-produced or as-
constructed quality levels, which are ideally linked to the 
attainment of good future performance. These types of 
specifications shift most or all of the responsibility for 
producing a high quality product to the contractor, and should 
ideally offer the contractor complete freedom in the methods 
used to arrive at these quality levels [2]. 

Reduced construction and material variability is one 
measure of improved “quality” of construction. Although 
decreased variability may be desirable, there is considerable 
debate and confusion about the cost-effectiveness of the 
QC/QA programs [11].  

A common provision in quality control/quality assurance 
(QC/QA) construction contracts is the adjustment of the pay 
that a contractor receives on the basis of the quality of the 
construction. It is important to both the contractor and the 
contracting agency to examine the amount of pay that the 
contractor can expect to receive for a given level of 
construction quality [12]. It has been shown that computer 
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simulations can provide a better, more detailed examination of 
the pay schedule than is possible by simply determining the 
expected pay. In particular, the simulation process can provide 
an indication of the variability of pay at various quality levels 
and can identify the factors most responsible for pay 
adjustments [12]. Using such simulation models, it is possible 
to analyze both pass/fail and pay adjustment acceptance 
procedures, construct operating characteristic curves, plot 
control charts, experiment with computer simulation, perform 
statistical comparisons of data sets, demonstrate the 
unreliability of decisions based on a single test result, and 
explore the effectiveness of stratified random sampling [13]-
[14]. 

A cooperative investigation was conducted in Illinois over 
several years to develop a prototype ERS for asphalt 
pavement construction. The work was conducted under the 
Illinois Cooperative Highway Research Program (ICHRP), 
Project R23, and includes researchers from the University of 
Illinois at Urbana–Champaign and the Illinois Department of 
Transportation (IDOT), along with task force representatives 
from FHWA and the Illinois Asphalt Paving Association [15]. 
Early in the planning stages, the task force assigned top 
priority to understanding and balancing the risks between the 
contractor and the agency as part of the specification 
development process. Recently, a new computer simulation 
program, called ILLISIM, was developed which would enable 
detailed assessment of agency and contractor risks and assist 
in selecting sampling and measurement methods, specification 
limits, retest provisions, pay scales, and pay caps in such a 
manner that the trade-offs between number of samples and 
payment risks, and hence disputes, will be balanced [16]. 

Stochastic simulation models are very useful in estimating 
and analyzing payment risk in ERS systems. One of the key 
requirements for the simulation is generation of synthetic 
QC/QA data which would be representative of actual ERS 
projects. Air voids and asphalt content data have been shown 
to have normal probability distribution. In-situ Hot-Mix 
Asphalt (HMA) density data, if collected in a completely 
randomized fashion would also follow a normal distribution 
[17]. However, if the data is collected at certain fixed offsets, 
the data in entirety may not show normal probability 
distribution. Analysis of ERS data from Illinois pavements 
shows that there is some kind of a trend present in the density 
data and it seems probable that it is composed of a 
combination of normally distributed sub datasets combined in 
some specific fashion.  

The normal distribution (a bell-shaped curve) represents a 
theoretical frequency distribution of measurements. Any 
normally distributed data can be characterized by its mean and 
standard deviation. But it is also possible that the standard 
deviation or variability is a combination of more than one 
variability. For example, analysis of ERS data from Illinois 
HMA pavements indicates that air voids data would most 
likely have production variability as well as measurement 
variability components determining its characteristics. In 
addition, the manner in which different variabilities combine 

may also vary from one quality characteristic to other. This 
paper presents innnovative methodologies which can be 
implemented to identify and estimate different variabilities 
present in ERS project data.  

II. VARIABILITIES IN IN-SITU HMA DENSITY MEASUREMENTS 
Analysis of ERS project in-situ HMA density measurement 

data indicates that it might have a longitudinal as well as a 
transverse variability component. During hot mix asphalt 
pavement construction, after placement of the hot mix, a roller 
is run over it in several passes in a predefined pattern to 
compact the mix and obtain a rigid, stable and smooth surface. 
It is possible, however, that the mix may not be placed fully 
uniform along the length as well as in the transverse direction 
across the pavement. In addition to that, since only a portion 
of the pavement width is rolled in one pass, it is possible that 
there is some variation in compacting effort across the width. 
These phenomena would result in longitudinal as well as 
transverse variability in the pavement. Therefore, in summary, 
in-situ density data can be expected to have following 
variability components: 

 
1. Longitudinal construction variability 
2. Transverse variability and 
3. Measurement device variability (for each party 

doing the measurements) 

 
For testing, five positions are marked across the pavement 

as shown in Fig. 2 at 2-, 4-, 6-, 8- and 10-ft offset from the 
edge of the pavement. Two samples are cored from each 
position. These cores can be considered as split samples 
because there would be minimal variation in density within 
one foot of longitudinal distance. One core from each pair is 
tested by the contractor for QC/QA purposes. The second core 
may be tested by the district or the agency. The state of 
Illinois requires that the district conduct test on at least 20% of 
the split cores for quality assurance purposes. 

 
 

 249 250 0 249
Sublot # Offset Contractor District Third Party Pay

2 93 93.1 93
4 95.2 95.4 95.2
6 95.8 95.7 95.8
8 95.1 95.8 95.1

10 93.8 94.1 93.8
2 92.5 92.6 92.5
4 94.5 94.5 94.5
6 95.2 95.2 95.2
8 94.8 94.6 94.8

10 93.9 93.6 93.9
2 91.9 90.9 91.9
4 93 92.8 93
6 92.8 92.5 92.8
8 90.8 89.9 90.8

10 89.6 88.6 89.6
2 93 92.9 93
4 94.4 94.6 94.4
6 94.6 93.9 94.6
8 94.5 94.9 94.5

10 92.4 92.1 92.4

Field Data (Core Density)

1

2

3

N :  

4

 
Fig. 1 Sample in-situ density data sheet from ERS project in Illinois 
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Fig. 1 shows that all the split samples were tested by the 
district. This is a special case. In the year 2000 and 2002, ERS 
was still in initial development phase in Illinois and 100% QA 
tests were performed to obtain sufficient data for assessing the 
effectiveness of the newly developed specification. Also, there 
are only four sublots shown in the figure since this is just a 
sample of the data sheet. Actual project may have 20 to 50 or 
more sublots. Later sections describe the reasons for selecting 
this example for this study.  

The sampling scheme shown in Fig. 2 allows for 
determination of in-situ density along the entire stretch of the 
pavement and across the mat. Pictorially, in-situ HMA density 
could be represented as shown in Fig. 3. The elevation of the 
surface is proportional to the density. The density values are 
actually known only at test locations. Elevations at other 
places have been interpolated for the purpose of 
representation only.  

Variances in each density data set, say contractor’s data, 
would be a combination of the three variabilities (longitudinal, 
transverse, and measurement device) as mentioned previously. 
Variances for normally distributed data could be summed up 
as shown in Eq. 1.  

 
2

,
2

,
22

contcombcontmeaslongtrans σσσσ =++
          (1)                                                                                            

Where, 

 
2
transσ  = variance due to transverse variability 

 
2
longσ

= variance due to longitudinal variability 

 
2

,contmeasσ
 = variance due to measurement variability in  

       contractor data 

 
2

,contcombσ
 = total variance of contractor density data 

 
Can these variance components be separated using the 

information available from an ERS project density data sheet 
(see Fig. 1)? Traditionally, if the user wishes to analyze a 
database of historical measurements for which individual 
sources of variability cannot be separated, a single standard 
deviation is used to encompass the combined variability of the 
process. To the best of the authors’ knowledge, there is no 
standard method or published work available for separating 
the variability components. This will be the main focus of this 
paper. 

Conceptually, first the transverse variability can be 
suppressed by processing the contractor density data as 
outlined in the following steps: 

 
Determine average density in each sublot: 
 

5

5

1
,,

,,

∑
== j

jicont

isublotcont

d
μ

 (2) 
Where,  
  i = 1, 2, 3… n 
  n = number of sublots 
  j = 1, 2, 3, 4, 5 (five densities across the mat) 
 dcont,,i,,j = in-situ contractor density measurement  
 
Define new density at each location as the average density 

for that sublot: 

isublotcontjiavgcontd ,,,,, μ=
 (3) 

 
Determine variance of the averaged density data: 
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Fig. 4 pictorially presents this case where the transverse 

variability in in-situ HMA density has been eliminated. 
However, since the densities across the mat are still average of 
the original five densities, one fifth component of the 
transverse variance would still be present. Variance due to 
longitudinal variability however should be present as in the 
original data, because data along the pavement was not 
manipulated. In addition, measurement variability component 
is present in the data and would contribute to the total 
variance. Mathematically, this can be presented as shown in 
Eq. 5. The coefficients for the variance terms are being treated 
as unknowns and would need to be determined 

2 ft.

10 ft.

8 ft.

6 ft.
4 ft.

2 ft.

10 ft.

8 ft.

6 ft.
4 ft.

Fig. 2 Sampling scheme of cores for in-situ HMA density 
determination 

Fig. 3 Pictorial representation of in-situ asphalt pavement density 
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mathematically. 
 
( ) ( ) ( ) 2

,
2

,1
2

1
2

1 avgcontmeascontlongtrans cba σσσσ =++
  (5)                             

 
Where, 
 a1, b1, c1  are coefficients which need to be determined. 
 

On similar terms it may be possible to suppress the 
longitudinal variability. The following steps can be performed 
to achieve this: 

Take the original densities along and across the pavement. 
Determine the mean of all the contractor density data, say 
μcont, lot: 

 

5*
1

5

1
,,

, n

d
n

i j
jicont

lotcont

∑∑
= ==μ

 (6) 
 
Determine mean of the five densities for each sublot, say 

μsublot,i: 

5

5

1
,,

,,

∑
== j

jicont

isublotcont

d
μ

 (7) 

 
Shift each density measurement in a given sublot by the 

difference between average of total lot and average of that 
particular sublot i.e.: 

 
( )isublotcontlotcontjicontjishiftedcont dd ,,,,,,,, μμ −+=

 (8) 
 
Determine variance of the shifted data: 
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The data manipulation proposed above basically changes 

the density profile and brings each sublot density to the same 
level as any other. This would happen on a project where 
there is no longitudinal variability although transverse 
variability is present. Pictorially the density profile would look 
as shown in Fig. 5. Compared to the original density profile 
(Fig. 3), the transverse variation is the same in this case but 
the peaks and troughs look clearer and distinct. It would be 
expected that variance due to transverse variability would 
contribute fully to the variance for this profile. However, 
longitudinal variability has been completely suppressed. 
Therefore, coefficient for the longitudinal variability term in 
Eq. 10 should be zero. Contribution of measurement 
variability also should remain intact. However, these 
hypotheses would need to be verified mathematically. 
Therefore, a generic expression, as shown in Eq. 10 is 
recommended for further analyses. 

 
( ) ( ) ( ) 2

,
2

,2
2

2
2

2 shiftedcontmeascontlongtrans cba σσσσ =++  (10) 

 
Density data from ERS projects constructed in the year 

2000 and 2002 were used in this analysis. An important 
observation that was made is that in all the cases the variances 
from the shifted and averaged profile added up exactly to the 
total variance of the original profile as shown below: 

 
2

,
2

,
2

, combcontshiftedcontavgcont σσσ =+
  (11) 

 
The steps outlined above give a set of equations with 

certain unknown terms. These simultaneous equations need to 
be solved. The set of equations are presented again in Eqs. 12 
to 14. 

 

Fig. 4 Density profile after averaging the 5 core densities across the 
mat for each sublot 

Fig. 5 Density profile after shifting sublot densities to suppress 
longitudinal variability 
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( ) ( ) ( ) 2
,

2
,1

2
1

2
1 avgcontmeascontlongtrans cba σσσσ =++

  (12) 
 

( ) ( ) ( ) 2
,

2
,2

2
2

2
2 shiftedcontmeascontlongtrans cba σσσσ =++

  (13) 
 

2
,

2
,

2
, combcontshiftedcontavgcont σσσ =+

  (14) 
 
Therefore, there are three equations available with a total of 

nine unknowns. An explicit solution is mathematically 
impossible. However, if the magnitudes of the coefficients, 
namely a1, b1, c1 and a2, b2, c2 can be determined by an 
alternate method, then only three unknowns, the three 
variance components, need to be determined. Mathematically 
three unknowns with three equations may have a unique 
solution.  

Bootstrapping is a method that is used to make inferences 
about a population, from the data contained in a sample that 
was drawn from that population [18]. It is a method for 
estimating the sampling distribution of an estimator by 
resampling with replacement from the original sample. It is 
distinguished from the jackknife procedure, used to detect 
outliers, and cross-validation, used to make sure that results 
are repeatable [19].  

Several hypothetical, "bootstrapped" samples are created by 
randomly selecting values from the original sample. The 
advantage of this method is that as long as the sample size is 
over 30 or so, the transverse variability, longitudinal 
variability and measurement variability would remain very 
similar to those of the entire population. Also, the 
bootstrapping method can be applied on a synthetically 
generated population. The data can be generated with fixed 
values for each variability component. Then the variance 
terms in these equations become known. Using three 
bootstrapped samples for each equation, the three unknown 
coefficients can be determined. However because of the finite 
size of the samples, there would be slight variation in the 
magnitude of variance components and hence coefficients. In 
fact, it is because of this slight variation that the solution is 
actually possible. Otherwise, the set of equations would be 
singular and no solution can be derived. 

Since it is expected that there would be some variation in 
the magnitude of the determined coefficients, a one-time 
determination of the values may not yield the right results. 
Therefore, bootstrapping method is applied and solution is 
generated multiple times. In this case, 150 solutions were 
generated. A small number of run results are presented in 
Table 1 as an example. The average of the 150 solutions 
generated could be taken as the magnitude of the coefficients 
in the equations being solved. The final coefficient values 
have been presented in the following set of equations. 
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,

22
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5
1

avgcontmeascontlongtrans σσσσ =++
 (15) 

 

( ) ( ) ( ) 2
,

2
,

22

5
40

5
4

shiftedcontmeascontlongtrans σσσσ =++
 (16) 

 
 

 
Eqs. 15 and 16 have three unknowns and still cannot be 

solved. Fortunately, the data being used for this analysis has 
another set of measurements recorded by the agency (which is 
Illinois DOT in this case). The longitudinal and transverse 
variability components in the agency’s data would be exactly 
the same as those in the contractor data because the tests were 
performed on split samples by the contractor and the agency. 
However, the variance component because of measurement 
variability would be different for the two parties. Therefore, 
Eqs. 17 and 18 would hold good for the agency data.  

 

( ) ( ) ( ) 2
,

2
,

22
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avgagencymeasagencylongtrans σσσσ =++
  (17) 

( ) ( ) ( ) 2
,

2
,

22

5
40

5
4

shiftedagencymeasagencylongtrans σσσσ =++
 (18) 

  
   Eqs. 15 to 18 form a set of simultaneous equations. 

There are four equations and four unknowns. Therefore, a 
unique solution may be possible for each dataset. In matrix 
form, this set of equations can be presented as follows. 
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0.8    0    0     0.8 
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 (19) 
 
 An attempt to solve the above set of equations using 

matrix method revealed that the coefficient matrix is singular! 

TABLE I 
COEFFICIENTS FOR VARIANCE TERMS DETERMINED COMPUTATIONALLY 

 

2
,contshiftedσ  

 

2
,contavgσ  

 

Run 
no. 

2
tranσ

 

2
longσ

 

2
tranσ

  

 
2
longσ

 

2
tranσ

  

 
2
longσ

 
1 0.79 0.00 0.79 0.17 1.03 0.20 
2 0.79 0.01 0.77 0.20 0.99 0.21 
3 0.79 0.01 0.79 0.19 1.00 0.19 
4 0.80 0.01 0.78 0.20 1.01 0.18 
5 0.79 0.00 0.77 0.21 0.98 0.18 
6 0.79 0.00 0.81 0.20 0.98 0.19 
7 0.76 0.17 0.64 0.19 1.01 0.19 
8 0.80 -0.01 0.80 0.20 0.97 0.21 
9 0.80 0.00 0.78 0.21 0.98 0.24 
10 0.79 0.01 0.79 0.20 0.97 0.19 
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This means that this set of equations still does not have a 
closed-form solution. The singularity comes because of the 
relationship shown in Eq. 20. Because of this relationship, the 
equations are not independent.  

 
2

,
2

,
2

, combcontshiftedcontavgcont σσσ =+
  (20) 

 
A deeper understanding of the characteristics of such data 

set may have clues to solve this problem. The in-situ HMA 
density, air voids (AV) and asphalt content (AC) data can be 
mathematically modeled as shown in Eqs. 21 and 22. 

 
( ) meascontprodcontACAVd ,// σσμ ++=

  (21) 
 

( ) measagencyprodagencyACAVd ,// σσμ ++=
 (22)           

 
Where  

(d/AV/AC) represents Normal distribution of AV and 
 AC content data 

prodσ
 represents production variability 

 
Therefore, the difference of paired measurements can be 

modeled as shown in Eq. 23. It is interesting to note that the 
difference in paired measurements is because of measurement 
variability only. All other terms in the model get cancelled 
because the paired measurements are performed on split 
samples which are almost identical in quality.   

 
( ) ( ) measagencymeascontagencycont ACAVdACAVd ,,//// σσ −=−   (23) 

 
Measurement variability is due to error in measurement 

arising from the influence of equipment, personnel, lab, 
environment etc. on the measurement. Error can be either in 
the form of bias or random error. Bias refers to consistently 
measuring either lower or higher than the actual value. When 
comparing measurements, it is easy to determine if at least one 
of the parties have bias. Bias has been dealt with in great 
detail by Aurilio et al. [20]. For the sake of simplicity, it is 
assumed that bias is not present in the proposed model. Then 
the measurement variability is because of random error alone. 
The nature of random instrument or human error is that it is 
centered around a mean and is generally normally distributed. 
It is also a special characteristic of normal populations that the 
difference between two normally distributed populations is 
itself another normal population with a mean (equal to zero) 
and standard deviation as shown in Eq. 24. This property can 
be used to characterize the paired difference values here. Eq. 
25, therefore, gives another equation but without introducing 
any unknowns.  

( )diffmeasagencymeascont N σμσσ ,,, =−
  (24) 
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 The set of available equations now are as shown below: 
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  (29) 

 
These set of four equations can be put in the matrix form as 

shown below. The coefficient matrix is no more singular.  
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 (30) 
 
Therefore, a unique solution can be derived for each 

dataset. Hence, the following components contributing to total 
variance can be estimated: 

1. Transverse variability 
2. Longitudinal variability 
3. Measurement variability in contractor data 
4. Measurement variability in agency data 

 
Using the proposed method, all the four variability 

components were determined for datasets from ERS projects 
constructed in the year 2000. The results have been presented 
in Table 2.  

TABLE II 
ESTIMATED VARIABILITY COMPONENTS FOR ERS PROJECTS (YEAR 2000) 

Project tranσ
 

longσ
 

contmeas,σ
 

distmeas ,σ
 

D2 Binder-IL 38 E 
Dixon 0.68 0.79 0.33 0.64 

D2 Surface-IL 38 E 
Dixon 0.98 0.91 0.43 0.76 

D3 Binder- I 55 
Shirley 0.58 0.79 0.51 0.42 

D3 Surface- I 55 
Shirley 0.88 1.15 0.36 0.38 

D6 - IL 96 1.13 0.55 0.15 0.55 
D8 Surface - IL 140 1.05 1.10 0.52 0.36 
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III. VARIABILITIES IN AIR VOIDS AND ASPHALT CONTENT 
MEASUREMENTS 

Asphalt content and air voids data do not have the same 
sampling scheme as in-situ density data and therefore, the 
method for estimation of variability components also would 
have to be different. Production variability in this case would 
not have longitudinal and transverse components. The data 
can still be modeled as shown in Eq. 31. 

 
( ) ../ measprodACAV σσμ ++=

 (31) 
 
Where, 

  ( )ACAV /  represents air voids, or asphalt content data 
 μ  represents mean  

 .prodσ
 represents the production variability and 

 .measσ  represents the measurement variability 
 
It should be noted that the contractor’s, as well as the 

agency’s data, and third party data, would be expected to 
follow this model. Third party, as referred to here, is an 
independent agency employed by the agency for resolving 
disputes in test measurement results. Since all the parties test 
the same material using split samples, the mean and 
production variability is same for all of them. The difference 
observed in the test data between the contractor and the 
agency, for example, can be attributed to the measurement 
variability. Therefore, the model when applied to the 
contractor data would be: 

 

( ) meascontprodcontACAV ,./ σσμ ++=
 (32) 

 
And when applied to the agency, it would be: 
 

( ) measagencyprodagencyACAV ,./ σσμ ++=
  (33) 

 
Since each measurement is performed on the spilt samples 

of the same material, the two values modeled above would 
form paired data. Subtracting the second from the first would 
eliminate the mean and production variability terms.  

 
( ) ( ) measagnecymeascontagencycont ACAVACAV ,,// σσ −=−   (34) 

 
Both the terms on the right side of the equation come from 

a normal population. Therefore, their difference also would be 
normally distributed. Therefore,  

( )diffmeasagencymeascont N σμσσ ,,, =−
  (35) 

 
 

Where 
( )diffN σμ,

 represents a normally distributed 

population with μ  as mean and diffσ
 as combined standard 

deviation where: 
  

2
,

2
,

0

measagencymeascontdiff σσσ

μ

+=

=

  (36) 
 
Further it can be assumed that the measurement variability 

for one type of test, like core density or asphalt content, would 
be fairly similar.  Then, field data could be pooled in order to 
obtain a typical value for measurement variability, thus 
assuming:  

measmeasagencymeascont σσσ == ,,   (37) 
Therefore: 

2
diff

meas

σ
σ =

 (38) 

IV. CONCLUSIONS 
To promote the construction of better-quality asphalt 

pavements, over the years, a number of state highway 
agencies have moved from using traditional method 
specifications to using statistically based QC/QA 
specifications. Reduced construction and material variability 
is one measure of improved quality of asphalt pavement 
construction. Over the years, researchers and highway 
agencies in Illinois have attempted to develop a prototype 
End-Result Specification (ERS) system for asphalt pavement 
construction. Stochastic simulation models are very useful in 
estimating and analyzing payment risk in ERS systems. One 
of the key requirements for the simulation is generation of 
synthetic QC/QA data which would be representative of actual 
ERS projects. 

A new method has been developed to estimate the 
variability components in in-situ density, air voids and asphalt 
content data from ERS projects. The information gained from 
this would be crucial in simulating these ERS projects for 
estimation and analysis of payment risks associated with 
pavement construction. However, these methods require at 
least two parties to conduct tests on all the split samples 
obtained according to the sampling scheme prescribed in 
present end-result specifications implemented in Illinois. 
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