International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

Towards a Secure Storage in Cloud Computing

Mohamed Elkholy, Ahmed Elfatatry

Abstract—Cloud computing has emerged as a flexible computing
paradigm that reshaped the Information Technology map. However,
cloud computing brought about a number of security challenges as a
result of the physical distribution of computational resources and the
limited control that users have over the physical storage. This
situation raises many security challenges for data integrity and
confidentiality as well as authentication and access control. This
work proposes a security mechanism for data integrity that allows a
data owner to be aware of any modification that takes place to his
data. The data integrity mechanism is integrated with an extended
Kerberos authentication that ensures authorized access control. The
proposed mechanism protects data confidentiality even if data are
stored on an untrusted storage. The proposed mechanism has been
evaluated against different types of attacks and proved its efficiency
to protect cloud data storage from different malicious attacks.

Keywords—Access control, data integrity, data confidentiality,
Kerberos authentication, cloud security.

I. INTRODUCTION

LOUD Computing is a promising computing model that

provides better utilization of computing resources [1].
Cloud Computing enables on-demand network access to a
shared pool of computing resources [2]. Computing recourses
can be invoked and delivered as services by any client who
has Internet access.

Cloud computing allows users to scale up and down their
resources utilization in a pay-as-you-use fashion [3]. The
flexibility offered attracted many users to migrate their
businesses to the cloud. However, resource sharing leads to
significant security concerns for users when their data is
physically separated from them. Traditional access control
architectures usually assume that the data owner and the
servers storing the data are in the same trusted domain [4].
However, this assumption is not valid in cloud computing
since the data owner and cloud servers are in two different
trust domains [5].

In this work, we propose a mechanism to ensure data
integrity on clouds. Applying the proposed mechanism allows
a data owner to be aware of any modification done to his data.
The proposed work also introduces an extension to the
Kerberos authentication protocol to be suitable to the cloud
environment. The Kerberos extension considers the situation
in which the data storage provider is not trusted by the data
owner. The data integrity mechanism is then integrated with
the extended Kerberos to achieve a robust access control
method. The proposed mechanism ensures data confidentiality
and can be added to contracts between storage providers and
data owners. The client data is divided into small segments

Mohamed Elkholy is with the Alexandria University, Egypt (e-mail:
eng_mikholy@yahoo.com).

that are passed to a hash function to create a hash table. This
hash table is further used to check the data modification, and
to be added to the access control mechanism.

Cloud providers use virtualization technologies to increase
resources utilization. Virtualization leads to hosting several
types of virtual machines on the same physical storage [6].
Several data owners do not depend on the cloud to store their
data due to security concerns [7]. The process of outsourcing
data to an untrusted storage that uses virtualization brings
about a number of challenges. A provider may be a source of
attack. Another client that shares the same physical storage on
another virtual machine may be another source of attack [8].
Moreover, the data owner does not have the authority to
protect the server against any malicious attack [9]. These
challenges should be addressed to help many clients to store
their data on the cloud. In this work, we propose a robust
security mechanism at the virtualization level allowing
different data owners to trust cloud storage services.

The remaining of the paper is organized as follows: Section
II presents a literature review of cloud data integrity problems
and solutions. Section III discusses the problem definition and
solution requirements. Section IV proposes the security issues
related to data storage on the cloud. Section V introduces the
data integrity mechanism. Section VI presents the proposed
access control method. An evaluation of the proposed work is
presented in Section VII. Finally, Section VIII presents the
conclusion.

II. RELATED WORK

Reference [10] introduces a solution to facilitate secure
interactions between two parties that do not trust each other.
The solution depends on a trusted third party (TTP) which is
an entity trusted by the two communicating parties. The third
party is responsible for authentication and access control.
However, using such approach results in an increase in the
service cost and requires many messages to be delivered and
processed by the trusted party. Moreover, data owners may
need to frequently access their data. In each access process, a
communication overhead is expected.

A browser-based Kerberos protocol was introduced in [11].
This protocol provides access control to different web
browsers. The protocol guarantees that private keys and
sessions keys are confidential for authorized clients. The work
introduces three participants: a browser, a server and an
authentication server. The browser is responsible for
authentication process on behalf of the client. The browser
authenticates itself to the Kerberos authentication server by
TLS hand checking. The web browser choses a random
number and sends it to Kerberos server encrypted with his
public key. A symmetric key is then derived from this key and

761

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

sent back to the browser to start communication. This
approach is suitable for message transfer. However, it is not
suitable to access data from a public storage. It cannot provide
data integrity as there is no key driven from the stored data.
Also, the mechanism relies on TLS and cannot work as
separate mechanism.

Shucheng et al. [12] used a combined cryptographic
technique to achieve secure and fine-grained access control on
data stored in the cloud. They used three cryptographic
techniques: KP-ABE, PRE and lazy re-encryption. Their work
associates each data file with a set of attributes, then each user
is given access structure defined by these attributes. Their
work provides a secure access control. However, employing
three cryptographic techniques increases the complexity of the
security mechanism. For large data storage and frequent
demands of data access, such solution becomes unpractical.

Boyang et al. [13] introduced a public auditing mechanism
to ensure data integrity. Their work deals with data stored in
cloud storage where a group of users have the authority to
modify it. To achieve data integrity every user is responsible
for sinning the modified block of data before logging out.
They introduced a mechanism that relies on a trusted third
party to sign data blocks on behalf of users. Such mechanism
cannot provide access control to protect the cloud data from
unauthorized attacks. Moreover, asymmetric encryption of
stored data blocks consumes a lot of time and computational
resources. Another limitation of the mechanism is that it
cannot provide fine grained access control. All users can
access all data blocks without any classification.

Reference [14] introduces the PasS approach (Privacy as a
Service) that relies on cryptographic coprocessors to provide
security at the physical layer. A cryptographic coprocessor is a
hardware card that interfaces with a main computer or server.
It is used with different physical storages that apply
virtualization. Each coprocessor has a tamper-responding
mechanism which resets the internal state of the coprocessor
upon detecting any unauthorized activity on the physical
storage. A third-party loads the cryptographic data structures
on the crypto coprocessor. PasS provides the data owner with
trusted access control as well as data integrity control
mechanism. Moreover, the approach provides the client with a
privacy feedback process which informs the client with any
potential risk to his data. However, the approach uses extra
hardware that raises its cost, and needs more interface
maintenance. It also relies on a third party who is responsible
for reconfiguring the coprocessor.

Most of the work reported in the literature relies on the role
of a third party that is trusted by both the cloud provider and
the data owner [13]. Every time a client needs to access data,
his request has to pass through a third party. Such situation
increases the network traffic and delay the data access process.
Moreover, each of the reported works focuses only on one
type of security aspects. Hence, to achieve access control and
data integrity, two different mechanisms should be used. Such
situation increases the complexity and the delay time to access
the cloud data. Also, most of the reported techniques do not

deal with dynamic data storage in which users frequently
access and update their data.

I11. PROBLEM DEFINITION AND RESEARCH QUESTIONS

This section specifies the research problems and the
requirements that a successful solution has to satisfy.

A. Problem Definition

The first problem is the inability of current techniques to
ensure data integrity and data confidentiality in shared large
data storages. Cloud services are almost provided by
commercial providers that are likely out of the trust domain of
the cloud clients [4]. Hence, storage providers do not have the
ability to provide the data owner with the mechanism that
proves that his data has not been changed [9]. Moreover, the
data owner is usually not aware of any malicious attempts to
modify his data [10].

The second problem is that the cloud data storage provider
cannot provide the data owner with a fine-grained access
control [15]. The data owner is not capable of providing
different types of access roles to different his clients. The
traditional data encryption mechanisms allow any client that
knows the encryption key to access all data. While in many
cases the data owner needs to specify different roles for
dealing with his data stored on the cloud.

B. Research Questions

In order to solve the problems defined in Section III. A, we
need to address the following questions.

1. How to ensure data integrity in cloud data storages
without downloading the data to the client side?

2. How to extend Kerberos authentication protocol to fit
cloud environment in which the data servers are not
trusted by the data owner?

3. How to build an access control mechanism that shares
security aspects between the data owner and the cloud
provider?

4. What is the general definition of trust? What does it mean
that entity A trusts entity B?

C. Solution Requirements

A successful solution has to satisfy the following
requirements.

» RQI1: There is a need for a trusted method that allows the
cloud data owners to check their data integrity. This
method should not be under the control of the data storage
provider, since the cloud provider may be not trusted by
data owner.

» RQ2: There is a need to automatically inform the data
owner when his data has changed. The owner should have
the capability to distinguish between authorized and
unauthorized modification of his data.

» RQ3: There is a need for an access control mechanism
that satisfies the security requirements of both the storage
provider and the data owner.

» RQ4: There is a need to ensure data confidentiality
without encrypting all the client data.

762

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

IV. SECURITY ISSUES AND SYSTEM MODEL

The proposed work focuses on the security of public cloud.
Public cloud offers services in an open environment on the
Internet and any user can utilize it according to the service
provider rules [4]. This work is concerned with Infrastructure
as a Service (IaaS). IaaS refers to on-demand infrastructural
resources, usually in terms of virtual machines [16]. The
infrastructural resources vary from processor to memory to
data storage [17]. Amazon EC2 is an example of laaS
providers. This section discusses security issues in cloud data
storages

A. Security Issues in Cloud Data Storage

Cloud data storages are very large physical storages that
offer shared data storage service for cloud clients [13]. Cloud
storage providers use virtualization to achieve better
utilization of their physical storage [18]. Hence, data owners
deal with their data according to the logical address of their
data blocks rather than their real physical addresses [19]. Fig.
1 shows the virtualization layers of cloud data storages. The
shared pool of data storage raises many security issues. There
is a possibility that the attack could be initiated by: the cloud
provider, malicious nodes, and clients trusted by data owner.
A trusted client could have the right to access the data but
behaves in an unexpected way [20]. The data owner cannot
use traditional data verification methods to ensure data
integrity. It is not practical for data owners to download their
data to verify its correctness and then upload it again [21].
Moreover, virtualization allows storage providers to use the
same physical addresses to store different clients' data. Thus
data can be attacked at the physical level as well as the
virtualization level [22].

User interface

Virtualization layer

Storage management layer

Storage media and network resources

Fig. 1 Four layers of virtualization in cloud storage

B. Design Goals

The main design goal of the proposed system is to provide
the cloud data owners with a mechanism that ensures their
data integrity and confidentiality. The data owner should be
aware of any modification to his data, and should be aware
that this modification was done by an authorized user [23].
The second goal is to provide the data owners with fine
grained access control. Hence, data owners are supported to
enforce an access mechanism to different users according to
their role. The data owner should also be supplied with the
ability to grant or revoke access rights to his trusted clients
[24]. In addition, the proposed mechanism should support

dynamic environments in which clients frequently modify the
stored data.

C. System Model

The proposed work assumes that the security system is
composed of the following parties:

1. A cloud storage provider who owns a large physical data
storage and offers his services to different users.

2. A data owner who stores his own data on the cloud

3. A number of clients trusted by the data owner.

Neither the data owner nor the trusted clients are always on
line. They frequently come on line to access their data. The
cloud provider is always on line. When a client needs to
access the cloud data, he should be registered with the data
owner and sends his credentials to the owner before getting
the access grant. The data owner is responsible of granting
access control to different users and is also responsible for
offering specific role to each group of users. For instance, a
group of users have the right to access definite blocks of data
with certain role. We also assume that the data owner and the
cloud provider do not trust each other. In addition, the storage
provider changes the physical address of the stored data to
achieve better resource utilization.

V. PROPOSED DATA INTEGRITY MECHANISM

The proposed work aims to eliminate the role of trusted
third parties in auditing the data stored on the cloud. We
assume that the data owner trusts different clients but he does
not trust the cloud provider. For the purpose of this research,
we define trust as follows. Entity "A" trusts Entity "B" if "A"
believes that "B" will behave exactly as expected, and if not,
the gain of "A" will be more than his losses. In order to reach
this trust between the data owner and the storage provider the
following mechanism is implemented. The proposed
mechanism starts after the client sends his data for the first
time to be stored at the cloud storage. Then the mechanism is
repeated after each time data owner logs off. The data is
passed to a hash function and a hash table is created and is
sent to the owner. This mechanism is performed through a
number of steps, described below.

Stepl: Data Storage Segmentation

The virtual space offered to the client is divided into blocks.
In this work, we put no restriction on dividing the owner's data
to blocks to enable flexibility when dealing with different
database structures. Then each block is divided into smaller
segments. There are two reasons behind data segmentation
before hashing. The first reason is decreasing the overheads of
using the hash function by hashing only small segments of
data. In very large data storage, the owner's data could be
stored on hundreds of Terabytes bytes. However, the size of
the modified data may be only few Kilo bytes. Hence, hashing
small modified segment decreases the overall time and
resources consumed in the hashing process. The second reason
is to allow the data owner to provide a structure access
control. For instance, a group of users can have the right to

763

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

access specific segments of data and do not have the right to
access other segments.

Step2 Creating Hash Table

Segments are passed to a hash function SHA-1 or MDS5 to
create a hash for the data in this segment. The output of this
hash function is stored in a hash table with the logical number
of the segment. After that, the hash table is encrypted by the
public key of the owner, and is sent to the owner. Encrypting
the hash table by the owner's private key prevents any
malicious node from storing a copy of the hash table. Hence,
the only one who can store a copy of a hash function is the
data owner. The hash table is further used in the access control
mechanism as will be shown in Section VI.

Step 3 Data Owner Check

The data owner now has a hash image of his data encrypted
by his public key. The owner will then decrypt the table by his
private key and store the table in his own storage. Next time
the owner needs to access his data; he will check the hash
table. The data owner compares the hash table stored on his
physical storage with the hash table stored on his cloud
storage. If the two tables are similar then, the owner is certain
that his data had not been changed. Fig. 2 demonstrates these
steps.

The hash table is then used to create the key that allows the
data owner to access his data the next time. Assume that a
malicious client has broken the access control to the user data
and modified some fields in it. In such case, the provider will
automatically send a new hash to the owner. The owner is now
aware that his data has been altered. The next time the owner
accesses his cloud storage, he will compare his hash table with
the cloud hash table. If they are not identical the owner will
know that his data has been modified. The action that the data
owner can take after that is controlled by the contract between
the data owner and the provider. The contract should enforce
the provider to restore the owner’s data. For the purpose of
judgment, the hash tables should be stored in static physical
addresses. Hence, hash tables should be safe from security
attacks related to virtualization technology.

VI. ACCESS CONTROL MECHANISM

The proposed access control mechanism combines the
provider private key with the data owner's private key and the
hash value of the stored data. Hence, the access control
responsibility depends on three values which are distributed
between two parties. The first value is the private key of the
data owner. The second value is the private key of the cloud
provider. The third value is the hash value which is
dynamically calculated after each access. The hash value is
known by both the provider and the data owner as mentioned
in Section V. The idea of using the hash value in access
control mechanism has two reasons. First it is a dynamic
value; hence it protects the system against playback attack.
The second, it proves that the owner is aware with the last
operation done to his data.

Step One

| |]
Virtual storaze
Step Tow %
(u)
Semment
Hash Takle
Step Three
1 Encrypt by owner public key
Hazh Takle LN Encrypted hash
Tahle
i Cloud Provide
4 Compare 7 Sand
3 Decrypt by owner private key W
Hash Table Encrypted hash
Table
Data Owner

Fig. 2 Three Steps of Ensuring Data Integrity

The access control scenario performs the following steps.

1. A client who is trusted by the data owner requests a ticket
from the data owner to allow him to access the data
storage. The client sends his ID and the requested key role
to the data owner. The authentication server at the data
owner's side checks the ID of the client from the stored
client database. If the client is trusted by the data owner a
ticket is sent to him.

2. The ticket which is sent by the data owner to the client

includes (client ID, role key, last hash value). The data in
the ticket is encrypted twice. First, it is encrypted by the
private key of the data owner and then by the public key

764

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

of the storage provider. Then the ticket is sent to the client
encrypted by a key driven from the client's password.

3. The client receives the ticket ensuring two security
requirements. The first no one can use the ticket but the
client as it is encrypted by a key driven from his
password. Hence, only the client can decrypt this key. The
second is that the client cannot alter the ticket as it is
encrypted by the public key of the cloud provider. The
client decrypts the ticket and sends the ticket to the cloud
provider.

4. The cloud provider receives the ticket ensuring another
two security requirements. First, no one but the cloud
provider can read the data in the ticket because it is
encrypted by his public key. This prevents any malicious
node from getting use of the ticket or storing the data
owner credentials. Second, the cloud provider will not be
able to alter the message as it is encrypted by the data
owner's private key. The provider uses his private key to
decrypt the ticket.

5. The cloud provider stores a copy of the ticket and then
decrypts it using the data owner's public key. Such
process ensures two security requirements. First, it
ensures that the sender is the data owner because it is
encrypted with the owner's private key. Second, it ensures
that the data owner is aware of the last modification as the
ticket includes the hash table of the last modification.

Messaging between the client and the data owner and the
provider can be modeled as follows.

1. C —>DO:(CID,R)

2. DO~ C: Kc'(Kp'(Kdo'(CID, HT, KR))

3. C —~2CP: Kp'(Kdo'(CID, HT, KR))

Where C is the client; DO is the data owner; CP is the cloud

provider; CID is the client identity; R is the role requested by

the client; Kcp' is the public key of the cloud provider; Kdo' is
the private key of the data owner; Kc' key driven from client
password; HT: hash table; KR: role key.

Fig. 3 presents the messaging between the client and the
data owner and the cloud provider.

VII. EVALUATION

The efficiency of the proposed work can be evaluated from
different perspectives. However, we evaluated the security
mechanism against three different possible attacks. The
scenarios of the three attacks are listed in the literature as
common attacks in cloud data storages [23]. We considered
the evaluation metrics as a value that represents whether the
malicious attacker can succeed to access the storage or not.
First a cloud data storage was created using Microsoft Azure.
Microsoft Azure was chosen to evaluate our work because it
offers flexible cloud services that can be monitored from both
the client side and the provider side.

Client Data Cloud
Owner

provider

(cID, R)

Kc'(Kep'(Kdo'(CID, HT, KR})
<~

[Kep'(Kdo'[CID, HT, KR))

Fig. 3 Access control Scenario

A data base was created using .Net cloud to store data. A
table was created with name “students” containing four fields.
The data was stored at Azure Blob storage which is able to
store any structure of data. The data was then passed to hash
function (SHA1). Azure certificates service was used to get a
private key for the data owner. An authentication key was
produced form the hash value of the stored data. The
authentication key was encrypted twice by the public key of
the provider and then by the private key of the data owner.
Then, the following scenarios were traced by using the
proposed security system. The same scenarios are also traced
using PasS approach (Privacy as a service) [14] which is
reported in the related work. Hence, it is possible to compare
between the robustness of the two security approaches.

A. First Scenario: Playback Attack

A malicious node sniffs the data owner's credentials and
stores it, and masquerades as if it is the data owner. The
malicious node sends the same credentials included in an old
message (client ID, hash value) encrypted by the owner's
private key and the provider's public key. The access to data
was denied. By tracing the provider side, the message was
decrypted by the public key of the data owner then decrypted
by private key of the provider. The plain text contained an old
copy of the hash table. Hence, the access is denied proving
that the proposed mechanism succeeded to protect the storage
from the playback attack.

The same scenario was applied to a cloud storage that is
protected using PasS. The malicious node sniffed the data
owner's message and then stored it. After a period of time the
malicious node sends the credentials to the storage provider.
Theoretically the provider will accept the authentication
process, hence the parameters of authentication message are
correct. Adding a time stamp would not be efficient because
the malicious message could be sent in the same time interval.
The proposed approach succeeded to protect the data against
replay attack but the PasS did not.

B. Second Scenario (Malicious Storage Provider)

The untrusted cloud storage is the subject of this attack. He
receives the ticket from the client and stores it. After the
authorized access of the client finishes, the data owner uses

765

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

this ticket to access the stored data and modify it. Using Azure
data access service, the owner tries to access the stored data.
The owner authentication includes a code that compares the
hash table stored at the client side and the hash table stored at
the owner side. If the two hash tables are not identical the code
returns a mismatch alert to owner informing him that his data
were altered. Hence, the proposed mechanism succeeded to
detect the second attack scenario.

PasS does not include a mechanism to ensure data integrity.
Therefore, it is not able to detect the modification of the stored
data.

C. Third Scenario

Trusted node attack takes place when a client trusted by the
owner performs an illegal action after a legal access to the data
storage. Then the data owner detects these illegal actions. The
owner claims that the storage provider has violated the
contract. Azure authentication service provides the facility to
store all tickets sent by clients. At this point, the provider has a
copy of the client's ticket that contains the client ID and is
encrypted by the private key of the data owner. This ticket
ensures that this is the legal client as it includes his client ID.
De-encrypting the ticket ensures that it was issued by the data
owner because it is encrypted by the owner's private key.
Hence, the proposed mechanism is able to detect the attack.
Moreover, this mechanism presents valuable evidence that
helps in judgment between the owner and the storage provider.
This attack was detected by PasS but its reason cannot be
specified because PasS does not have the ability to store
authentication messages.

VIII. CONCLUSION

We introduced a mechanism to check data integrity on
cloud. The mechanism includes an access control method that
combines security for the data owner and the cloud provider.
The suggested solution provides cloud data owners with the
protection needed to encourage them to store their data on the
cloud. The proposed mechanism can be used to protect the
cloud data against different attacks from malicious nodes or
from untrusted storage provider(s). In addition, the work
provides an evidence collection mechanism that can be used in
the judgment between the data owner and the storage provider,
in case of disputes over data integrity violation.

REFERENCE

[1] Farhan Bashir Shaikh and Sajjad Haider, "Security Threats in Cloud
Computing," In 6th International Conference on Internet Technology
and Secured Transactions, IEEE. 2011.

[2] B. Meena, Krishnaveer Abhishek Challa, "Cloud Computing Security
Issues with Possible Solutions," In IJCST Vol. 3, Issue 1, Jan. — March
2012.

[3] Weiliang Luo, Li Xu, Zhenxin Zhan, Qingji Zheng, and Shouhuai Xu,
"Federated Cloud Security Architecture for Secure and Agile Clouds," In
High Performance Cloud Auditing and Applications, DOI 10.1007/978-
1-4614-3296-87, Springer Science and Business Media New York,
USA, 2014.

(4]

(]

(6]

(7]

(8]

(]

[10

(11

[2

(13

=
O

=
2

)

[19]

[20

[21

[22

[23

[24

S Narula, A. Jain, "Cloud Computing Security: Amazon Web Service
Advanced," In Proceeding of Computing & Communication
Technologies (ACCT), fifth International Conference , 501 - 505 , IEEE.
2015

Richard Chow, Philippe Golle, Markus Jakobsson,"Controlling Data in
the Cloud: Outsourcing Computation without Outsourcing Control," In
Fujitsu Laboratories of America, CCS 2009.

Beloglazov, Rajkumar Buyya, "Energy Efficient Resource Management
in Virtualized Cloud Data Centers," In 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing 2010.

Kresimir Popovic, Zeljko Hocenski, "Cloud computing security issues
and challenges," In The Third International Conference on Advances in
Human-oriented and Personalized Mechanisms, Technologies, and
Services, pp. 344-349 2010.

Deyan Chenl, Hong Zhao, "Data Security and Privacy Protection Issues
in Cloud Computing," In International Conference on Computer Science
and Electronics Engineering DOI 10.1109/ICCSEE, IEEE 2012.

Cong Wang, Sherman S.-M, Qian Wang, Kui Ren, Wenjing Lou,
"Privacy-Preserving Public Auditing for Secure Cloud Storage," IEEE
Transactions on Computers vol: 62 NO: 2. 2013.

Dimitrios Zissis, Dimitrios Lekkas, "Addressing Cloud Computing
Security Issues," Future Generation Computer Systems 28, Elsevier
583-592doi:10.1016/j.future, 2012.

Sebastian Gajek, Tibor Jager, Mark Manulis, and J"org Schwenk, "A
Browser-Based Kerberos Authentication Scheme," ESORICS 2008, pp.
115-129, Springer-Verlag Berlin Heidelberg 2008

Shucheng Yu, Cong Wang, Kui Ren, Wenjing Lou, "Achieving Secure,
Scalable, and Fine-grained Data Access Control in Cloud Computing
Shucheng," In proceeding of the IEEE INFOCOM, 2010.

Boyang Wang, Baochun Li and Hui Li Panda, "Public Auditing for
Shared Data with Efficient User Revocation," In the Cloud IEEE
Transactions On service computing, computing, (Volume:8, Issue:l)
2015.

Wassim Itani, Ayman Kayssi, Ali Chehab, "Privacy as a Service:
Privacy-Aware Data Storage and Processing in Cloud Computing
Architectures," In Eighth IEEE International Conference on Dependable,
Autonomic and Secure Computing, 2009.

Bashkar Parasad, Eunmi Choi, "A Taxonomy and Survey of Cloud
Computing Systems," In Fifth International Joint Conference on INC,
IMS and IDC, IEEE DOI 10.1109/NCM. 2009.

Khurana Sumit and Gaurav Verma Anmol, "Comparison of Cloud
Computing Service Models: SaaS, Paa, IaaS," In IJECT, vol. 4,2013.
Balachandra Reddy Kandukuri, Ramakrishna Patur, Atanu Rakshit,
"Cloud Security Issues," In Proceedings of the 2009 IEEE International
Conference on Services Computing, pp. 517-520, 2009.

Lifei Wei, Haojin Zhu, Zhenfu Cao, Xiaolei Dong, Weiwei Jia, Yunlu
Chen, Athanasios V. Vasilakos," Security and Privacy for Storage and
Computation in Cloud Computing," Information Sciences, 258, 371-386
Elsevier2014.

Xun Yi, Fang Yu Rao, Elisa Bertino, "Privacy-Preserving Association
Rule Mining in Cloud Computing," In proceeding of the 10" ACM
Symposium on Information, Computer and Communication Security
Pages 439-450 New York, USA, 2015.

Meiko Jensen, Jorg Schwenk, Nils Gruschka and Luigi Lo Iacono, "On
Technical Security Issues in Cloud Computing," In IEEE ICCC,
Bangalore, pp. 109-116, 2009.

Mingi Zhou, Rong Zhang and others, "Security and Privacy in Cloud
Computing: A Survey," In Sixth International Conference on Semantics,
Knowledge and Grids, IEEE, 2010.

Anton Beloglazov, Rajkumar Buyya, Allocation of Virtual Machines in
Cloud Data Centers," In the 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing Energy Efficient 2010.

Lanxiang Chen, Shuming Zhou, Xinyi Huang, Li Xu, "Data dynamics
for Remote Data Possession Checking in Cloud Storage," In Computers
& Electrical Engineering 39, 7, 2413-2424, 2013.

Chi-Chun Lo, Chun-Chiech Huang and Joy Ku, "A Cooperative Intrusion
Detection System Framework for Cloud Computing Networks," In 39th
International Conference on Parallel Processing Workshops, 2010.

766

