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Topological Queries on Graph-structured XML
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Abstract—In many applications, data is in graph structure, which
can be naturally represented as graph-structured XML. Existing
queries defined on tree-structured and graph-structured XML data
mainly focus on subgraph matching, which can not cover all the
requirements of querying on graph. In this paper, a new kind of
queries, topological query on graph-structured XML is presented.
This kind of queries consider not only the structure of subgraph but
also the topological relationship between subgraphs. With existing
subgraph query processing algorithms, efficient algorithms for topo-
logical query processing are designed. Experimental results show the
efficiency of implementation algorithms.

Keywords—XML, Graph Structure, Topological query.

I. INTRODUCTION

In many applications, data can be modeled as a directed
graph and graph-structured XML can be naturally used to
describe graph-structured data. For example, Figure I shows a
graph structure representing relationships between authors and
academic papers.

Query processing on graph-structured data brings new chal-
lenges. Some query processing techniques have been presented
such as [6], [11], [7], [3].However, current techniques for
graph-structured data have limitations. An notable one is that
current research on querying graph-structured data mainly
focus on subgraph matching without considering topological
relationship between subgraphs. Topological relationship of
subgraphs can be defined as the relationship of subgraphs in
position. For example, in Figure 2(a), subgraph (a1, b1, a2, b2)
has overlapping relationship with subgraph (a1, b1, a2, c1)
in because they share some nodes. In some applications of
querying subgraphs on a large graph, topological relationship
can be used to describe the constraint of subgraph more subtly.

An example of the application of topological constraints on
the graph in Figure I is shown in Example 1.

Example 1:
Retrieve the conferences sharing at least one paper with same

title and authors with a journal. Such query use a topological
relationship “overlapping” as a constraint. Processing this
query in the graph in Figure I is to find subgraphs containing
conference and sharing common parts of author information
with some subgraph containing information about journal.

Processing topological query is also a challengeable prob-
lem. Current techniques of query processing on graph database
can be classified into two kinds.
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• Match subgraph with structural constraint on a large
graph [3], [13]. Such techniques retrieve subgraphs
matching a given subgraph. Such techniques can only
solve a subproblem of processing topological query. Ad-
ditionally, in some cases, the result of subgraph query is
very large. If such subgraph is just a constraint, only some
features of intermediate results are useful. Therefore, it
is not efficient for topological query processing.

• Select graphs with some feature in a large set of graphs
[14], [15], [8]. For a topological query, the goal is to
find some subgraph is a large graph satisfying some
constraint. Therefore, such techniques cannot be applied
to topological query processing directly.

Current techniques can not be applied directly on topo-
logical query processing. For processing topological queries
efficiently, we present a series of algorithms based on interval
based labeling scheme. Even subgraph matching cannot be
avoided during the processing, we only store useful features
as intermediate results and filter as many useless nodes as
possible.

The contributions of this paper can be summarized as
follows:

• Topological query, a novel type of queries on graph,
is presented. As we know, this is the first paper of
considering topological relationship between subgraphs
in query processing on graph data.

• We design a series of efficient algorithms for processing
topological queries with various topological constraints.
With feature extracting, massive storage of intermediate
results is avoided.

• Experimental results show that our methods use a small
extra cost of subgraph query processing and have good
scalability.

This paper is organized as follows. In Section II, some back-
ground knowledge is presented. In Section III, the definitions
of topological query and various topological relationships are
presented. We design topological query processing algorithms
in Section IV. Experimental results are shown in Section V.
In Section VI, we give an overview of work related to this
paper. We draw the conclusions in Section VII.

II. PRELIMINARIES

In this section, we briefly introduce the graph-structured
XML model and some techniques used in this paper.

A. Data Model

With IDREF between two elements representing their refer-
ence relationship [12], XML data can be modeled as a labelled
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Fig. 1. An Example of Graph Structure

digraph: elements and attributes are mapped into nodes of the
graph; directed nesting and reference relationships are mapped
into edges in the graph.

B. Reachibility Labeling Scheme for Graph-structured XML
Data

The goal of labeling scheme of XML data is to represent the
structural relationship so that the relationship between nodes
in an XML graph can be judged by their labels quickly. With
a suitable labeling scheme, structural query processing can
be efficient. In this paper, we focus on reachability labeling
scheme, which is used to judge the reachability relationship
between nodes in an XML graph. We use an extension
version of reachability labeling scheme presented in [9]. In
this labeling scheme, each node of a graph is assigned a
postid and some intervals. For two nodes a and b in a graph,
a� b if and only if b.postid is contained by one of intervals
associated with a, so that the reachability relationship between
two nodes in the graph can be judged by their labels without
other information.

The steps of encoding a graph G is:

1) A DAG D is generated from G by contracting each
strongly connected components (SCC for brief) in G

into a node.
2) Find an optimal tree-cover T of the DAG D generated in

the first step. An id and an interval is assigned each node
in T . For a node n, its id is its postorder. In tts interval,
[x, y], y is the postorder of n and x is the smallest
postorder number of all n’s descendants in T . Note that
during the traversal, when an node nc contracted from
a SCC is met, its number of postorder is increased by
numberc, the number of nodes in this SCC in G instead
of 1. Suppose the postorder of the node met before nc

is pc. The id of this node is an series of numbers of
pc + 1, pc + 2, · · · , pc + numberc.

3) Examine all the nodes of D in the reverse topological
order. At each node n, copy and merge, if possible, all
the intervals of its out-going nodes in D to its code.

4) All nodes in the same SCC in G are assigned to same
intervals as the node nc contracted from this strongly

connected graph in D. Each of the postid of nc in D

is assigned to a node in this SCC.
For example, the reachability coding of graph in Figure 2(a)

is shown in Figure 2(b). For each node in Figure 2(b), the
number after colon is its id and a series of intervals after id

are the interval set of this node. The id of c2 is contained in
interval [0, 2] of a3. By such relationship, we can judge that
a3 reaches c2.

III. CONCEPTS OF TOPOLOGICAL QUERIES

In this section, we will give the concept of topological query.
Intuitively speaking, topological query is to use topological
relationship to describe a graph. To retrieve some graphs with
some topological constraint with graph in some schema, we
present six kinds of topological relationships: “connecting”,
“connected by”, “disjoint”, “overlapping”, “containing” and
“contained by”. At first, We give the intuitions of these six
relationships. Then we will gives formal definition of these
relationships and topological constraints based on them.

• A graph g1 has “connecting” relationship with another
graph g2 means that there is a path from some node in g1

to some node in g2. For example, in Figure 2(a), subgraph
(a1,b1) is connecting subgraph (a2,c2) because both a2
and b1 can reach c2.

• A graph g1 has “connected by” relationship with another
graph g2 means that there is a path from some node in g2

to some node in g1. For example, in Figure 2(a), subgraph
(a2,c2)is connected by subgraph (a1,b1).

• A graph g1 has “disjoint” relationship with another graph
g2 means that no node is shared by g1 and g2. For
example, in Figure 2(a), subgraphs (a2,c2)and (a1,b1) are
disjoint since they shares no node.

• A graph g1 has “overlapping” relationship with another
graph g2 means that g1 and g2 shares at least one node.
For example, in Figure 2(a), subgraphs (a2,c2)and (a3,c2)
are overlapping since they shares a node c2.

• A graph g1 has “containing” relationship with another
graph g2 means that g2 is a subgraph of g1.

• A graph g1 has “contained by” relationship with another
graph g2 means g1 is a subgraph of g2.
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r1:11,[0,11]

a1:8,[0,8]

b1:6,[0,6] a2:7,[0,2][7,7] a3:9,[1,3][9,9] a4:10,[4,5][10,10]

b2:0,[0,0] c1:1,[1,1] c2:2,[2,2] b3:3,[3,3] b4:4,[4,4] c3:5,[5,5]

(b) Coding of Example Graph

Fig. 2. An Example of Reachibility Labeling Scheme

The graph structure of XML data can be represented as a
labeled, directed graph G = (V,E) with V the set of nodes
and E the set of edges. There is a function tag : V → TAG

where TAG is the set of tags and tag(v) is the tag of v. Since
topological query is based on subgraph query, we will define
subgraph query at first, then define topological relations. Based
on these concepts, topological query is defined formally.

Definition 1 (Subgraph Query): A graph Q = (V,E) is a
subgraph query, where there are two functions tag : V →
TAG and rel : E → AXIS. TAG is the set of tags and
AXIS is the set of node relations such as parent-child(PC for
brief) or ancestor-descendant(AD for brief).

In Definition 1, the set of AXIS describes the relationship
between two nodes. Based on the definition of XPath [4], there
are 13 kinds of relationship. Here we only discuss two axis in
common use, PC and AD. In a graph G, two nodes n1 and n2

∈ VG has PC relationship if there is a edge (n1, n2) ∈ EG.
In a graph G, two nodes n1 and n2 ∈ VG has AD relationship
if there is a path from n1 to n2 in G.

Definition 2 (Result of Subgraph Query): The result of a
subgraph query Q = (VQ, EQ) over a graph G is

RG,Q = {g|∃ a equivalent function fg : Vg → VQ

and a total and single valued function pg : Vg → VG,
such that ∀n ∈ Vg, tag(n) = tag(fg(n)) = tag(pg(n))and
∀e = (n1, n2) ∈ Eg, pg(n1), pg(n2) satisfy the relationship
rel(f(n1), f(n2))and if n1 �= n2 then fg(n1) �= fg(n2),
pg(n1) �= pg(n2).}. g ∈ RG,Q is represented as g |=G Q.

An example of subgraph query is shown in Example 2.
Example 2: A subgraph query on data in Figure 2(a) is

shown in Figure 3(a). The direction of each edge is from
top to bottom. Single line represents PC-relationship and
double line represents AD-relationship. This query represents
a subgraph with an r node as source. This a node must have
PC relationship with an a node and AD relationship with a
b node. Such a node and b node must have PC relationship
between the same c node. The results of this subgraph query
include (r1, a2, b1, c1), (r1, a2, b1, c2), (r1, a3, b1, c1),(r1,
a3, b1, c2) and (r1, a4, b1, c3).

Definition 3 (“Connecting” Relationship): Two labeled,
directed graphs g1 |=G Q1 has “Connecting” relationship
with g2 |=G Q2 in graph G if ∃n1 ∈ Vg1

∃n2 ∈ Vg2
, in graph

G there is a path from pg1
(n1) to pg2

(n2).
Definition 4 (“Connected” Relationship): Two labeled, di-

rected graphs g1 |=G Q1 has “Connected by” relationship with
g2 |=G Q2 in graph G if ∃n1 ∈ Vg1

∃n2 ∈ Vg2
, in graph G

there is a path from pg2
(n2) to pg1

(n1).
Definition 5 (Disjoint Relationship): Two labeled, directed

graphs g1 |=G Q1 has “Disjoint” relationship with g2 |=G Q2

r
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Fig. 3. Example Queries

in graph G if ∀n1 ∈ Vg1
∀n2 ∈ Vg2

, pg1
(n1) �= pg2

(n2).
Definition 6 (Overlapping Relationship): Two labeled, di-

rected graphs g1 |=G Q1 has “Overlapping” relationship
with g2 |=G Q2 in graph G if ∃n1 ∈ Vg1

∃n2 ∈ Vg2
,

pg1
(n1) = pg2

(n2).
Definition 7 (Containing Relationship): Two labeled, di-

rected graphs g1 |=G Q1 has “containing” relationship with
g2 |=G Q2 in graph G if ∀n2 ∈ Vg2

∃n1 ∈ Vg1
, pg1

(n1) =
pg2

(n2).
Definition 8 (Contained by Relationship): Two labeled, di-

rected graphs g1 |=G Q1 has “Contained by” relationship
with g2 |=G Q2 in graph G if ∀n1 ∈ Vg1

∃n2 ∈ Vg2
,

pg1
(n1) = pg2

(n2).
“g1 has topological relationships r with g2” can be repre-

sented as g �G,r g2

Definition 9 (Topological Query): A topological query Q is
a triple (G1, G2, relation), where G1 and G2 are subgraph
queries and relation is one of “connecting”, “connected by”,
“disjoint”, “overlapping”, “containing” and “contained by”.

Definition 10: The result of topological query Q=(G1, G2,
relationship) over a graph G is

RG,Q = {g|g |=G G1 ∧ ∃g2(g2 ∈ G ∧ g2 |=G G2 ∧
g �G,relationship g2)}, where type is some topological re-
lationship type.

An example in Example 3 is to illustrate the concept of
topological result.

Example 3: A topological query Q =
(G1, G2, “Overlapping”) with G1 in Figure 3(a) and
G2 in Figure 3(b). Q is to retrieve the subgraphs matching
G1 and have at least one node in some subgraph matching
G2. The results include (r1, a2, b1, c1), (r1, a2, b1, c2), (r1,
a3, b1, c1) and (r1, a3, b1, c2). (r1, a4, b1, c3) is not a
result of Q. It is because that it has none node overlapping
any subgraph matching G2.

IV. EVALUATION OF TOPOLOGICAL QUERIES

In this section, we present algorithms for the evaluation
of topological queries. We find that topological relationship
can be classified into two classes, query-related and query-
unrelated. Query-related relationship means that just from the
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query the relationship between the results can be judged. Such
relationships includes “Containing” and “Contained by”. For
another four topological relationships, the relationship between
subgraphs cannot be judged just from the query directly but
have to be judged from the results of subgraph queries. A
topological query with query-related relationship are called a
query-related query. Otherwise, it is called a query-unrelated
query.

For a query-related query, the subgraph query G can be
generated from the topological query Q and the result of Q

can be obtained directly from the result of G. To process
query-unrelated query, we design an uniform framework with
different filters for deferent relationship.

In this section, at first, the strategy of processing query-
related queries is presented. Then we will introduce the
algorithms for processing query-unrelated queries.

This paper focuses on topological query processing. As
their sub-queries, the processing of subgraph query is beyond
the scope of this paper. Existing subgraph query processing
algorithms [3], [13] are used as a function.

A. Processing Query-Related Topological Queries

In this subsection, we present the processing strategy for
query-related topological queries.

Definition 11 (Query-Related Relationship): A topological
relationship r is a query-related relationship if for a query-
related query Q = (G1, G2, r), the topological relationship r
between two subgraphs matching G1 and G2 can be judged
directly from the query G1 and G2 without generating the
result.

The topological relationships of “Containing” and “Con-
tained by” can be judged directly from the query. It is because
for two subgraph queries G1 and G2 on G, if G2 is a subgraph
of G1, any result g1 of G1 must contain a result of G2.
Otherwise, if some g1 does not contain any result of G2 there
must be some node in G2 that can not be matched by any
node of g1. Then the corresponding node in G1 can not be
matched by any node of g1. Then g1 is not a result of G1.
Therefore, just from the query, “Containing” and “Contained
by” relationship can be judged from the query.

Based on the feature of query-related relationship, a topo-
logical query Q = (G1, G2, type) with relationship “Contain-
ing” can be process with Algorithm 1.

Algorithm 1 Querycontaining(G, Q)
check whether Q.G2 is a subgraph of Q.G1

if Q.G2 is a subgraph of Q.G1 then
return QuerySubgraph(G, Q.G1)

else
return φ

In this algorithm, if Q.G2 is a subgraph of Q.G1, any result
of Q.G1 must contain a subgraph matching Q.G2. Otherwise,
any result of Q.G1 does not contain a result matching Q.G2.

A topological query Q = (G1, G2, type) with relationship
“Contained by” can be process with Algorithm 2.

In Algorithm 2, checking whether Q.G1 is a subgraph of
Q.G2 can use a subgraph matching algorithm and all the

Algorithm 2 Querycontained(G, Q)
check whether Q.G1 is a subgraph of Q.G2

if Q.G2 is a subgraph of Q.G1 then
G =QuerySubgraph(G, Q.G2)
for each g in G do

S
′=subgraps of g matching Q.G1

S = S
⋃

S
′

return S

else
return φ

subgraphs matching Q.G1 in Q.G2 are found and each is
given an identify. Note that one node in Q.G2 may be attached
multiple identifies. The step obtaining subgraph of g matching
Q.G1 is different from subgraph matching. It is because during
the step of checking whether Q.G1 is a subgraph of Q.G2,
the nodes of Q.G1 related to Q.G2 is identified and during
projection, nodes corresponding to the query node with the
same identify can be extracted directly.

We use an example in Example 4 to show the processing
of “Contained by” topological query.

Example 4: For a topological query Q = (G1, G2, “Con-
tained by”) on graph in Figure 2(a) with G1 in Figure 3(d)
and G2 in Figure 3(c). At first, the relationship between G1

and G2 is checked and G1 is a subgraph of G2 and there are
two subgraph matching G1 in G2: the left-top one is defined
as group1 and the right-bottom one is defined as group2.
After processing subgraph query G2, a result (a1,b1,a2,b2) is
obtained with (a1,b1) matching group1 and (a2,b2) matching
group2. Thus,(a1,b1) and (a2,b2) are two results of Q.

Complexity Analysis Since this paper focuses on topo-
logical query processing, during analysis, we take subgraph
query processing algorithm as an oracle and use CostM(q,G)

to represent the cost of processing subgraph q on graph
G. Based on Algorithm 4, the time complexity of “Con-
taining” topological query processing only depends on the
time of subgraph query and is at most CostM(G,Q.G1) +
CostM(Q.G1,Q.G2). Based on Algorithm 5, the time complex-
ity of “Contained by” is CostM(G,Q.G2) + CostM(Q.G2,Q.G1)

+ O(|Q.G1.V |∗resultsize), where resultsize is the number of
final results. It is because besides the cost of graph matching,
extra cost is the generation of subgraphs matching Q.Q1 from
the subgraphs matching Q.Q2 and with identity, such cost is
just the cost of generating all final results.

B. Framework of Processing Query-unrelated Topological
Queries

In this subsection, we will present the framework of topo-
logical query evaluation. The evaluation strategies for 4 Query-
unrelated topological queries share the same framework.

The framework can be describe in Algorithm 3.

Algorithm 3 Query(G, Q)
Gfilter = QuerySubgraph(G, Q.G2)
Sfilter=GenerateFilters(Gfilter , Q.type)
Gresult = QuerySubgraphWithFilter(G, Q.G1,Sfilter)
return Gresult

In the framework, for a graph G and a topological query
Q = (G1, G2, type), at first, G2 is processed and then from the
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results of G2, the set of filters are generated. At last, subgraph
query G1 is processed, during the processing of G1, the filters
generated in the last step is applied to filter the results not
satisfying the topological constraint.

Note that in order to avoid storing intermediate results, same
filters can be generated when one result matching G2 and such
result is not necessary to be stored.

The benefit of sharing the same framework is that a topolog-
ical query with the logical combination of multiple topological
constraints can be processed with the combination of filters.

C. Algorithms of Processing Query-unrelated Topological
Queries

In this subsection, we will present algorithms of processing
query-unrelated topological queries based on the framework
presented in Section IV-B.

Connecting
For processing a topological query with topological rela-

tionship “connecting”, reachibility labeling scheme is used.
As introduced in Section II-B, each node is attached to an
id and a list of intervals. For a topological query Q =
(G1, G2, “connecting”), a sorted list L is maintained as filter.
When a subgraph g2 matching G2 is generated, id of each
node g is inserted to L. When a subgraph g1 matching G1 is
generated, all intervals of g1’s nodes are used to validate g1. If
an interval [x, y] contains some id in L, it means some node
of g1 can reach a node in some subgraph matching G2. Then
g1 is a result of Q. The algorithm is sketched in Algorithm 4.

Algorithm 4 Queryconnecting(G, Q)
Gfilter = QuerySubgraph(G, Q.G2)
for each g ∈ Gfilter do

for each node n ∈ g do
insert n.id to L

Gpar = QuerySubgraph(G, Q.G1)
for each graph ginGpar do

for each node n ∈ g do
for each interval [x, y] in n.intervals do

if ∃id ∈ L, x ≤ id ≤ y then
add g to Gresult and stop the processing of current g

return Gresult

To accelerate the inserting and searching, L is implemented
with binary search tree with insert and delete cost o(logn),
where n is the number of nodes.

Complexity Analysis The run time of connecting
algorithm can be estimated as following. Cost =
CostM(G,Q.G1) + CostM(G,Q.G2) + costinsertL

·
|Q.G2.V | · result(M(G,Q.G2)) + costsearchL

·
resultinterval(M(G,Q.G1)), where result (M(G,Q.G2))
and

resultinterval(M(G,Q.G1) are the number of results of
M(G,Q.G2) and the total number of intervals in the re-
sult of M(G,Q.G1), respectively. Since the size of L is at
most |G.V |, costinsertL

and costsearchL
are both at most

o(log|G.V |).
Connected by Processing a topological query

Q(G1, G2, “Connected by”) uses intervals of nodes in
all the results of G2. All the intervals are maintained in an

ordered list L. When a result g of G1 is generated, L is
searched for id of each node in g to find the interval [x, y]
satisfying x ≤ id ≤ y. If such interval can be found, it
means that some node in g is connected by some node in a
subgraph as a result of G2 and g is accepted as a result. The
pseudo code of processing “Connected by” topological query
is shown in Algorithm 5.

Algorithm 5 Queryconnected(G, Q)
Gfilter = QuerySubgraph(G, Q.G2)
for each g ∈ Gfilter do

for each node n in g do
insert all the interval in n.intervals to L

Gpar = QuerySubgraph(G, Q.G1)
for each graph ginGpar do

for each node n ∈ g do
if ∃[x, y] ∈ L, x ≤ n.id ≤ y then

add g to Gresult and stop the processing of current g
return Gresult

For efficient inserting and searching, L is in order of x

value and maintained with a binary search tree. In order to
reduce the space cost of L, overlapping and nested intervals
can be merged. Since the judgement condition is existing a
interval containing id, the merge of overlapping and nested
intervals will not affect the result. The merging is performed
online. When an interval [x, y] is inserted into L, the merging
strategies are shown as follows.

• If an interval [a, b] in L is found satisfying a ≤ x ≤ y ≤
b, then [x, y] will not be inserted.

• If an interval [a, b] in L is found satisfying x ≤ a ≤ b ≤
y, then [x, y] is inserted to L and [a, b] is delete from L.

• If two intervals [a, b] and [c, d] in L are found satisfying
x−1 ≤ b and c ≤ y+1, then [a, b] and [c, d] are replaced
by [a, d].

• If an interval [a, b] in L is found satisfying a ≤ x ≤
b + 1 ≤ y, then [a, b] is replaced by [a, y].

• If an interval [a, b] in L is found satisfying x ≤ a ≤
y + 1 ≤ b, then [a, b] is replaced by [x, b].

With merging strategies, all intervals in L are not over-
lapping or nesting. When a result g of G1 is generated, L is
searched for id of each node in g to find the interval [x, y] with
largest x value among the intervals with x value smaller than
id. If such interval can be found and id satisfies x ≤ id ≤ y,
g is considered as a result.

An example in Example 5 is used to illustrate the processing
of a “Connected by” query.

Example 5: For a topological graph Q = (G1, G2, “Con-
tained by”), where G1 is the subgraph query in Figure 3(d)
and G2 is the subgraph query in Figure 3(e). At the first step,
subgraph query G2 is processed and then results (a2, c1),
(a2, c2), (a3, c1), (a3, c2) and (a4, c3) are returned. Then
intervals of each nodes in result are added to the filter. For
a2, [0, 2] and [7, 7] are added to filter set L. For c1 and c2, no
additional interval is added to L since their intervals [1, 1] and
[2, 2] are contained in existing interval in L, [0, 2]. When a3
is considered, interval [1, 3] is merged to [0, 2] in L and [0, 3]
takes the place of [0, 2] in Lr. For a4, [4, 5] is merged with
[0, 3] and [0, 5] takes the place of [0, 3] in L. [10, 10] is also
required to merged with [9, 9]. After processing all nodes of
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subgraphs matching G2, intervals in L include [0, 5],[7, 7] and
[9, 10]. During the process of G1, when a subgraph matching
G1 such as (a1,b1) is generated, for each id of its nodes, L
is searched. For (a1,b1), no interval in L contains any of the
ids of a1 and b1. So (a1,b1) is not a result for Q. For (a2,b1),
since the id of b1 is contained in the interval [0,5], it is a result
of Q.

Complexity Analysis The run time of con-
necting algorithm can be estimated as Cost =
CostM(G,Q.G1) + CostM(G,Q.G2) + costinsertL

· |Q.G2.V | ·
resultinterval(M(G,Q.G2)) + costsearchL

· |Q.G1.V | ·
result(M(G,Q.G1)), where resultinterval(M(G,Q.G2))
and

result(M(G,Q.G1)) is the total number of intervals in the
results of M(G,Q.G2) and number of results of M(G,Q.G1),
respectively. With our merging strategy and the property of
the labeling scheme, the number of intervals are at most
|G.V |. Therefore, costinsertL

and costsearchL
are both at most

o(log|G.V |).
Overlapping and Disjoint
The filter for a topological query Q = (G1, G2, type) with

type overlapping or disjoint is a set S of ids of nodes in the
subgraphs matching G2. The difference of processing these
two types of topological queries is the filter condition. For a
subgraph g matching G1, the filter condition of “Overlapping”
topological query is that for some node n in g, a id equalling to
n.id in S can be found. While the filter condition of “Disjoint”
topological query is that n.id can not be found in S for all
nodes n in g. The description of the algorithm to process
overlapping is in Algorithm 6. The algorithm for disjoint is
similar except during the filtering step, the graph g with ids
of all nodes not in S are considered as a final result.

Algorithm 6 QueryOverlapping(G, Q)
Gfilter = QuerySubgraph(G, Q.G2)
for each g ∈ Gfilter do

for each node n ∈ g do
insert n.id to S

Gpar = QuerySubgraph(G, Q.G1)
for each graph ginGpar do

for each node n ∈ g do
if n.id can be found in S then

add g to Gresult and stop the processing of current g
return Gresult

For efficient inserting and searching, S can be implemented
with a hash set. Complexity Analysis The run time of overlap-
ping and disjoint algorithms are similar and can be estimated
as following. Cost = CostM(G,Q.G1) + CostM(G,Q.G2) +
costinsertS

· |Q.G2.V | · result(M(G,Q.G2)) + costsearchS
·

|Q.G1.V |·result(M(G,Q.G1)), where result(M(G,Q.G2))
and result(M(G,Q.G1)) are the number of results of
M(G,Q.G2) and number of results of M(G,Q.G1), re-
spectively. With hash set as data structure, costinsertS

and
costsearchS

are both o(1).

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results and
analysis of our algorithms for processing topological queries.

TABLE I
STATISTICS OF THE XMARK DATASETS

factor 0.1 0.2 0.3 0.4 0.5
Size 11.3M 22.8M 34.0M 45.3M 56.2M
#Nodes 175382 351241 524067 697342 870628
#Edges 206129 413110 616228 820437 1024072

A. Experimental Setup

All of our experiments were performed on a PC with
Pentium 2.4GMHz, 512M memory and 40G IDE hard disk.
The OS is WindowsXP Professional. We implemented our
system using Microsoft Visual C++ 6.0. We implemented all
our algorithms in this paper. We implemented subgraph query
processing algorithms presented in[13] as the subgraph query
processing module and embedded the filter generation and
result filtering in result generation step of subgraph query
processing module. The subgraph query processing algorithm
in [13] is a disk-based algorithm. we fix block size 1K and
buffer size 32K.

The dataset we tested is the XMark benchmark dataset [10].
It can be modeled as a graph and has a fairly complicated
schema, with circles as subgraphs and many nodes with
multiple parents. We choose factor 0.1, 0.2, 0.3, 0.4, 0.5 to
generate XMark documents. Their parameters are shown in
Table I

For topological queries, we choose three groups of
graphs, groupU1: (Gu11,Gu12), groupU2: (Gu21,Gu22) and
groupU3: (Gu31,Gu32)for “Connecting”, “Connected”, “Over-
lapping” and “Disjoint” and three groups of graphs
groupR1: (Gr11,Gr12), groupR2: (Gr21,Gr22) and groupR3:
(Gr31,Gr32) for “Containing” and “Contained by”. The graphs
are shown in Figure V, where double line represents AD-
relationship between nodes. Gu32 and Gr21 are the same
graphs. For each group for query-unrelated queries, we design
four queries on them with four topological relationship, respec-
tively. In each group, the former subgraph is used as “G1” and
the latter subgraph as “G2” in the form of topological query
Q = (G1, G2, type).

For each group for query-related queries with
subgraph query G1 and G2, we design two queries
(G1, G2, “Containing”) and (G2, G1, “Contained by”) on
them. Since the case that G1 does not contain G2 can only
processed by comparing the two queries and the case is
trivial, in each group, G2 is a subgraph of G1.

B. Comparison

In this subsection, we will present the comparison results
between our algorithms and graph matching. For query-
unrelated query, We compare the processing time of query-
unrelated queries with the sum of processing time of the two
subgraph queries in the topological query. The results is shown
in Figure 5(a). Since the three group of subgraph queries
for query-related queries all include one subgraph containing
another, we also compare the processing time of query-related
queries with the larger one of two subgraph queries in each
group. The results are shown in Figure 5(b). From the results,
it can be seen that comparing with the time of processing
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Fig. 5. Experimental Results

subgraph queries, the extra costs of our algorithms are very
small.

C. Scalability

In this subsection, we will present the results of scalabil-
ity of our algorithms. We range XMark data from 10M to
50M. The results of query-unrelated queries are shown in
Figure 5(c), Figure 5(d) and Figure 5(e). The results of query-
related queries are shown in Figure 5(f). Note that the run time
of Figure 5(c), Figure 5(e) and Figure 5(f) are in log scale.
From the results, the run time of our algorithm increases a

little faster than linearly but slower than exponentially with
data size. It is because that our algorithm increases with the
size of partial results of the subgraph query in topological
constraint and final results. The size of partial results may
increase faster than linearly because the numbers of nodes
matching each query node in subgraph query increases about
linearly with the size of XML document and so that the in
some cases the increase of the number of results may be the
production of the increase time of nodes matching every query
node.
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VI. RELATED WORK

In this section, we give an overview of previous work related
to this paper. Related work can be classified into two kinds.
One is the model and representation of query on graph, the
other is query processing algorithms on graph.

Existing query languages for XML [2] are only based on
tree structure without considering graph features. Even though
Lorel [1] considers IDREF, it considered path as basic unit
instead of graph. The disadvantage of using path as the basic
unit is that circle and topological relationships are difficult to
be represented.

There are also several query languages designed for describ-
ing recursion relationship [5] and graph matching [6], [11].
They focus on the description of query in the form of labelled
graph without complex structural restrictions and topological
restrictions. Query languages related to RDF [7] can be used
to represent query in the form of graph. But current query
languages do not consider topological restrictions.

Currently, existing work of querying graph-structured XML
mainly focus on structural query of subgraph/subtree matching
in a graph [16], [3], [13]. None of them considers the problem
of topological query processing.

Another kind of work on querying graph is to retrieve
graph satisfying some condition from a large set of graphs.
Such work includes [14], [15], [8]. Such works consider the
structural features of a graph. However, none of them considers
the topological features of graph.

VII. CONCLUSIONS

In this paper, topological query, a new kind of query for
graph-structured XML data, is presented. This query is to
retrieve subgraph with some given topological relationship
with some other subgraph in graph-structured data. We define
six types of topological relationship between subgraphs to be
used as the topological constraint. We give the definitions
and evaluation algorithms of topological queries. Experimental
results show that our implementation algorithms use a small
extra cost of subgraph query and scales with the size of results
of subgraph query in it.

Future work includes efficient index building and holistic
algorithms to process topological queries.
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