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Topological Properties of an Exponential Random
Geometric Graph Process

Yilun Shang

Abstract—In this paper we consider a one-dimensional random
geometric graph process with the inter-nodal gaps evolving according
to an exponential AR(1) process. The transition probability matrix
and stationary distribution are derived for the Markov chains con-
cerning connectivity and the number of components. We analyze the
algorithm for hitting time regarding disconnectivity. In addition to
dynamical properties, we also study topological properties for static
snapshots. We obtain the degree distributions as well as asymptotic
precise bounds and strong law of large numbers for connectivity
threshold distance and the largest nearest neighbor distance amongst
others. Both exact results and limit theorems are provided in this
paper.

Keywords—random geometric graph, autoregressive process, de-
gree, connectivity, Markovian, wireless network.

I. INTRODUCTION

MANY randomly deployed networks, such as wireless
sensor networks, are properly characterized by random

geometric graphs (RGGs). Given a specified norm on the space
under consideration, an RGG is usually obtained by placing a
set of n vertices independently at random according to some
spatial probability distribution and connecting two vertices by
an edge if and only if their distance is less than a critical
cutoff r. Topological properties of RGGs are comprehensively
analyzed in e.g. [16], [22], [23]; also see [8] for a latter
survey in the context of wireless networks. Although extensive
simulations and empirical studies are performed in dynamical
RGGs, analytical treatments of topological properties are
merely done in static RGGs in the previous work. A recent
paper [4] is a remarkable exception, in which the authors
conduct the first analytical research on the connectivity of
mobile RGG in the torus [0, 1)2. In this paper, we will also
present analytical results and consider an one-dimensional
exponential RGG process G(t, r, Λ) evolving with time, where
vertices are randomly placed along a semi-infinite line. One-
dimensional exponential RGGs are newly investigated by some
authors[7], [10], [11], which offer a significant variant from
the familiar uniformly U [0, 1] distributed nodes, see e.g.[3],
[6], [8], [21] and references therein.

In [12], the distributions of distances between successive
vertices rather than those of vertices themselves are examined,
and as it is stated in the same paper, this assumption is more
natural since “sensors are usually thrown one by one along a
trajectory of a vehicle.” We will then follow suit, and assume
exponential distributions for inter-nodal distances of the graph
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process G(t, r, Λ). Every segment between two successive
vertices is supposed to evolve following a stationary TEAR(1)
process[13] with exponential marginal. This linear process
has no zero-defect and thus surpasses the elementary AR(1)
process involved in [11]. We believe such mobile scheme
has broad potential applications due to the flexible double
randomness mechanism (see Section 2). Since the evolution of
connectivity and the number of components in G(t, r, Λ) are
both Markovian, we will address the transition probabilities
and limiting distributions of these two process Gt and G′

t

respectively by employing Markov chain theory[17], [19]. It
is worth noting that there are several Markov chains coupled
in our model stemming from the first order autoregressive
properties endowed in the evolution of inter-nodal distances.

In addition to dynamical properties, we also establish static
properties for fixed t. Vertices in G(t, r, Λ), for any given
t, form nearly a Poisson point process (more precisely, a
continuous time pure birth Markov process). Connectivity of
Poisson RGG is well-studied in the literature (e.g.[1], [5],
[14], [15]), especially in the context of ad hoc networks. We
will investigate some topological properties basically along the
lines of [7]. We give new results as well as corroborate some
known results (see Section 6.1) by different approach. We
mention that, in our opinion, the aforementioned simple idea
in [12] reflects a conception of one step “memory” essentially.
We show (Theorem 8) that “1-step memory” + “growth” are
not enough to produce power law distribution reminiscent of
the architecture of Polya urn process, where typically infinite
memory generates the power law [2].

In this paper both exact and asymptotic formula are pro-
vided. We remark here that exact solutions are important since
the asymptotic results can not be applied to real network when
not knowing the rate of convergence.

The rest of this paper is organized as follows. Section 2
gives definition of the exponential RGG process and some
preliminaries. Section 3 and 4 deal with the transition proba-
bility matrix, stationary distribution of Gt and G′

t respectively.
Section 5 includes the analysis for hitting time of Gt for
disconnectivity. In Section 6, we present some topological
properties for snapshot of G(t, r, Λ). The degree distribution
and strong laws of connectivity and the largest nearest neigh-
bor distances are given among other things. Section 7 contains
further discussion and some open problems.

II. MODEL AND PRELIMINARIES

The RGG process G(t, r, Λ) is constructed as a discrete time
process with n vertices deployed in one dimension on [0,∞).
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Fig. 1. One-dimensional exponential RGG process. Envision time evolving
upward, and possibly n growing along x-axis.

Let Xt
1, · · · , Xt

n denote the vertices of the network at time t,
for t ≥ 0. Set Y t

l := Xt
l+1 − Xt

l , for l = 1, 2, · · · , n − 1 and
Y t

0 := Xt
1, see Fig.1.

For 0 ≤ p < 1, we assume that {Y t
l } evolves following:

Y t+1
l =

{
Y t

l + εt
l w.p. p

εt
l w.p. 1 − p

(1)

where the innovation sequences {εt
l}t≥0 consist of i.i.d. non-

negative random variables. The behavior of this autoregressive
process {Y t

l }t≥0 is characterized by runs of rising values
(with geometrically distributed run length) when choosing
Y t

l + εt
l , followed by a sharp fall when choosing εt

l without
inclusion of the previous values. Furthermore, we assume that
Y t

l , l = 0, 1, · · · , n − 1 are independent for any t.
In particular, we set εt

l := (1− p)Zt
l , where Zt

l ∼ Exp(λl)
is an exponential random variable with mean λ−1

l > 0. Let
Λ := {λ0, λ1, · · · , λn−1}. In this case, as is shown in [13],
the above TEAR(1) process {Y t

l }t>0 would be a station-
ary sequence of marginally exponentially distributed random
variables with parameter λl, assuming that the initial inter-
nodal gaps Y 0

l are exponentially distributed with parameter λl.
That means Y t

l ∼ Exp(λl). In this case, the auto correlation
function of {Y t

l } is Corr(Y t
l , Y t+j

l ) = pj , being nonnegative.
[9] showed that (1) is stationary for each 0 ≤ p < 1 iff Y t

l

is geometrically infinitely divisible. For further extension and
discussion of (1) we refer the reader to [18].

Vertices in snapshot of G(t, r, Λ) constitute a counting pro-
cess with inter-nodal distances having distribution Exp(λl),
while in standard exponential RGG, the corresponding distri-
butions are relevant to n the total number of vertices (see [7]
Lemma 1); hence relying on the global information. Besides,
notice that the cutoff r = r(n, t) may depend on n and t.
However, we restrict ourselves to fixed r in order to keep
calculations clear though some results may be generalized
without much effort. The popular assumption limn→∞ r(n) =
0 is not necessary here in virtue of unbounded support.

III. STATIONARY DISTRIBUTION OF Gt

Let us denote by Ct and Dt the events that G(t, r, Λ) is con-
nected and disconnected at time t, respectively. Define Gt as a
discrete time stochastic process describing connectivity of the
graph process G(t, r, Λ). Therefore Ct = {Gt = “conneted”}
and Dt = {Gt = “disconneted”}. It’s easy to see that
Gt is a homogeneous Markov chain, assuming the cutoff r
is independent of t. We abbreviate as usual the states as
1=“connected”(C) and 2=“disconnected”(D). Our main results
in this section then read as follows:

Theorem 1. Gt is a time-reversible, homogeneous finite
Markov chain, with one step transition probability matrix

P (n) =
(

p11 p12

p21 p22

)
,

where

p11 =
n−1∏
l=1

(
1 − (1 − p)e−λlr

(
1 − e−

λlr

1−p
)

1 − e−λlr

)
, (2)

p21 =
1

1 −
n−1∏
l=1

(1 − e−λlr)

·
( ∑

∅�=A⊆[n−1]

(1 − p)
∏
l∈A

e−λlr
(
1 − e−

λlr

1−p
)

·
∏

l∈[n−1]\A

(
1 − e−λlr − (1 − p)e−λlr

·(1 − e−
λlr

1−p
)))

, (3)

p12 = 1 − p11 and p22 = 1 − p21.

Theorem 2. Gt has a unique stationary distribution π(n) =
(π1(n), π2(n)), where{

π1(n) = (1−p22)
2

p11(1−p22)2+p21p12(2−p22)
,

π2(n) = (1−p11)
2

p22(1−p11)2+p12p21(2−p11)

(4)

Theorem 3. Suppose λl ≡ λ, for l = 0, 1, · · · , n − 1.
Let P (∞) be the transition probability matrix of Gt as n
tends to infinity, and π(∞) the (unique) stationary distribution
corresponding to P (∞). Then π(∞) = (0, 1) and

lim
n→∞π(n)P (n) = π(∞)P (∞).

Theorem 3 implies that we can swap the order of obtaining
stationary distribution and taking limit w.r.t. n.

Proof of Theorem 1. The probability density function of εt
l

can be shown to be given by fl(s) = λl

1−pe−λls/(1−p)1[s>0].
Also, the conditional density function for Y t

l in the connected
network is gYl|C(y) = λle

−λly

1−e−λlr 1[0<y<r], since the connectivity
of network means Y t

l < r for all l. By independence property,
we have p11 = P (Ct+1|Ct) =

∏n−1
l=1 P (Y t+1

l < r|Y t
l < r).

Our aim now turns to evaluate the probability P (Y t+1
l <

r|Y t
l < r). Let V t

l ∼ Bin(p) independently, then the scheme
(1) becomes

Y t+1
l = εt

l + V t
l Y t

l . (5)

Let Ỹ t+1
l denote Y t+1

l conditional on {Y t
l < r}. For

a nonnegative random variable X with density function
f(x), Laplace-Stieltjes transform is defined by L(X)(s) =
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L(f)(s) =
∫ ∞
0

f(x)e−sxdx. We have by (5),

L(Ỹ t+1
l )(s) = L(εt

l)(s) · L(V t
l Ỹ t

l )(s)

=
∫ ∞

0

e−su λl

1 − p
e−

λlu

1−p du

·
∫ r

0

e−sy
(
(1 − p)δ(y) +

pλle
−λly

1 − e−λlr

)
dy

=
λl

λl + s(1 − p)

·
(
(1 − p) +

pλl(1 − e−(λl+s)r)
(s + λl)(1 − e−λlr)

)
where δ(y) is the Dirac-delta function. Inverting the above to
get

L−1(L(Ỹ t+1
l ))(y) = λle

− λly

1−p 1[y>0] +
2λle

−λl(2−p)y

2(1−p)

1 − e−λlr

·sh
( λlpy

2(1 − p)

)
1[y>0]

−2λle
−λl

(
r+

(2−p)(y−r)
2(1−p)

)
1 − e−λlr

·sh
(λlp(y − r)

2(1 − p)

)
1[y>r].

Hence

P (Y t+1
l < r|Y t

l < r) =
∫ r

0

L−1(L(Ỹ t+1
l ))(y)dy

= 1 − (1 − p)e−λlr

1 − e−λlr

·(1 − e−
λlr

1−p
)

(6)

which gives (2).
Let ∅ �= A ⊆ [n − 1]. Denote the event EA := {Y t

l >
r,∀l ∈ A; Y t

l < r,∀l ∈ [n − 1]\A}, then

P (Ct+1|EA) =
∏
l∈A

P (Y t+1
l < r|Y t

l > r)

·
∏

l∈[n−1]\A

P (Y t+1
l < r|Y t

l < r)

=
∏

l∈[n−1]\A

(
1 − (1 − p)e−λlr

(
1 − e−

λlr

1−p
)

1 − e−λlr

)
·
∏
l∈A

(1 − p)
(
1 − e−

λlr

1−p
)
,

where we used the expression P (Y t+1
l < r|Y t

l > r) = (1 −
p)

(
1− e−

λlr

1−p
)
. Since P (EA) =

∏
l∈A e−λlr

∏
l∈[n−1]\A(1−

e−λlr) and P (Dt) = 1 − ∏n−1
l=1 (1 − e−λlr), (3) follows by

noting that

p21 = P (Ct+1|Dt)

=
∑

∅�=A⊆[n−1]

P (Ct+1|EA) · P (EA)/P (Dt).

Gt is time-reversible by standard results of Markov chain[17].
�

Proof of Theorem 2. Since Gt is an irreducible finite
Markov chain, C and D are both positive recurrent. Also
since they are both non-periodical, C and D are ergodic
state. Set Tij := min{k : k ≥ 1, Gk = j, G0 = i}, for
i, j ∈ {1, 2}. If the righthand side of the above definition is
∅, set Tij = ∞. The first hitting probability is then given by
f

(k)
ij = P (Tij = k|G0 = i).

By a standard result from [19], an irreducible ergodic
Markov chain has unique stationary distribution π(n), and
πi(n) is given by πi(n) = 1/

∑∞
k=1 kf

(k)
ii , for i=1,2 in

the present case. Thereby, (4) follows easily from the facts
f

(1)
11 = p11, f

(k)
11 = p21p

k−2
22 p12, for k ≥ 2; and f

(1)
22 = p22,

f
(k)
22 = p12p

k−2
11 p21, for k ≥ 2. �

Proof of Theorem 3. When λl ≡ λ, the righthand side of
expression (6) belongs to interval (0, 1). Hence p11 tends to 0
as n → ∞ in view of (2). Since (1−p)e−λr

(
1−e−

λr
1−p

)
+

(
1−

e−λr−(1−p)e−λr
(
1−e−

λr
1−p

))
= 1−e−λr < 1, p21 tends to

0 as n → ∞ by the binomial theorem and (3). Then we have

P (∞) =
(

0 1
0 1

)
. In this case, C is a transient state and

D is an absorbing and positive recurrent state. By a standard
result (see e.g. [19]), the stationary distribution corresponding
to P (∞) exists and is unique. Direct calculation gives π(∞) =
(0, 1). It is straightforward to verify that π(n) → π(∞) as n
tends to infinity. The theorem is thus concluded by exploiting
the relation πP = π. �

IV. TRANSITION PROBABILITY MATRIX OF G′
t

In this section we show a refinement stochastic process
G′

t from Gt. To be precise, let {G′
t = i} denote the event

that G(t, r, Λ) has i components at time t, for 1 ≤ i ≤ n.
Therefore, G′

t is a homogeneous Markov chain with state
space [n]. It’s clear that {G′

t = 1} = Ct.
Let the transition probabilities of G′

t be p′ij := P (G′
t+1 =

j|G′
t = i). Set A,B ⊆ [n−1] with |A| = i−1 and |B| = j−1,

1 ≤ i, j ≤ n. Denote the event EA := {Y t
l > r,∀l ∈ A;Y t

l <
r,∀l ∈ [n − 1]\A} and similarly for EB . We obtain by the
total probability formula,

p′ij =
∑

A,B⊆[n−1]
|A|=i=1,|B|=j−1

P (EB |EA) · P (EA)/P (G′
t = i),

1 ≤ i, j ≤ n. (7)

We have derived P (EA) in the proof of Theorem 1, and
P (G′

t = i) =
∑

A⊆[n−1],|A|=i−1

P (EA). To evaluate (7), we

still need the probability P (EB |EA), but it is also at hand
already:

P (EB |EA) =
∏

l∈A∩B

P (Y t+1
l > r|Y t

l > r)

·
∏

l∈A\B

P (Y t+1
l < r|Y t

l > r)

·
∏

l∈B\A

P (Y t+1
l > r|Y t

l < r)

·
∏

l∈[n−1]\A∪B

P (Y t+1
l < r|Y t

l < r).
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The second and fourth terms in the above expression have been
obtained in the proof of Theorem 1, and clearly P (Y t+1

l >
r|Y t

l > r) = 1 − P (Y t+1
l < r|Y t

l > r), P (Y t+1
l > r|Y t

l <
r) = 1 − P (Y t+1

l < r|Y t
l < r). Now we arrive at the main

result.

Theorem 4. The transition probability matrix of G′
t is P ′ =

(p′ij)n×n, which is given by (7).
Of course, we have p′11 = p11 and

∑n
j=2 p′1j = p12. Since

G′
t is an irreducible ergodic chain, it has a unique stationary

distribution which may be deduced analogously as in Section
3.

V. HITTING TIME

Suppose Ct holds at time t, and we will consider the Markov
chain Gt. Denote T := min{k : k ≥ 1,Dt+k holds}, then T
is the hitting time for disconnectivity. We could obtain the
expectation of T using the transition probabilities derived in
Section 3 by a routine approach[19]. In this section, we will
instead depict an algorithm for getting the distribution of T
directly.

The event {T > k} is equivalent to {Y t+1
l < r, Y t+2

l < r,
· · · ,Y t+k

l < r, ∀ 1 ≤ l ≤ n − 1}. In view of (5), we can
interpret the above as follows

Y t+1
l = εt

l + V t
l Y t

l < r,

Y t+2
l = εt+1

l + V t+1
l εt

l + V t+1
l V t

l Y t
l < r,

· · ·
Y t+k

l = εt+k−1
l + V t+k−1

l εt+k−2
l + · · ·

+V t+k−1
l · · ·V t+1

l εt
l

+V t+k−1
l · · ·V t

l Y t
l < r.

Set U t+j
l := V t+j

l εt+j−1
l + · · · + V t+j

l · · ·V t+1
l εt

l +
V t+j

l · · ·V t
l Y t

l , for 1 ≤ j ≤ k − 1 and U t
l := V t

l Y t
l .

Therefore, condition on Y t
l , V t

l , · · · , V t+k−1
l , the probability

that the above k inequalities holds simultaneously is shown to
be given by

P k
l (Y t

l , {V t
l , · · · , V t+k−1

l })

=
∫ r−Ut

l

0

fl(εt
l)dεt

l · · ·

·
∫ r−Ut+k−1

l

0

fl(εt+k−1
l )dεt+k−1

l , (8)

where fl(·) is given in the proof of Theorem 1. Denote the
last i + 1 integrals of (8) by Il,k−i, 0 ≤ i ≤ k − 1. For i = 0,

Il,k =
∫ r−Ut+k−1

l

0

λl

1 − p
e−

λls

1−p ds = 1 − e−
λl(r−U

t+k−1
l )

1−p .

For i = 1,

Il,k−1 =
∫ r−Ut+k−2

l

0

λl

1 − p
e−

λlε
t+k−2
l
1−p Il,kdεt+k−2

l

= 1 − e−
λl(r−U

t+k−2
l )

1−p

−λl(r − U t+k−2
l )

1 − p
e−

λl(r−U
t+k−2
l )

1−p 1[V t+k−1
l =1]

−
(
1 − e−

λl(r−U
t+k−2
l )

1−p

)
e−

λlr

1−p 1[V t+k−1
l =0].

In general, for 0 ≤ i ≤ k − 1,

Il,k−i =
∫ r−Ut+k−i−1

l

0

λl

1 − p
e−

λlε
t+k−i−1
l
1−p Il,k−i+1dεt+k−i−1

l .

We can proceed using this recursive formula by
induction and integration by parts. Notice that
P k

l (Y t
l , {V t

l , · · · , V t+k−1
l }) = Il,1 from (8).

Consequently, given Y t
l < r, the probability that Y t+1

l < r,
Y t+2

l < r, · · · ,Y t+k
l < r hold all together is seen to be given

by

P̃ k
l : =

λl

1 − e−λlr

k∑
i=0

pi(1 − p)k−i

·
∑

k−vector ξ
consisting of k 1′s,k−i 0′s

∫ r

0

P k
l (y, ξ)e−λlydy.

Now we state our result as follows, whose proof is now
straightforward.

Theorem 5. Suppose the hitting time T of Gt is defined as
above, then the distribution P (T ≤ k) = 1 − ∏n−1

l=1 P̃ k
l and

it’s expectation ET =
∑∞

k=0

∏n−1
l=1 P̃ k

l . The complexity to
compute ET is O(n).

In principle, by the truncation of k, we may approximate
ET discretionarily close.

VI. SNAPSHOTS OF G(t, r, Λ)
For fixed t, we denote by G(r, Λ) the static case which can

be regarded as a snapshot of the dynamical process G(t, r, Λ).
Also, we omit the superscript t typically, e.g. Yl, etc.

A. Cluster structure

Let Pn(C) denote the probability that G(r, Λ) is connected.
We have the following result regarding connectivity.

Theorem 6. We have

Pn(C) =
n−1∏
l=1

(1 − e−λlr).

Moreover, suppose there exists M > 0 such that λl < M , for
all l, then Pn(C) → 0 as n → ∞.
Proof. Since Yl, 1 ≤ l ≤ n − 1 are independent random
variables, Pn(C) =

∏n−1
l=1 P (Yl < r) =

∏n−1
l=1 (1 − e−λlr).

When λl is bounded by M , we observe that lnPn(C) tends
to 0, as n → ∞. �

Let ψn(k) denote the probability that G(r, Λ) consists of
k components and Pm

n (k) the probability that there are k
components in G(r, Λ), each of which having size m (i.e.
m vertices).

Theorem 7. Suppose there exists M > 0 such that λl < M ,
for all l. Then, for any fixed k, ψn(k) → 0 as n → ∞; and
for any fixed k, m, Pm

n (k) → 0 as n → ∞.
Proof. Mimicking the proof of Theorem 3 & 4 in [7] gives
the result. �
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Fig. 2. Probability that G(r, Λ) contains k components for different values
of k.

In Figure 2, we plot ψn(k) as function of n number of
vertices for different k. We take λi = 1 for 1 ≤ i ≤ 10,
and λi = 2 for i > 10. Observe that the convergence to the
asymptotic value 0 is very fast.

We may thus conclude that this static network is almost
surely divided into an infinite number of finite clusters. This
observation was first made by Dousse et.al.[5].

B. Degree distribution

Let G(r, λ) denote the graph G(r, Λ) when Λ =
{λ, · · · , λ}.

Theorem 8. In the graph G(r, λ), the degree distribution
can be divided into three classes: the degree distribution of X1

and Xn is Poi(λr); and for k + 1 ≤ i ≤ n− k, that of Xi is{
e−2λr (2λr)k

k!

}
k∈N

. For 2 ≤ i ≤ k, the degree distribution of

Xi and Xn+1−i is
{
e−2λr (λr)k

k!

∑i−1
j=0

(
k
j

)}
k∈N

, which varies
between Poisson distributions on the border and in the middle.

Proof. Let {Yi}, {Y ′
i } be independent Exp(λ). Denote the

degree of vertex Xi as di. We get

P (dn ≥ k) = P (d1 ≥ k)
= P (Y1 + · · · + Yk ≤ r)

= e−λr
( (λr)k

k!
+

(λr)k+1

(k + 1)!
+ · · ·

)
,

where we used an equivalent definition of gamma distribution.
Hence,

P (dn = k) = P (d1 = k) = e−λr (λr)k

k!
.

Next, for 2 ≤ i ≤ k,

P (dn+1−i = k) = P (di = k)

=
i−1∑
j=0

P (Y1 + · · · + Yj ≤ r,

Y1 + · · · + Yj+1 > r)
·P (Y ′

1 + · · · + Y ′
k−j ≤ r,

Y ′
1 + · · · + Y ′

k−j+1 > r)

=
i−1∑
j=0

∫ r

0

λe−λx (λx)j−1

(j − 1)!

·
∫ ∞

r−x

λe−λydydx

·
∫ r

0

λe−λx (λx)k−j−1

(k − j − 1)!

·
∫ ∞

r−x

λe−λydydx

= e−2λr (λr)k

k!

i−1∑
j=0

(
k

j

)
.

Finally, for k + 1 ≤ i ≤ n − k,

P (di = k) =
k∑

j=0

P (Y1 + · · · + Yj ≤ r,

Y1 + · · · + Yj+1 > r)
·P (Y ′

1 + · · · + Y ′
k−j ≤ r,

Y ′
1 + · · · + Y ′

k−j+1 > r)

= e−2λr (2λr)k

k!
which concludes the proof. �

C. Strong law results

Define the connectivity distance cn := inf{r > 0 :
G(r, λ) is connected}; and the largest nearest neighbor dis-
tance bn := max1≤i≤n min1≤j≤n,j �=i{|Xi − Xj |}. We derive
asymptotic tight bounds for cn and strong law of large numbers
for bn, as n tends to infinity.

Theorem 9. In the graph G(r, λ), we have
(i)

lim sup
n→∞

λcn

2 ln n
≤ 1 and lim inf

n→∞
λcn

lnn
≥ 1 a.s.

(ii)

lim
n→∞

λbn

lnn
= 1 a.s.

Proof. (i) Observe that P (cn ≥ x) ≤ ∑n−1
l=1 e−λlx = (n −

1)e−λx. Let ε > 0. Take x = xn = (2+ε) lnn/λ in the above
expression and sum in n, then we get

∞∑
n=1

P (cn ≥ xn) ≤
∞∑

n=1

n−(1+ε) < ∞.
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By Borel-Cantelli lemma, P (cn ≥ x i.o.) = 0. Hence,
lim supn→∞

λcn

2 ln n ≤ 1 almost surely.
On the other hand, P (cn ≤ y) =

∏n−1
l=1 (1 − e−λly) =

(1 − e−λy)n−1. Take y = yn = (1 − ε) lnn/λ, then
∞∑

n=1

P (cn ≤ yn) ≤
∞∑

n=1

(
1 − n−(1−ε)

)n−1 ∼
∞∑

n=1

e−nε

< ∞.

We conclude that lim infn→∞ λcn

ln n ≥ 1 a.s. by using Borel-
Cantelli lemma again.

(ii) By the independence of {Yl}, we obtain

P (bn ≥ x) = P
( ∪n−1

i=2 {{Yi−1 ≥ x} ∩ {Yi ≥ x}}
∪{Y1 ≥ x} ∪ {Yn−1 ≥ x})

≤
n−1∑
i=2

P (Yi−1 ≥ x) · P (Yi ≥ x)

+P (Y1 ≥ x) + P (Yn−1 ≥ x)
= (n − 2)e−2λx + 2e−λx.

Take x = xn = (2 + ε) ln n/(2λ), then we get
∞∑

n=1

P (bn ≥ xn) ≤
∞∑

n=1

(
n−(1+ε) + 2n−(1+ ε

2 )
)

< ∞.

By Borel-Cantelli lemma, lim supn→∞
λbn

ln n ≤ 1 almost
surely.

On the other hand,

P (bn ≤ y) = P
( ∩n−1

i=2 {{Yi−1 ≤ y} ∪ {Yi ≤ y}}
∩{Y1 ≤ y} ∩ {Yn−1 ≤ y})

≤
n

2 �∏
i=1

P (Y2i−1 ≤ y) · P (Y2i ≤ y)

∼ (1 − e−λy)n.

Argue as the same case in (i), we can get lim infn→∞ λbn

ln n ≥ 1
a.s.. This completes the proof. �

VII. FURTHER DISCUSSION

Notice that every time-reversible finite Markov chain can be
viewed as a random walk on undirected graphs[19], we may
further analyze the mixing rate, cover time, spectral gap and
so on. The interrelations of these Markov chains coupled in
the main graph process G(t, r, Λ) are of interest.

As for the idea of considering spacings, it may be extended
to high dimensions in the following way. Deploy X1 according
to a probability density f , then place X2 with the same
probability density substituting the location of X1 for the
coordinate origin, and so forth. We deem the growing scheme
would be an important alternative from the typical binomial
or Poisson cases[16].

Other meaningful aspects include examination of “multiple
spacings”, reinforcing 1-step memory to finite steps memory
even to infinite, which could be possible to result in power
law degree distributions. Since we only treat the limit regime
for constant λl, how to deal with λl approaching infinity is
our future research. We believe the methods developed in this
work would contribute to further in-depth research.
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