
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1973


Abstract—This paper presents general results on the Java source

code snippet detection problem. We propose the tool which uses
graph and subgraph isomorphism detection. A number of solutions
for all of these tasks have been proposed in the literature. However,
although that all these solutions are really fast, they compare just the
constant static trees. Our solution offers to enter an input sample
dynamically with the Scripthon language while preserving an
acceptable speed. We used several optimizations to achieve very low
number of comparisons during the matching algorithm.

Keywords—AST, Java, tree matching, Scripthon, source code
recognition

I. INTRODUCTION

T is usual that programs, consisting of a large source code,
are becoming chaotic, and many times described illnesses

start to appear (code duplicity, weak reusability, etc.).
Maintaining a source code is a serious issue. There are a lot of
tools and guides on how to approach this issue. The tool,
described in this work, serves to programmable Java source
code scanning. This tool is based on the Scripthon language
which was developed for these purposes in the scope of this
work. A script, which describes a source code structure and its
properties, can be written in this language. This allows
defining dynamic properties of searching requirements. Next,
an abstract syntax tree (hereinafter AST) is created
dynamically from this script. Meanwhile, a similar tree is
created from given Java source, and these two trees are
matched by a graph matching algorithm. However, not only
graph shapes are compared, also trees properties are
considered. To obtain results faster, several graph
optimizations are used during this process. And it is possible
to scan higher amount of source code classes during a
relatively short time. Typical usage of this approach is as
follows: A user wants to find something, not easily
describable, in a large program. But he or she knows that it
could be there. He or she can use our tool and try to find at
least the similar snippet of indented code. Therefore, a user
performs a searching procedure, and specifies the input script
based on the received results. By repeating this procedure, he
or she filters the unintended results, and finally gets the
desired code snippet. Our tool is useful not just for the fast
Java sources scanning, but for example, for a better
definability of search conditions.

This work is supported by the SGS11/167/OHK4/3T/14 grant of the
Ministry of Education, Youth and Sports of the Czech Republic.

Tomáš Bublík is with the Faculty of Nuclear Sciences and Physical
Engineering Czech Technical University in Prague, Trojanova 13, Prague,
120 00, Czech Republic, e-mail: tomas.bublik@gmail.com

Miroslav Virius is with the Faculty of Nuclear Sciences and Physical
Engineering Czech Technical University in Prague, Trojanova 13, Prague,
120 00, Czech Republic, e-mail: miroslav.virius@fjfi.cvut.cz

Another usage area of our tool can be a clone’s detection
problem. By using other clones detection tools, a material for
further research can be gathered. For example, the non-ideal
clones are difficult to detect and the output of such programs
isn’t unequivocal in many cases. However, it can be classified
by Sripthon, and a common searching script based on such
output can be.

II. THEORY

A graph is an ordered pair ܩ ൌ ሺܸ, ,ሻ where ܸ is a finiteܧ
non-empty set of objects called vertices, and ܧ is a (possibly
empty) set of unordered pairs of distinct vertices i.e., 2-
subsets of ܸ called edges. The set ܸ is called the vertex set of
݁ If .ܩ is called the edge set of ܧ and ,ܩ ൌ ሼݑ, ሽݒ א ሻ, weܩሺܧ
say that vertices ݑ and ݒ are adjacent in ܩ, and that ݁ ݆ݑ ݏ݊݅݋
and ݒ. We’ll also say that ݑ and ݒ are the ݁݊݀ݏ of ݁. The edge
݁ is said to be ݅݊ܿ݅݀݁݊ݐ with ݑ (and ݒ), and vice versa. We
write ݒݑ (or ݑݒ) to denote the edge ሼݑ, ሽ, on theݒ
understanding that no order is implied. Two graphs are ݈݁ܽݑݍ
if they have the same vertex set and the same edge set. But
there are other ways in which two graphs could be regarded
the same. For example, one could regard two graph as being
“the same” if it is possible to rename the vertices of one and
obtain the other. Such graphs are identical in every respect
except for the names of the vertices. In this case, we call the
graphs ݄݅ܿ݅݌ݎ݋݉݋ݏ. Formally, graphs ܩ and ܪ are
isomorphic if there is a 1 െ 1 correspondence ݂: ܸሺܩሻ ՜ ܸሺܪሻ
such that א ݕݔ ሻܩሺܧ ՞ ݂ሺݔሻ݂ሺݕሻ א ሻ. This function ݂ isܪሺܧ
called an isomorphism.

A tree is a connected graph that has no cycles (i.e., a
connected acyclic graph).

The graph matching problem is actually the same as the
problem of finding the isomorphism between the graphs.
Moreover, matching the parts of a graph with a pattern is the
same challenge as the finding the isomorphic subgraph. There
are many approaches to this topic [1].

Subgraph isomorphism is useful to find out if a given
object is part of another object or even of a collection of
several objects. The maximum common subgraph of two
graphs ଵ݃and ݃ଶ is the largest graph that is isomorphic to a
subgraph of both ݃ଵ and ݃ଶ. Maximum common subgraph is
useful to measure the similarity of two objects. Algorithms for
graph isomorphism, subgraph isomorphism and maximum
common subgraph detection have been reported in [2]–[5].

A more general method to measure the similarity of two
graphs is graph edit distance. It is a generalization of string
edit distance, also known as Levenshtein distance [6].

Another approach measuring the similarity of two graphs is
a distance measure based on the maximum common subgraph
between ଵ݃ and ݃ଶ. With increasing work being done in the

Tomáš Bublík, Miroslav Virius

Tool for Fast Detection of Java Code Snippets

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1974

field of maximum common subgraph detection, these
measures are growing in popularity. In [7], a graph distance
measure based on the maximum common subgraph of two
graphs is introduced.

It is shown that the well-known concept of maximum
common subgraph distance is a special case of graph edit
distance under particular edit costs. Consequently, algorithms
originally developed for maximum common subgraph
detection can be used for edit distance computation and vice
versa for the considered edit costs. Furthermore, in [8] the
concepts of maximum common subgraph and minimum
common supergraph are combined to derive a graph distance
measure and in [9], graph distances based on the minimum
common supergraph denoted as the ݃݊݋݅݊ݑ ݄݌ܽݎ are
discussed.

A number of graph matching algorithms are known from
the literature [10]-[13]. All of these methods are guaranteed to
find the optimal solution, but require exponential time and
space. Suboptimal or approximate methods, on the other
hand, are polynomially bound in the number of computation
steps, but may fail to find the optimal solution.

In [14], inexact graph matching is performed by calculating
the Levenshtein distance on the eigenvectors of the graphs.
Another approach illustrated in [15] converts the adjacency
matrix into a string, then uses the leading eigenvector to
impose a serial ordering on the string.

Graphs are then matched by applying string matching
techniques to their string representation. A different idea is
pursued in [16], [17] where eigen(sub)space projections and
vertex clustering methods are explored.

Whereas in [17] the objective of the method is to work in
the eigenspace of the graphs, in [16] similar subgraphs are
matched based on their vertex connectivities defined in the
common subspace.

III. OTHER SOLUTIONS

There exists a lot of searching types which can be used to
detect a clone [18]. The textual approaches belong to basic
ones. These approaches are easy to implement, on the other
hand, because of a large excess of non-program material
contained in source code, they suffer from a whole range of
ailments. For example, checking a variable scope could be
very challenging issue by using textual comparisons.

 The token-based comparisons are the next group of
approaches needs to be considered. This kind of approaches
divides a source code into the tokens sequences which are
compared to each other. This is little more robust than the
textual ones, because it doesn’t work with unnecessary text
material like spaces, comments etc. However, this approach
still does not handle a variable or a method scope.

More effective algorithms are the tree-based. There exist
two approaches to them: metric-based and tree-based. The
metric-based ones use the Java source generated metrics.
These metrics are then compared with the metric generated
from original sources. The tree-based methods are base on
abstract syntax subtrees comparison. These methods are used

in our work. They are little more difficult to implement, but
they are very effective and they offers more searching
options. On contrary, the algorithms based on these methods
are more time consuming comparing to other types.

Ira D. Baxter was a pioneer in this area [19]. He proposed a
solution using the subtrees hashing into the buckets. And only
the same bucket trees are being compared.

Another solution proposed Wahler [20]. He converted AST
into XML and applied data mining techniques on it. The
remaining question is the speed of XML processing
procedures. Further, an interesting option proposed [21]. They
serialized generated AST and compared just the suffix tree
tokens of it. The proposed algorithm is very fast. It is able to
detect a clone in a linear time.

The lack of these algorithms is the inability to detect
snippets dynamically. They suppose a constant and
unchanging original pattern. On the opposite, our solution
offers the usage of the dynamic input based on a scripting
language. This means that the input could be conditioned or
iterated, and the searching tree changes according to the
searched tree properties. Even the variables can be used. For
example, a user can declare the “clazz” variable of type Class,
and use it later for the name comparison:

Class clazz

 Block(StmtNum=2)

 if (clazz.Name=="HelloWorld")

 ...

 else

 ...

This example means that we search the class with two

statements inside, and if the name of this class is
“HelloWorld”, then we search something, else we search
something else.

IV. SCRIPTHON LANGUAGE

Within this work, a new programming language named
Scripthon, capable of these functionalities, was developed.
Using this language, it is possible to describe a code structure
with properties, and it is even possible to change the
properties of a searching sample in dependence of searched
segment properties.

Scripthon is a dynamically typed, interpreted, and non-
procedural language. Its translation into a tree-expressing
form and its usage is very similar to the usage of any other
modern script languages. The complete definition of the
Scripthon language semantics, which is beyond the scope of
this paper, can be found in [22].

Because the language is designed to be just a scripting
language, there are no special constructions starting a script.
This language is neither a pure object-oriented language. The
input for a compiler is a text with a sequence of commands.
This sequence describes consecutive statements in Java source
code. Commands with a variable detail degree correspond to a
variable length code segment. A detail level is not fixed, and
can vary in every command. One command can correspond to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1975

a line of source code; other one can describe a whole class in
Java. A Scripthon structure is very similar to the structures of
the others contemporary dynamic programming languages.
Individual commands are separated by lines. There is no
command separator in Scripthon. Inner parts of blocks are tab
nested. A block is not delimited by any signs; just a hierarchy
of tabulators is used.

Looking for a method with a specific name? Suppose we
have the most common Java code:

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println(args);

 }

}

Let’s suppose we are looking for the method named
“main”. It’s easy. A user just starts a text search dialog
(usually by CTLF + F shortcut) and performs a searching
procedure. Unfortunately, this will find a lot of miscellaneous
results. With Scripthon, we can search just methods:

Meth(Name=”main”)

Moreover, we want just the public and static ones:

Meth(Name=”main”; Rest=[public, static])

Even more, the most specific searching criteria for the main

method are:

Meth(Name="main"; Rest=[public, static]; Ret=void; ParNum=1;

ParTypes=[String[]]; ParNames=["args"])

With Scripthon, we can define a method call inside the

main method:

Meth(Name=”main”; Rest=[public, static])

 MethCall(Name="System.out.println";Params=["args"])

Scripthon supports also a block of code description. We can

define properties of block by this way:

 Class(Name="HelloWorld")

 Meth(Name=”main”)

 Block(StmtNum=1;Order=false)

Again, this example corresponds to a given “hello world”

example. There is one statement inside the main method and
the order of statements doesn’t matter. Another interesting
Scripthon’s keyword is the word “Any”. It is useful for an
indefinite searching. It means the searched statements can be
anything, or empty. To describe the code above, we can write:

 Meth(Name=”main”)

 Any()

But the desired code can look like this:

 public static void main(String[] args) {

 int i = 1;

 i++;

 System.out.println(args);

 }

And we can find this by the following script:

 Meth(Name=”main”)

 Any()

 MethCall(Name="System.out.println")

There are several more keywords supported by Scripthon.

For example, Init() for a variable initialization, Loop() for a
common loop, etc. Finally, with the presented examples, it is
easy to find a singleton in code:

Class() class

Block(Order=false;Consecutive=false)

 Meth(Name=class.Name;Rest=private)

 MethCall(Ret=class.Name;Rest=[public, static])

The only unmentioned parameter here is the “consecutive”

parameter. It means that the statements inside block must not
be consecutive. These statements just need to be contained
somewhere in the given block.

V. OBTAINING OPTIMIZED TREES

The Java Compiler API is used to get AST from the given
Java sources in the first iteration. This API is free and is
contained in Java SDK. It provides access to control the Java
compiler, and one of the compilation outputs is an abstract
syntax tree of the given sources. Just one condition needs to
be met. The Java sources must be compilable.

While browsing the Java source code, the tree, with the
nodes enhanced by four numbers, is created. These numbers
are the natural numbers named left, right, level and level
under. The first and the second number (left, right) denote the
order index of a node in the tree preorder traversal. Therefore,
an ancestor’s left index is always smaller than its children left
index, while the right index is always bigger than any
children’s right index. The level number denotes the level in a
tree hierarchy of vertices, and the level under number denotes
a number of levels under the current node (compare with the
method described in [23]).

Suppose that ݔ and ݕ are two nodes from a tree; the
following rules are valid for these values.
 The y node is an ancestor of x and x is a descendant of y

if y. left ൏ .ݔ left ൏ .ݕ ݐ݄݃݅ݎ
 The y node is a parent of x and x is a child of y if 1)

y. left ൏ .ݔ left ൏ .ݕ .and 2) y ݐ݄݃݅ݎ level ൌ x. level െ 1
 The node x has ሺሺx. left െ x. rightሻ െ 1ሻ sub-nodes.

All these data are acquired during a single pass through the
tree. Obtaining this information is not a time consuming
operation, because it is made during the tree production
process. On the other hand, the number of comparisons can be
significantly reduced with these numbers.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1976

Fig. 1 Example of AST with indexes

With this information (Fig. 1), we know how many
children are contained in the currently processing node, or
whether a node is a leaf. Thanks to it, a lot comparisons need
not to be performed. For example, comparing this script:

Meth(Name=”main”)

 Block(StmtNum=4)

 with this Java code:

public static void main(String[] args) {

 System.out.println(args);

}

means that these two nodes are compared (Fig. 2)

Fig. 2 Node “main” with one child

But the left and right indexes signalizes that the “main”
node does have just one child, however, we search for a
method with 4 statements. So that, this code does not
corresponds to the script, and any other comparisons are not
needed.

VI. COMPREHENSIVE DESCRIPTION OF SOLUTION

The complete process is little bit complex, but the top
overview is easy. Before the main matching procedure, two
processes take place. The first one starts immediately after a
user enters a Java sources path. It compiles and optimizes
AST obtained from the sources. This process is done just
once, because the sources are always the same in scope of this
process. It runs on the background. The second process starts

immediately after a user enters a searching script. It compiles
the script and, if it is not done, waits for the first process.

Fig. 3 Complete process

Next, the first iteration is performed. Matching is
performed together with index building during this iteration.
After that, results are presented to a user. It is supposed that a
user improves the entered script according to the results. And
then the algorithm runs again with only difference. Only the
nodes corresponding to the index of changed Scripthon part
are considered.

Fig. 4 Indexing of nodes

Fig. 4 shows how the indexing works. Let’s suppose the

same “HelloWorld” example from the beginning of this paper.
The index into the group of corresponding Java sources is
assigned to all non-leaf nodes. When a user changes the input
script, the new and the old corresponding trees are compared.
In our example (Fig. 4), the “System.out.println” method call
was changed to the initiation the variable “i” of type int. This
is indicated by gray colour. The node which contains this
change is then detected by the tree matching algorithm. It is
clear that the set of corresponding Java sources to this node
remains the same. Therefore, only this set needs to be
considered in the next search iteration.

This top level listing shows how the matching algorithm
works:
1 for(Class c from classes)
2 for (Statement s from statements)
3 match = compare(c.node, s)
4 if (!match)
5 break
6 if (match)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1977

7 addToResults(c)
8
9 compare(Node n, Statement s)
10 match = optiMatch(n, s)
11 if (match)
12 if (n.allProperties matches s.allProperties)
13 addResultsForThisStatement(n, s);
14 for (n.children, s.children)
15 match = compare(...)
16 if (!match)
17 return false
18 else return false
19 return match
20
21 optiMatch(Node n, Statement s)
22 checkTreeSizes(n, s)
23 checkLevels(n, s)
24 checkChildrensNumber(n, s)
25 return resultOfChecks

All the source classes are iterated in a loop (line 1). Next,

all the Scripthon statements are then iterated inside this loop
(line 2). The “compare” method is called inside the second
loop. This method compares all the sub-statements with the
node from the outside loop. If there is a match, the founded
result is added to the group of results (line 7); otherwise the
inner loop is beaked (line 5). According to the line 15, the
“compare” method calls itself recursively. First, it checks the
match with prepared optimizations (line 10). The “optiMatch”
method (line 21) checks the structure of trees and tries to
exclude the node by tree sizes mismatch, by levels number
mismatch or children number mismatch. If the “optiMatch”
method return false, then the node is excluded from further
considerations (line 18). On contrary, when the optimizations
do not exclude the node, all the children of the statement and
node are compared in the “compare” recursive call (line 15).
But before that, we know about the correspondence between
the current statement and the current node, therefore it is
saved into memory on the line 13. If the entire children set
matches, the current node is considered equal, and true is
returned from the “compare” method (line 19). Otherwise,
false is returned (line 17). Finally, if is the node equals to all
the Sripthon statements, it is saved into the results set (line 7).

VII. COMPLEXITY ANALYSIS

Because the non-constant trees are compared, the
complexity determination of our algorithm is not an easy task.
Syntax trees are always little bit different and since we
compare the characteristics of the nodes according to a user
input, the comparison is always different. To begin, it is
possible to emerge from the complexity of the subtrees
comparing algorithm. The subtree comparison problem is NP-
hard. And according to [24], the complexity isܱሺሺ݊ଵ ൅ ݊ଶሻଶሻ,
where ݊ଵ is number of the first tree nodes whereas ݊ଶ is
number of the second tree nodes. There exist also several
improvements [25].

Our algorithm, however, is based on the use of information
on the required sample tree. Thanks to this information, a lot
of comparisons can be saved. Moreover, the whole tree is
traversed just once during the first run. During next runs, just
the data, corresponding to the node containing the change, are
considered. Unfortunately, also the commands increasing the
comparisons number can be written in Scripthon. For
example:

Any()

MethCall(Name="someName")

This script must run over all statements in the source code

up to the “someMethod” method. If the code before this
method is large, several more comparisons must be done. And
moreover, it must be done even in the case if there is no such
method. This means ݊ more comparisons in the worst case.
Another example:

Block(Order=false)

 ...

This command identifies the statements in a block. But if

the statements order doesn’t matter, the algorithm must
compare all the children of the “Block” node. If the first
statement corresponds to the last child, there will be ݊ more
comparisons. And if the second statement corresponds to the
penultimate child, there will be ݊ െ 1 more comparisons. In
conclusion, there could be ~݊ଶ more comparisons in the
worst case.

To assess whether the implemented optimization makes
sense, the algorithm is equipped with the ability to switch off
the optimization globally. If we note how many comparisons
actually occur in the case of enabled optimizations, we obtain
the basis to assess whether our optimization are meaningful.
We chose a project with 800 Java classes as a test sample.
Then several search iteration were run over this project.

When testing with disabled optimizations, nodes 142 275
comparisons were performed. On the other hand, with enabled
optimization, there was a big difference between the first run,
with index gathering function, and the following rounds, with
using this index. In the first case, there were 28 268
comparisons, whilst in the second case, there were 6 800. As
can be seen, the second comparisons numbers are much
lower.

VIII. RESULTS

A quite common computer with Windows 7, 2,4 GHz CPU
and 8 GB memory was used to test the time complexity of our
algorithm. Used Java version was 1.7.0_51. To show real
benefits of our solution, we performed several search
procedures with disabled and also with enabled optimizations.
We tried to identify several important parts which could, by
their time, reflect the actual contribution of the whole work.
Without optimizations, the algorithm runs over all input
classes by the “brute force” method. In this case, no results
caching and no indexing was used. We compared the obtained

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1978

times with times of optimized algorithm version in Tables I
and II.

TABLE I

FIRST MEASURED TIMES
First round No optimizations Optimized

Time of Java compilation 38 469 ms 39 542 ms

Time of Scripthon compilation 35 ms 33 ms

Time of search 962 ms 170 ms

Total time 39 441 ms 39 924 ms

TABLE II
SECOND MEASURED TIMES

Second round No optimizations Optimized

Time of Java compilation 0 ms 0 ms

Time of Scripthon compilation 48 ms 44 ms

Time of search 888 ms 151 ms

Time of search with change detection 68 ms 15 ms

Total time 1 062 ms 208 ms

Total time with change detection 118 ms 62 ms

As can be seen from the tables, measurements were carried
out in two phases. The first table shows the times received
always in the first run of the algorithm. Both tables have two
columns to indicate whether the time was with or without the
optimizations. The first significant difference is the time of
compilation which is not used in the second run. It is zero,
because it does not occur in further runs.

Next row represents the times of Scripthon code
compilation process. Because there weren’t significant
differences between the searching scripts, these times are
almost the same. Another row shows the times of the own
matching process. There is a big difference between these
times. Optimized version is about 5 times faster, however,
according to the first table, this time is completely lost in the
compilation time. To make matters worse, the total time is
even bigger than the time without any optimization!

The second table contains one more row. This row shows
the time of matching process with help of the index created in
previous runs. In this case we used this script:

Class()
 Any()
 Meth(Name="add")
 Init(Name="errors")

For the further runs, the only change was a name in the
“Init” statement. The algorithm used just the nodes
corresponding to “Meth(Name=”add”)” in this case. In other
words, the algorithm considered just the classes with methods
named “add”. As can be seen, if there is no need to compile
the entire sources again, and if the algorithm has an index
created from the previous runs, the matching time acceleration
is enormous. Then the complete process runs for a tiny
fraction of the time needed to run the same task without any
improvement.

IX. CONCLUSION

Our project showed that the source recognition can be
speeded up highly. The significant contribution for the speed
is the caching the nodes corresponding to statements.
Although this approach speeded up the process, however, it is
necessary to say that this applies just for further runs. In the
case of the first runs, compilation of sources takes a lot of
time. But there exist a lot of improvements. For example, the
compilation can start already during script wring.

This project shows the usability of programmable and
dynamic code recognition in an acceptable time. Currently,
the project is used just for science purposes, but we want to
add all the workaround to make it other users. We consider
also the use of the tree indexing methods to achieve even a
higher speed of the matching process in the future.

REFERENCES
[1] Christophe-André M. Irniger, “Graph Matching - Filtering Databases of

Graphs Using Machine Learning Techniques,” 2005, ISBN 1-58603-
557-6.

[2] B.D. McKay, “ractical graph isomorphism,” In Congressus
Numerantium, volume 30, 1981, pages 45–87.

[3] J.R. Ullmann, “An algorithm for subgraph isomorphism,” Journal ofthe
Association for Computing Machinery, 1976, pages 31-42.

[4] G. Levi, “A note on the derivation of maximal common subgraphs
oftwo directed or undirected graphs,” Calcolo, 1972, pages 341-354.

[5] J. McGregor, “Backtrack search algorithms and the maximal common
subgraph problem,” Software-Practice and Experience, 1982, pages 23-
34.

[6] G.A. Stephen, “String Searching Algorithms,” World Scientific, 1994.
[7] H. Bunke and K. Shearer, “A graph distance metric based on the

maximalcommon subgraph,” Pattern Recognition Letters, 1998, pages
255-259.

[8] M.-L. Fernandez and G. Valiente, “A graph distance metric combining
maximum common subgraph and minimum common supergraph,”
Pattern Recognition Letters, 2001, pages 753-758.

[9] W.D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray, “Graph distances
using graph union,” Pattern Recognition Letters, May 2001, pages 701-
704.

[10] A. Sanfeliu and K.S. Fu, “A distance measure between attributed
relationalgraphs for pattern recognition,” IEEE Transactions on
Systems, Man, and Cybernetics, 1983, 353-363.

[11] W.H. Tsai and K.S. Fu, “Error-correcting isomorphisms of
attributedrelational graphs for pattern recognition.” IEEE Transactions
on Systems, Man, and Cybernetics, 1979, pages 757-768.

[12] M.A. Eshera and K.S. Fu, “A graph distance measure for image
analysis,” IEEE Transactions on Systems, Man, and Cybernetics, 1984,
pages 398-408.

[13] E.K. Wong, “Three-dimensional object recognition by attributed
graphs,” In H. Bunke and A. Sanfeliu, editors, Syntactic and Structural
Pattern Recognition- Theory and Applications, World Scientific, 1990,
pages 381-414.

[14] R. Wilson and E.R. Hancock, “Levenshtein distance for graph spectral
features,” In J. Kittler, M. Petrou, and M. Nixon, editors, Proc. 17th Int.
Conference on Pattern Recognition, volume 2, 2004, pages 489-492.

[15] A. Robles-Kelly and E.R. Hancock, “Graph edit distance from spectral
seriation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2005, pages 365-378.

[16] T. Caelli and S. Kosinov, “Inexact graph matching using eigensubspace
projection clustering,” Int. Journal of Pattern Recognition and Artificial
Intelligence, 2004, pages 329-355.

[17] T. Caelli and S. Kosinov, “An eigenspace projection clustering method
for inexact graph matching,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2004, pages 515-519.

[18] Ch. K. Roy, J. R. Cordy, and R. Koschke. 2009. “Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach,” Sci. Comput. Program. 74, 7 (May 2009), pp. 470-495.

[19] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier. 1998.
“Clone Detection Using Abstract Syntax Trees,” in Proceedings of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

1979

International Conference on Software Maintenance (ICSM '98). IEEE
Computer Society, Washington, DC, USA, pp. 368-377.

[20] V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fischer, "Clone
detection in source code by frequent itemset techniques," In SCAM,
2004.

[21] R. Koschke, R.Falke, P. Frenzel, “Clone Detection Using Abstract
Syntax Suffix Trees, Reverse Engineering,” 2006. WCRE '06. 13th
Working Conference on, ISBN 0-7695-2719-1, 2006, pages 253-262.

[22] Tomáš Bublík., Miroslav Virius.: “New language for searching Java
code snippets,” in: ITAT 2012. Proc. of the 12th national conference
ITAT. diar, Sep 17 – 21 2012. Pavol Jozef Safrik University in Kosice.
p. 35 – 40.

[23] J. T. Yao and M. Zhang. 2004. “A Fast Tree Pattern Matching
Algorithm for XML Query,” in Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web Intelligence (WI
’04). IEEE Computer Society, Washington, DC, USA, pp. 235-241.

[24] G. Valiente, "Algorithms on Trees and Graphs," Springer, ISBN
3540435506, 2002, page 170.

[25] R. Shamir, D. Tsur, "Faster Subtree Isomorphism," In Journal of
Algorithms, Volume 33 Issue 2, 1999, pages 267-280,
doi:10.1006/jagm.1999.104

