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 
Abstract—This paper presents general results on the Java source 

code snippet detection problem. We propose the tool which uses 
graph and subgraph isomorphism detection. A number of solutions 
for all of these tasks have been proposed in the literature. However, 
although that all these solutions are really fast, they compare just the 
constant static trees. Our solution offers to enter an input sample 
dynamically with the Scripthon language while preserving an 
acceptable speed. We used several optimizations to achieve very low 
number of comparisons during the matching algorithm. 
 

Keywords—AST, Java, tree matching, Scripthon, source code 
recognition  

I. INTRODUCTION 

T is usual that programs, consisting of a large source code, 
are becoming chaotic, and many times described illnesses 

start to appear (code duplicity, weak reusability, etc.). 
Maintaining a source code is a serious issue. There are a lot of 
tools and guides on how to approach this issue. The tool, 
described in this work, serves to programmable Java source 
code scanning. This tool is based on the Scripthon language 
which was developed for these purposes in the scope of this 
work. A script, which describes a source code structure and its 
properties, can be written in this language. This allows 
defining dynamic properties of searching requirements. Next, 
an abstract syntax tree (hereinafter AST) is created 
dynamically from this script. Meanwhile, a similar tree is 
created from given Java source, and these two trees are 
matched by a graph matching algorithm. However, not only 
graph shapes are compared, also trees properties are 
considered. To obtain results faster, several graph 
optimizations are used during this process. And it is possible 
to scan higher amount of source code classes during a 
relatively short time. Typical usage of this approach is as 
follows: A user wants to find something, not easily 
describable, in a large program. But he or she knows that it 
could be there. He or she can use our tool and try to find at 
least the similar snippet of indented code. Therefore, a user 
performs a searching procedure, and specifies the input script 
based on the received results. By repeating this procedure, he 
or she filters the unintended results, and finally gets the 
desired code snippet. Our tool is useful not just for the fast 
Java sources scanning, but for example, for a better 
definability of search conditions.  
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Another usage area of our tool can be a clone’s detection 
problem. By using other clones detection tools, a material for 
further research can be gathered. For example, the non-ideal 
clones are difficult to detect and the output of such programs 
isn’t unequivocal in many cases. However, it can be classified 
by Sripthon, and a common searching script based on such 
output can be.  

II. THEORY 

A graph is an ordered pair ܩ ൌ ሺܸ,  ,ሻ where ܸ is a finiteܧ
non-empty set of objects called vertices, and ܧ is a (possibly 
empty) set of unordered pairs of distinct vertices i.e., 2-
subsets of ܸ called edges. The set ܸ is called the vertex set of 
݁ If .ܩ is called the edge set of ܧ and ,ܩ ൌ ሼݑ, ሽݒ א  ሻ, weܩሺܧ
say that vertices ݑ and ݒ are adjacent in ܩ, and that ݁ ݆ݑ ݏ݊݅݋ 
and ݒ. We’ll also say that ݑ and ݒ are the ݁݊݀ݏ of ݁. The edge 
݁ is said to be ݅݊ܿ݅݀݁݊ݐ with ݑ (and ݒ), and vice versa. We 
write ݒݑ (or ݑݒ) to denote the edge ሼݑ,  ሽ, on theݒ
understanding that no order is implied. Two graphs are ݈݁ܽݑݍ 
if they have the same vertex set and the same edge set. But 
there are other ways in which two graphs could be regarded 
the same. For example, one could regard two graph as being 
“the same” if it is possible to rename the vertices of one and 
obtain the other. Such graphs are identical in every respect 
except for the names of the vertices. In this case, we call the 
graphs ݄݅ܿ݅݌ݎ݋݉݋ݏ. Formally, graphs ܩ and ܪ are 
isomorphic if there is a 1 െ 1 correspondence ݂: ܸሺܩሻ ՜ ܸሺܪሻ 
such that א ݕݔ ሻܩሺܧ ՞ ݂ሺݔሻ݂ሺݕሻ א  ሻ. This function ݂ isܪሺܧ
called an isomorphism.  

A tree is a connected graph that has no cycles (i.e., a 
connected acyclic graph).  

The graph matching problem is actually the same as the 
problem of finding the isomorphism between the graphs. 
Moreover, matching the parts of a graph with a pattern is the 
same challenge as the finding the isomorphic subgraph. There 
are many approaches to this topic [1]. 

Subgraph isomorphism is useful to find out if a given 
object is part of another object or even of a collection of 
several objects. The maximum common subgraph of two 
graphs ଵ݃and ݃ଶ is the largest graph that is isomorphic to a 
subgraph of both ݃ଵ and ݃ଶ. Maximum common subgraph is 
useful to measure the similarity of two objects. Algorithms for 
graph isomorphism, subgraph isomorphism and maximum 
common subgraph detection have been reported in [2]–[5]. 

A more general method to measure the similarity of two 
graphs is graph edit distance. It is a generalization of string 
edit distance, also known as Levenshtein distance [6].  

Another approach measuring the similarity of two graphs is 
a distance measure based on the maximum common subgraph 
between ଵ݃ and ݃ଶ. With increasing work being done in the 
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field of maximum common subgraph detection, these 
measures are growing in popularity. In [7], a graph distance 
measure based on the maximum common subgraph of two 
graphs is introduced.  

It is shown that the well-known concept of maximum 
common subgraph distance is a special case of graph edit 
distance under particular edit costs. Consequently, algorithms 
originally developed for maximum common subgraph 
detection can be used for edit distance computation and vice 
versa for the considered edit costs. Furthermore, in [8] the 
concepts of maximum common subgraph and minimum 
common supergraph are combined to derive a graph distance 
measure and in [9], graph distances based on the minimum 
common supergraph denoted as the ݃݊݋݅݊ݑ ݄݌ܽݎ are 
discussed. 

A number of graph matching algorithms are known from 
the literature [10]-[13]. All of these methods are guaranteed to 
find the optimal solution, but require exponential time and 
space. Suboptimal or approximate methods, on the other 
hand, are polynomially bound in the number of computation 
steps, but may fail to find the optimal solution.  

In [14], inexact graph matching is performed by calculating 
the Levenshtein distance on the eigenvectors of the graphs. 
Another approach illustrated in [15] converts the adjacency 
matrix into a string, then uses the leading eigenvector to 
impose a serial ordering on the string.  

Graphs are then matched by applying string matching 
techniques to their string representation. A different idea is 
pursued in [16], [17] where eigen(sub)space projections and 
vertex clustering methods are explored.  

Whereas in [17] the objective of the method is to work in 
the eigenspace of the graphs, in [16] similar subgraphs are 
matched based on their vertex connectivities defined in the 
common subspace. 

III. OTHER SOLUTIONS 

There exists a lot of searching types which can be used to 
detect a clone [18]. The textual approaches belong to basic 
ones. These approaches are easy to implement, on the other 
hand, because of a large excess of non-program material 
contained in source code, they suffer from a whole range of 
ailments. For example, checking a variable scope could be 
very challenging issue by using textual comparisons.  

 The token-based comparisons are the next group of 
approaches needs to be considered. This kind of approaches 
divides a source code into the tokens sequences which are 
compared to each other. This is little more robust than the 
textual ones, because it doesn’t work with unnecessary text 
material like spaces, comments etc. However, this approach 
still does not handle a variable or a method scope. 

More effective algorithms are the tree-based. There exist 
two approaches to them: metric-based and tree-based. The 
metric-based ones use the Java source generated metrics. 
These metrics are then compared with the metric generated 
from original sources. The tree-based methods are base on 
abstract syntax subtrees comparison. These methods are used 

in our work. They are little more difficult to implement, but 
they are very effective and they offers more searching 
options. On contrary, the algorithms based on these methods 
are more time consuming comparing to other types. 

Ira D. Baxter was a pioneer in this area [19]. He proposed a 
solution using the subtrees hashing into the buckets. And only 
the same bucket trees are being compared.   

Another solution proposed Wahler [20]. He converted AST 
into XML and applied data mining techniques on it. The 
remaining question is the speed of XML processing 
procedures. Further, an interesting option proposed [21]. They 
serialized generated AST and compared just the suffix tree 
tokens of it. The proposed algorithm is very fast. It is able to 
detect a clone in a linear time.  

The lack of these algorithms is the inability to detect 
snippets dynamically. They suppose a constant and 
unchanging original pattern. On the opposite, our solution 
offers the usage of the dynamic input based on a scripting 
language. This means that the input could be conditioned or 
iterated, and the searching tree changes according to the 
searched tree properties. Even the variables can be used. For 
example, a user can declare the “clazz” variable of type Class, 
and use it later for the name comparison:  

 
Class clazz 

  Block(StmtNum=2) 

  if (clazz.Name=="HelloWorld") 

    ... 

  else 

    ... 
 
This example means that we search the class with two 

statements inside, and if the name of this class is 
“HelloWorld”, then we search something, else we search 
something else.  

IV. SCRIPTHON LANGUAGE 

Within this work, a new programming language named 
Scripthon, capable of these functionalities, was developed. 
Using this language, it is possible to describe a code structure 
with properties, and it is even possible to change the 
properties of a searching sample in dependence of searched 
segment properties. 

Scripthon is a dynamically typed, interpreted, and non-
procedural language. Its translation into a tree-expressing 
form and its usage is very similar to the usage of any other 
modern script languages. The complete definition of the 
Scripthon language semantics, which is beyond the scope of 
this paper, can be found in [22].  

Because the language is designed to be just a scripting 
language, there are no special constructions starting a script. 
This language is neither a pure object-oriented language. The 
input for a compiler is a text with a sequence of commands. 
This sequence describes consecutive statements in Java source 
code. Commands with a variable detail degree correspond to a 
variable length code segment. A detail level is not fixed, and 
can vary in every command. One command can correspond to 
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a line of source code; other one can describe a whole class in 
Java. A Scripthon structure is very similar to the structures of 
the others contemporary dynamic programming languages. 
Individual commands are separated by lines. There is no 
command separator in Scripthon. Inner parts of blocks are tab 
nested. A block is not delimited by any signs; just a hierarchy 
of tabulators is used. 

Looking for a method with a specific name? Suppose we 
have the most common Java code: 

 
public class HelloWorld { 

  public static void main(String[] args) { 

            System.out.println(args); 

     } 

} 
 

Let’s suppose we are looking for the method named 
“main”. It’s easy. A user just starts a text search dialog 
(usually by CTLF + F shortcut) and performs a searching 
procedure. Unfortunately, this will find a lot of miscellaneous 
results. With Scripthon, we can search just methods: 

 
Meth(Name=”main”)  

Moreover, we want just the public and static ones: 
 
Meth(Name=”main”; Rest=[public, static])  

 
Even more, the most specific searching criteria for the main 

method are: 
 
Meth(Name="main"; Rest=[public, static]; Ret=void; ParNum=1; 

ParTypes=[String[]]; ParNames=["args"]) 
 
With Scripthon, we can define a method call inside the 

main method: 
 
Meth(Name=”main”; Rest=[public, static])  

  MethCall(Name="System.out.println";Params=["args"]) 
 
Scripthon supports also a block of code description. We can 

define properties of block by this way:  
 
  Class(Name="HelloWorld") 

    Meth(Name=”main”) 

      Block(StmtNum=1;Order=false) 
 
Again, this example corresponds to a given “hello world” 

example. There is one statement inside the main method and 
the order of statements doesn’t matter. Another interesting 
Scripthon’s keyword is the word “Any”. It is useful for an 
indefinite searching. It means the searched statements can be 
anything, or empty. To describe the code above, we can write: 

 
 Meth(Name=”main”) 

    Any() 
 
But the desired code can look like this:  
 
  public static void main(String[] args) { 

    int i = 1; 

    i++; 

            System.out.println(args); 

      } 
 
And we can find this by the following script: 

 
  Meth(Name=”main”) 

    Any() 

    MethCall(Name="System.out.println") 
 
There are several more keywords supported by Scripthon. 

For example, Init() for a variable initialization, Loop() for a 
common loop, etc. Finally, with the presented examples, it is 
easy to find a singleton in code: 

 
Class() class 

Block(Order=false;Consecutive=false) 

      Meth(Name=class.Name;Rest=private) 

            MethCall(Ret=class.Name;Rest=[public, static]) 
 
The only unmentioned parameter here is the “consecutive” 

parameter. It means that the statements inside block must not 
be consecutive. These statements just need to be contained 
somewhere in the given block.  

V. OBTAINING OPTIMIZED TREES 

The Java Compiler API is used to get AST from the given 
Java sources in the first iteration. This API is free and is 
contained in Java SDK. It provides access to control the Java 
compiler, and one of the compilation outputs is an abstract 
syntax tree of the given sources. Just one condition needs to 
be met. The Java sources must be compilable.   

While browsing the Java source code, the tree, with the 
nodes enhanced by four numbers, is created. These numbers 
are the natural numbers named left, right, level and level 
under. The first and the second number (left, right) denote the 
order index of a node in the tree preorder traversal. Therefore, 
an ancestor’s left index is always smaller than its children left 
index, while the right index is always bigger than any 
children’s right index. The level number denotes the level in a 
tree hierarchy of vertices, and the level under number denotes 
a number of levels under the current node (compare with the 
method described in [23]). 

Suppose that ݔ and ݕ are two nodes from a tree; the 
following rules are valid for these values. 
 The y node is an ancestor of x and x is a descendant of y 

if y. left ൏ .ݔ left ൏ .ݕ  ݐ݄݃݅ݎ
 The y node is a parent of x and x is a child of y if 1) 

y. left ൏ .ݔ left ൏ .ݕ .and 2) y ݐ݄݃݅ݎ level ൌ x. level െ 1 
 The node x has ሺሺx. left െ x. rightሻ െ 1ሻ sub-nodes. 

All these data are acquired during a single pass through the 
tree. Obtaining this information is not a time consuming 
operation, because it is made during the tree production 
process. On the other hand, the number of comparisons can be 
significantly reduced with these numbers.  
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Fig. 1 Example of AST with indexes 
 

With this information (Fig. 1), we know how many 
children are contained in the currently processing node, or 
whether a node is a leaf. Thanks to it, a lot comparisons need 
not to be performed. For example, comparing this script: 

 
Meth(Name=”main”) 

  Block(StmtNum=4) 

 

 with this Java code: 
 
public static void main(String[] args) { 

          System.out.println(args); 

} 
 

means that these two nodes are compared (Fig. 2) 
 

 

Fig. 2 Node “main” with one child 
 

But the left and right indexes signalizes that the “main” 
node does have just one child, however, we search for a 
method with 4 statements. So that, this code does not 
corresponds to the script, and any other comparisons are not 
needed.  

VI. COMPREHENSIVE DESCRIPTION OF SOLUTION 

The complete process is little bit complex, but the top 
overview is easy. Before the main matching procedure, two 
processes take place. The first one starts immediately after a 
user enters a Java sources path. It compiles and optimizes 
AST obtained from the sources. This process is done just 
once, because the sources are always the same in scope of this 
process. It runs on the background. The second process starts 

immediately after a user enters a searching script. It compiles 
the script and, if it is not done, waits for the first process.  

 

 

Fig. 3 Complete process  
 

Next, the first iteration is performed. Matching is 
performed together with index building during this iteration. 
After that, results are presented to a user. It is supposed that a 
user improves the entered script according to the results. And 
then the algorithm runs again with only difference. Only the 
nodes corresponding to the index of changed Scripthon part 
are considered.  

 

 

Fig. 4 Indexing of nodes 
 
Fig. 4 shows how the indexing works. Let’s suppose the 

same “HelloWorld” example from the beginning of this paper. 
The index into the group of corresponding Java sources is 
assigned to all non-leaf nodes. When a user changes the input 
script, the new and the old corresponding trees are compared. 
In our example (Fig. 4), the “System.out.println” method call 
was changed to the initiation the variable “i” of type int. This 
is indicated by gray colour. The node which contains this 
change is then detected by the tree matching algorithm. It is 
clear that the set of corresponding Java sources to this node 
remains the same. Therefore, only this set needs to be 
considered in the next search iteration.  

This top level listing shows how the matching algorithm 
works:  
1 for(Class c from classes)  
2   for (Statement s from statements)  
3     match = compare(c.node, s) 
4     if (!match) 
5       break 
6   if (match)  
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7     addToResults(c) 
8     
9  compare(Node n, Statement s) 
10   match = optiMatch(n, s)  
11   if (match) 
12     if (n.allProperties matches s.allProperties)  
13       addResultsForThisStatement(n, s);  
14       for (n.children, s.children) 
15         match = compare(...)  
16         if (!match)  
17           return false 
18   else return false           
19 return match    
20     
21 optiMatch(Node n, Statement s)  
22   checkTreeSizes(n, s) 
23   checkLevels(n, s) 
24   checkChildrensNumber(n, s) 
25 return resultOfChecks    

 
All the source classes are iterated in a loop (line 1). Next, 

all the Scripthon statements are then iterated inside this loop 
(line 2). The “compare” method is called inside the second 
loop. This method compares all the sub-statements with the 
node from the outside loop. If there is a match, the founded 
result is added to the group of results (line 7); otherwise the 
inner loop is beaked (line 5). According to the line 15, the 
“compare” method calls itself recursively. First, it checks the 
match with prepared optimizations (line 10). The “optiMatch” 
method (line 21) checks the structure of trees and tries to 
exclude the node by tree sizes mismatch, by levels number 
mismatch or children number mismatch. If the “optiMatch” 
method return false, then the node is excluded from further 
considerations (line 18). On contrary, when the optimizations 
do not exclude the node, all the children of the statement and 
node are compared in the “compare” recursive call (line 15). 
But before that, we know about the correspondence between 
the current statement and the current node, therefore it is 
saved into memory on the line 13. If the entire children set 
matches, the current node is considered equal, and true is 
returned from the “compare” method (line 19). Otherwise, 
false is returned (line 17). Finally, if is the node equals to all 
the Sripthon statements, it is saved into the results set (line 7).  

VII. COMPLEXITY ANALYSIS 

Because the non-constant trees are compared, the 
complexity determination of our algorithm is not an easy task. 
Syntax trees are always little bit different and since we 
compare the characteristics of the nodes according to a user 
input, the comparison is always different. To begin, it is 
possible to emerge from the complexity of the subtrees 
comparing algorithm. The subtree comparison problem is NP-
hard. And according to [24], the complexity isܱሺሺ݊ଵ ൅  ݊ଶሻଶሻ, 
where ݊ଵ is number of the first tree nodes whereas ݊ଶ is 
number of the second tree nodes. There exist also several 
improvements [25]. 

Our algorithm, however, is based on the use of information 
on the required sample tree. Thanks to this information, a lot 
of comparisons can be saved. Moreover, the whole tree is 
traversed just once during the first run. During next runs, just 
the data, corresponding to the node containing the change, are 
considered. Unfortunately, also the commands increasing the 
comparisons number can be written in Scripthon. For 
example: 

 
Any() 

MethCall(Name="someName") 
 
This script must run over all statements in the source code 

up to the “someMethod” method. If the code before this 
method is large, several more comparisons must be done. And 
moreover, it must be done even in the case if there is no such 
method. This means ݊ more comparisons in the worst case. 
Another example:  

 
Block(Order=false) 

  ... 
   
This command identifies the statements in a block. But if 

the statements order doesn’t matter, the algorithm must 
compare all the children of the “Block” node. If the first 
statement corresponds to the last child, there will be ݊ more 
comparisons. And if the second statement corresponds to the 
penultimate child, there will be ݊ െ 1 more comparisons. In 
conclusion, there could be ~݊ଶ more comparisons in the 
worst case. 

To assess whether the implemented optimization makes 
sense, the algorithm is equipped with the ability to switch off 
the optimization globally. If we note how many comparisons 
actually occur in the case of enabled optimizations, we obtain 
the basis to assess whether our optimization are meaningful. 
We chose a project with 800 Java classes as a test sample. 
Then several search iteration were run over this project.  

When testing with disabled optimizations, nodes 142 275 
comparisons were performed. On the other hand, with enabled 
optimization, there was a big difference between the first run, 
with index gathering function, and the following rounds, with 
using this index. In the first case, there were 28 268 
comparisons, whilst in the second case, there were 6 800. As 
can be seen, the second comparisons numbers are much 
lower. 

VIII. RESULTS 

A quite common computer with Windows 7, 2,4 GHz CPU 
and 8 GB memory was used to test the time complexity of our 
algorithm. Used Java version was 1.7.0_51. To show real 
benefits of our solution, we performed several search 
procedures with disabled and also with enabled optimizations. 
We tried to identify several important parts which could, by 
their time, reflect the actual contribution of the whole work.  
Without optimizations, the algorithm runs over all input 
classes by the “brute force” method. In this case, no results 
caching and no indexing was used. We compared the obtained 
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times with times of optimized algorithm version in Tables I 
and II.  

 
TABLE I 

FIRST MEASURED TIMES 
First round No optimizations Optimized 

Time of Java compilation 38 469 ms 39 542 ms 

Time of Scripthon compilation 35 ms 33 ms 

Time of search 962 ms 170 ms 

Total time 39 441 ms 39 924 ms 
 

TABLE II 
SECOND MEASURED TIMES 

Second round No optimizations Optimized 

Time of Java compilation 0 ms 0 ms 

Time of Scripthon compilation 48 ms 44 ms 

Time of search 888 ms 151 ms 

Time of search with change detection 68 ms 15 ms 

Total time 1 062 ms 208 ms 

Total time with change detection 118 ms 62 ms 
 

As can be seen from the tables, measurements were carried 
out in two phases. The first table shows the times received 
always in the first run of the algorithm. Both tables have two 
columns to indicate whether the time was with or without the 
optimizations. The first significant difference is the time of 
compilation which is not used in the second run. It is zero, 
because it does not occur in further runs.  

Next row represents the times of Scripthon code 
compilation process. Because there weren’t significant 
differences between the searching scripts, these times are 
almost the same. Another row shows the times of the own 
matching process. There is a big difference between these 
times. Optimized version is about 5 times faster, however, 
according to the first table, this time is completely lost in the 
compilation time. To make matters worse, the total time is 
even bigger than the time without any optimization! 

The second table contains one more row. This row shows 
the time of matching process with help of the index created in 
previous runs. In this case we used this script:  

 
Class() 
    Any() 
    Meth(Name="add") 
        Init(Name="errors")  
 

For the further runs, the only change was a name in the 
“Init” statement. The algorithm used just the nodes 
corresponding to “Meth(Name=”add”)” in this case. In other 
words, the algorithm considered just the classes with methods 
named “add”. As can be seen, if there is no need to compile 
the entire sources again, and if the algorithm has an index 
created from the previous runs, the matching time acceleration 
is enormous. Then the complete process runs for a tiny 
fraction of the time needed to run the same task without any 
improvement.  

IX. CONCLUSION 

Our project showed that the source recognition can be 
speeded up highly.  The significant contribution for the speed 
is the caching the nodes corresponding to statements. 
Although this approach speeded up the process, however, it is 
necessary to say that this applies just for further runs. In the 
case of the first runs, compilation of sources takes a lot of 
time. But there exist a lot of improvements. For example, the 
compilation can start already during script wring.  

This project shows the usability of programmable and 
dynamic code recognition in an acceptable time. Currently, 
the project is used just for science purposes, but we want to 
add all the workaround to make it other users. We consider 
also the use of the tree indexing methods to achieve even a 
higher speed of the matching process in the future.  
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