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later compared to actual tool wear. Whilst this is an initial 
approach to the proposed spark-insert wear relationship, the 
final objective of this research would be to create an online or 

in-process tool condition monitoring system for an industrial 
level. 
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Fig. 2 Camera set-up 
 

II. SYSTEM CONFIGURATION 

In Fig. 2, a schematic of the system configuration is shown. 
A monitoring system was built using a regular SLR Canon 
EOS 60D digital camera, set to record images of the cutting 
area of the machining process. The milling machine used was 
a Starrag ZT 1000 5 axis CNC with a Siemens Sinumerik 
840D controller. During machining time, the camera would 
capture many images at a constant rate, with special focus on 
the sparks that this process produced. Later, these images were 
extracted and processed using the software MATLAB1.  

A. Machining 

As mentioned previously, the study was performed using a 
five axis high speed milling machine, and the test used the 
machining parameters shown in Table I. The cutting tools 
used were SiAlON ceramic inserts RNGN120400E 6060 from 
Sandvik Coromant, in a holder of four inserts. Finally, the 
work piece was a Waspaloy ring and the general standardized 
composition of this material is shown by Table II.  

 
TABLE I 

MACHINING CUTTING PARAMETERS 

PARAMETER VALUE 

Cutting Speed Vc (m/min) 875 

Feed per minute (mm/min) 1843 

Spindle speed n (rev) 4761 

Cutting Depth ap (mm) 1.5 

Tool Specific Diameter Dc (mm) 50.3 

Radial Immersion ae (mm) 29.25 

Feed per tooth fz (mm) 0.097 

Number of inserts zc 4 

B. Image Acquisition 

In contrast to the human eye or a video feed, still pictures 
are a single samples of a short period of time. In an SLR 

 
1 MATLAB and Image Processing Toolbox Release 2015b, The 

MathWorks, Inc., Natick, Massachusetts, United States. 

camera, the shutter speed parameter is the one that controls the 
sample size in a single image. Therefore, the selection of 
speed parameters can be a common dilemma that is mainly 
dependent on the application. Through a separate piece of 
research by the authors of this article in [13], it has been 
concluded that for the present application, slow imaging 
settings tend to give better results when processing images 
from cutting sparks. This is mainly due to the fact that slow 
imaging settings tend to expand the sample size in still 
pictures in the time domain. This effect enables the acquisition 
of a larger amount of spark behaviour data, averaged inside a 
single image; as opposed to fast settings, that give more 
instantaneous sets of data, that tend to increase noise when 
extracting features of spark evolution. The values shown in 
Table III represent the best combination of parameters when 
using the slowest shutter speed value, given the environmental 
illumination conditions. When the shutter speed is the main 
variable, the values of the diaphragm and ISO can be derived 
from the said speed. This is the case for the present 
application, where neither the depth of focus mandated by the 
Diaphragm, nor the camera sensitivity mandated by the ISO 
value, are deemed as important as the shutter speed.  

III. AREA AND INTENSITY PROCESSING 

As mentioned previously, the images obtained during the 
machining process were later extracted and processed. 
Through a qualitative assessment of the most observable spark 
features that evolve during the machining process, spark area 
and spark intensity were selected to be extracted. Other visible 
features were also assessed, such as spark angle and change in 
colour, but both of these features would tend to peak or 
change very early in the first minute of the machining process, 
and stayed constant for the rest of the sequence. 

The processing of the spark area and intensity was done 
through the generalised algorithm found in Fig. 3. For each 
feature however, there were different steps and approaches 
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Fig. 9 Insert’s crater wear area values 

 

B. Spark Feature Assessment 

The spark area and intensity evolution graphs can be seen in 
Fig. 10, where (a) shows how the total intensity of the spark 
increases continuously with the machining time, while (b) 
shows similar behaviour in the spark area evolution. Some 
specific changes in both features coincide, such as the sudden 
increase in spark intensity at the time of 60 seconds, as well as 
the general expected gradual increasing trend, showing that 
both descriptors are representative of the spark development. 

When both descriptors are graphed along with the wear 
measurements obtained previously (Fig. 10), a similar and 
consistent general behaviour can be observed in all three 
measures. This is also shown in Fig. 11. It is possible to see 
that all three have a general qualitative correlation, as the 
steepness of the three are very similar; however, it was not 
possible to quantify this correlation as there is a dimensional 
mismatch between the number of values of the sparks 
descriptors and the values of insert wear. 
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(b) 

Fig. 10 Spark evolution (a) intensity, and (b) area 
 

 

Fig. 11 Spark area, intensity and insert's crater wear area 
 

V. DISCUSSION 

While there was some partial discussion with some of the 
results presented previously, there are other important aspects 
that shall be outlined. Firstly, algorithms appear to be 
functioning as intended. There was as expected, a general 
gradual increase of area and intensity with machining time. 
For the purpose of tool wear extraction, it becomes apparent in 
the authors view, that these two features are indeed the most 

relevant. However, there is still further scope for optimisation 
of the feature extraction algorithms presented. Also, the 
general similarity between the spark area, intensity and insert 
wear shows that there is an evident intrinsic correlation 
between these, making possible the idea of exploring further 
tool monitoring systems using this phenomenon. Yet, a more 
in-depth analysis would be appropriate to understand better 
the wear mechanisms of the ceramic SiAlON inserts. 
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Nevertheless, there were several limitations within this initial 
investigation that could be addressed in future work.  

The imaging system, for instance, was quite basic, using an 
SLR camera with very wide gaps of data between samples, 
given that the images had a five seconds gap. In this regard, it 
would be important to find a way to assess which would be the 
optimal imaging acquiring system, as well as the optimal 
imaging parameters. As it was mentioned previously in this 
work, a set of quite “slow” settings were used. It would be 
interesting; however, to make sure that faster settings are 
indeed not appropriate for this application. Furthermore, it 
could be argued that a video feed may be more adequate for 
further processing rather than still images, as this could 
provide more information. 

The wear assessment technique presented in this work of 
measuring crater wear area through image processing could be 
regarded as a basic method of obtaining wear data from the 
ceramic tools. A more in-depth analysis of other wear 
mechanisms in SiAlON inserts should be carried out, where 
perhaps a richer source of wear measurement could be found. 
Other techniques such as the extraction of weight 
measurements to find volumetric changes of the cutting tool 
could show improved results. Or even yet, some measurement 
of flank wear or notch wear could provide a better tool wear 
trend [14], [15]. Alternatively, more sophisticated technology, 
such as 3D imaging through scanners or simple stereo-vision 
could be beneficial as an in-situ assessing technique. 
Nevertheless, there would continue to be significantly less 
wear data than spark data, due to the requirement of stopping 
machining operation. 

There is also future work regarding further analysis of this 
possible tool monitoring system or technique, as there are 
many variables associated with this type of metal cutting 
processes. Machining parameters, such as feed, speed and 
depth of cut are just a few of the process variables that could 
give very different results in the way the cutting spark evolves. 
Also, regarding the image acquisition side of the monitoring 
system, alternative values for the previously mentioned 
imaging settings or even external factors like illumination, 
reflections and camera location, could greatly alter this spark-
wear relation.  

Even though other techniques of tool wear assessment 
through visual sensing, such as the ones mentioned at the 
beginning of this article, appear to give a more precise 
quantification of tool wear, their limitation of process 
interruption is inevitable. Yet, the present tool monitoring 
technique, also through visual sensing, has shown 
considerable promise for the live assessment of tool wear. 
Therefore, a fully functional system using this technology 
could be a highly productive and low costed instrument for 
high speed machining processes in the manufacturing industry 
in the near future. 

VI. CONCLUSIONS 

In the machining of nickel-based superalloys, ceramic 
inserted tools such as SiAlONs are used for their great 
efficiency regarding high machining speeds. However, these 

tools can present very unpredictable tool life spans, making a 
tool monitoring technique or system important for further 
increase machining efficiency. A relation between the dry 
cutting process sparks and the actual cutting tool wear was 
explored and can be summarised through the following 
conclusions: 
• Image processing algorithms for the extraction of cutting 

spark Intensity and Area can be successfully applied to 
still images from the machining process. 

• These two parameters are good representatives of the 
cutting spark evolution throughout machining time. 

• When the two image processing parameters are compared 
to the actual cutting tool crater wear area, a qualitative 
correlation and similarity is evident.  

• Further analysis and work is required to explore this 
relationship further, along with all the different variables 
that could alter it. 
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