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Time-Derivative Estimation of Noisy Movie Data
using Adaptive Control Theory

Soon-Hyun Park, and Takami Matsuo

Abstract— This paper presents an adaptive differentiator
of sequential data based on the adaptive control theory. The
algorithm is applied to detect moving objects by estimating a
temporal gradient of sequential data at a specified pixel. We
adopt two nonlinear intensity functions to reduce the influence
of noises. The derivatives of the nonlinear intensity functions
are estimated by an adaptive observer with σ-modification
update law.

Keywords— Adaptive estimation, parameter adjustment
law, motion detection, temporal gradient, differential filter.

I. INTRODUCTION

THE necessity to evaluate the time-derivative
of signals arises frequently in many areas of

research. In tracking or detecting moving objects in
an image sequence, the need of velocity estimation
from measured position data is still a difficult task
and a challenging problem. The motion detection
can be performed by calculating spatio-temporal
gradient. A large set of motion detection algorithms
has already been proposed in the literature. The first
one is based on temporal gradient, i.e. the time-
derivative: a motion likelihood index is measured
by the instantaneous change in the image intensity
computed by differentiation of consecutive frames.
The second one is the background subtraction tech-
niques. In the absence of any a priori knowledge
about target and environment, the most widely
adopted approach for moving object detection with
fixed camera is based on the background subtrac-
tion. The principle of these methods is to build a
model of the static scene (i.e. without moving ob-
jects) called background, and then to compare every
frame of the sequence to this background in order to
discriminate the regions of unusual motion, called
foreground (the moving objects). Many algorithms
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have been developed for the background subtrac-
tion. The most important steps in the background
subtraction algorithm are the background modeling
and the foreground detection. In particular, back-
ground modeling is at the heart of any background
subtraction algorithm. Much research has been de-
voted to developing a background model that is
an estimate of background. The background model
is computed by the difference between the current
frame and the current background model[1]. The
background model should be robust against envi-
ronmental changes in the background, but sensitive
enough to identify all moving objects of interest. A
significant number of the described algorithms use a
simple IIR filter applied to each pixel independently
to update the background and use thresholding to
classify pixels into foreground/background[4], [7].
Kalman filter is a widely used recursive technique
for tracking linear dynamical systems under Gaus-
sian noise. The dynamical systems such as the
motion vector or intensity are assumed to be Markov
models[8], [9]. These Markov models do not have
physical meanings. Therefore, the estimator of the
time-derivative for a signal, i.e. the motion vector,
is required to be robust against disturbances without
any knowledge of its dynamics. The third type
of approach is based on the computation of the
local apparent velocity (optical flow) that is used
as input of a spatial segmentation. This method is
in general more computationally complex and it is
sensitive to the reliability of the optical flow. The
fourth method is based on morphological filters.
By using spatio-temporal structuring elements, local
amplitude of variation can be computed as motion
likelihood index. Such measure can be useful to
detect small amplitude motion, but it is sensitive
to outliers[11]. In particular, Richefeu et al.[11]
presented a new differential operator based on a
hybrid filter, combining morphological and linear
operations. It computes a pixel-wise amplitude of
time-variation over a recursively defined ”temporal
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window”. It is particularly suited to small and low
amplitude motion.

Recently, Ibrir have presented a time-varying lin-
ear system to estimate the first (n−1)-th derivative
of any bounded signal[5], [6]. The time-derivative
observer was formulated as a high-gain observer
where the observer gain was calculated through a
Lyapunov-like dynamical equation[6]. This paper
presents a new differential filter of a nonlinear
function based on the adaptive control theory[12],
[13]. The proposed differential filter is applied to
estimate the time-derivative of a nonlinear function
of the intensity (nonlinear intensity) for each pixel
to detect moving objects within a scene acquired
by a stationary camera. The estimated variety of the
nonlinear intensity is obtained by using the adaptive
parameter adjustment law[12], [13]. We select two
nonlinear functions, a quadratic function and log-
arithmic function, in order to attenuate the variety
of disturbances with small amplitudes, because the
filter should have certain noise immunity such as
measurement noises, waving bushes or flowing wa-
ter. As our differential filter recursively updates the
estimate of variety of nonlinear intensity, its com-
putational cost is very low. The proposed method
allows us to attenuate the influence of noises in es-
timating the time-derivative of sequential data. The
MATLAB simulations are performed to demonstrate
its performance.

II. DIFFERENTIAL FILTER OF NONLINEAR

INTENSITY FUNCTIONS BASED ON ADAPTIVE

PARAMETER UPDATE LAW

Let x(t) be an intensity of a specified pixel at
a time t and f(x(t)) be its nonlinear function. We
define l(t) as the derivative with respect to time of
the nonlinear function f(x(t)), i.e.

l(t) =
df(x(t))

dt
=

df(x)

dx

dx(t)

dt
. (1)

If df(x)
dx

has the inverse
(

df(x)
dx

)−1
, we have

dx(t)

dt
= ξ(t)l(t) (2)

where

ξ(t) =

(
df(x)

dx

)−1

. (3)

We assume that the function l(t) can be expressed
in a polynomial form:

l(t) =
N∑

k=0

lkt
k (4)

where lk, k = 0, · · · , N are constant. Equation (2)
is rewritten by

dx(t)

dt
= lTv ζ(t) (5)

where

lv =

⎡
⎢⎢⎢⎢⎣

l0
l1
...

lN

⎤
⎥⎥⎥⎥⎦ , ζ =

⎡
⎢⎢⎢⎢⎣

ξ(t)
tξ(t)

...
tNξ(t)

⎤
⎥⎥⎥⎥⎦ (6)

The problem is defined as follows:
Problem 1: Design a differential filter to estimate

the derivative, l(t), of the signal x(t) without any
knowledge of its dynamics.

If the signal ζ(t) is available, Problem 1 is
equivalent to the estimation problem of the constant
vector lv in Equation (5) with the available signals
x(t) and ζ. This problem is well known as the
adaptive identification problem[12], [13]. We design
an adaptive observer for the system (5) as

dx̂(t)

dt
= l̂

T

v (t)ζ(t) − k(x̂(t) − x(t)) (7)

where k is a positive constant and l̂v(t) =[
l̂0(t), · · · , l̂N(t)

]T
is an estimate of lv, which

is recursively updated by a parameter adjustment
law. The estimate of the derivative of the nonlinear
intensity function f(x(t)) is given by

l̂(t) =
N∑

k=0

l̂k(t)t
k. (8)

Defining two estimation errors as

state estimation error: e(t) = x̂(t) − x(t)

parameter estimation error: l̃v(t) = l̂v(t) − lv,

we obtain the following error equation:

de(t)

dt
= −ke(t) + l̃

T

v (t)ζ(t). (9)

The parameter update law is given by

˙̂
lv(t) = ˙̃lv = −γζ(t)e(t). (10)
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We get the following lemma using the adaptive
control theory[12], [13].

Lemma 1: Consider the system

de(t)

dt
= −ke(t) + l̃

T

v (t)ζ(t)

˙̃
lv = −γζ(t)e(t)

where γ is any positive number. If k > 0 and ζ(t)
is bounded, then l̃v(t) is bounded and

lim
t→∞ e(t) = 0.

Moreover, if we assume the following persistency
of excitation condition[12], [13]:

∫ t+T

t
ζ(τ)ζ(τ)T dτ ≥ cI, ∀t ≥ 0

where c and T are positive, then the estimate l̂v(t)
converges to the true value lv, i.e.,

lim
t→∞ l̃v(t) = 0

Proof: Defining a Lyapunov-like function as

V (t) =
1

2

(
e2(t) +

1

γ
l̃
T

v (t)̃lv(t)

)
,

its derivative with respect to time is given by

V̇ = −ke2(t) ≤ 0.

Therefore, e ∈ L2 and l̃v is bounded. Since ζ is
bounded, ė is bounded. From Barbalat’s lemma[13],
we have limt→∞ e(t) = 0. From the persistently
exciting condition, the element of ζ is independent
each other. Thus, we have

limt→∞l̃v(t) = 0,

because limt→∞ l̃
T

v (t)ζ(t) = 0. Remark that without
any persistently exciting condition, one can only
conclude that V has a limit and limt→∞

˙̃lv = 0.

The estimate of the derivative of the intensity is
obtained by

ˆ̇x(t) = l̂
T

v (t)ζ(t). (11)

The estimate of the derivative of the nonlinear
intensity function is given by

l̂(t) =
N∑

k=0

l̂k(t)t
k. (12)

III. SELECTION OF NONLINEAR INTENSITY

FUNCTION

Since we use the normalized intensity x(t), the
range of x(t) is [0, 1]. To lessen the effect of
noises, we adopt two nonlinear intensity functions
as follows:

• the quadratic function: f1(x(t)) = x(t)2

• the logistic function:
f2(x(t)) = log(cosh(x(t)/0.605)).

Figure 1 shows the function shapes of the nonlinear
functions.
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Fig. 1 The nonlinear intensity functions

The derivatives of these functions are

df1(x)

dx
= 2x(t)

df2(x)

dx
=

tanh(x(t))

0.605
.

To avoid zero-division, for a small positive number,
ξ1(t) and ξ2(t) are defined as

ξ1(t) =

⎧⎪⎨
⎪⎩

1
2x(t)

(|x(t)| > ε)
1
2ε

(0 ≤ x(t) ≤ ε)
− 1

2ε
(−ε ≤ x(t) < 0)

(13)

ξ1(t) =

⎧⎪⎨
⎪⎩

0.605
tanh(x(t))

(| tanh(x(t))| > ε)
1
ε

(0 ≤ tanh(x(t)) ≤ ε)
−1

ε
(−ε ≤ tanh(x(t)) < 0).

(14)
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IV. DIGITIZATION OF DIFFERENTIAL FILTER

For the implementation, the derivative can be
approximated by the difference as follows:

˙̂x(tk) =
x̂[k + 1] − x̂[k]

h

˙̂
lv(tk) =

l̂v[k + 1] − l̂v[k]

h

where k is the frame number, h is the video-rate,
and tk is the time of k-th frame. The digital form
of the differential filter is given by

x̂[k + 1] = x̂[k] + h
{
l̂
T

v [k]ζ [k]
}
− ke[k](15)

l̂v[k + 1] = l̂v[k] − γζ[k]e[k] (16)

where e[k] = x̂[k]− x[k]. To guarantee the stability
in the presence of measurement noise, we adopt the
discrete-time version of the σ-modification update
law[12], [13] as follows:

l̂v[k + 1] = (1 − σ)̂lv[k] − γζ[k]e[k] (17)

where 0 < σ < 1. The estimate of the derivative of
the intensity, ˆ̇x[k], is obtained by

ˆ̇x[k] = l̂
T

v [k]ζ[k]. (18)

The estimate of the derivative of the nonlinear
intensity function is given by

l̂[k] =
N∑

j=0

l̂j[k]tjk. (19)

V. SIMULATION RESULTS

A. Adaptive Differential Filter for Sinusoidal Signal
with Noise

To demonstrate the performance of the proposed
method, we use the sinusoidal signal with the Gaus-
sian noise as follows:

x[k] = 2 + sin tk + 0.01w(tk); (20)

tk = k/30, k = 1, 2, · · · , 500

where w(tk) is the Gaussian noise N(0, 1). We
select the nonlinear function f(x(t) as the linear
function f(x(t)) = x(t) to obtain the derivative
of the sinusoidal signal (20) directly. The design
parameters of the differential filter are selected as

γ = 0.3, k = 0.195, σ = 0.1

We adopt the simplest differential filter that is ob-
tained by assuming that the function l(t) is constant,

i.e. l(t) = l0. In this case, the differential filter is
given by

x̂[k + 1] = x̂[k] + hl̂[k]ξ[k] − ke[k] (21)

l̂[k + 1] = (1 − σ)l̂[k] − γξ[k]e[k]. (22)

where h = 1/30 and ξ[k] = 1. Figure 2 shows
the sinusoidal signal with the Gaussian noise x[k].
Figure 3 shows the estimate of its derivative using
the frame difference x[k]−x[k−1]

h
, k = 1, 2, · · · , 500.

Figure 4 shows the true value(dotted line) of the
derivative of the noise-free sinusoidal signal and the
estimate(solid line) of its derivative by the proposed
adaptive differential filter. The frame difference
amplifies the influence of the noises. However, the
adaptive differential filter attenuate its influence and
the estimate of the derivative of x[k] approaches to
the neiborhood of the real value as t increases.
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Fig. 2 The data sequence with additive noise
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Fig. 3 The frame difference (solid line (blue)) and its true value
                                          (dotted line (green))
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Fig. 4 The output of the proposed estimator (solid line(blue)) and
its true value (dotted line(green))

B. Adaptive Differential Filter for Movie Data

Figure 5 shows the first frame of the movie
file with 201 frames and 512 × 384 pixels, that
is the Polyhedral scene with two moving marbled
blocks and is downloaded from the famous image
server[14]. Figures 6,7,8, and 9 show the 83rd
frame, the 95th frame, the 122nd frame, and the
176th frame, respectively. We use the intensity

+

Fig. 5 The image of frame #1

sequence xo[k]; k = 1, · · · , 201 at (153, 225) pixel
after converting the color image to the grayscale
image using MATLAB function rgb2gray.m and
normalizing the uint8-class to the double-class.
The value 0 corresponds to black and 1 to white.
This pixel is on the point marked with ’+’. The
dark side of the smallest polyhedron passes through
the pixel from the frame #83 to the frame #94

+

Fig. 6 The image of frame #83

+

Fig. 7 The image of frame #95

+

Fig. 8 The image of frame #122
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+

Fig. 9 The image of frame #176
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Fig. 10 The temporal sequence xo[k]; k = 1, · · · , 50

and its bright side passes through the pixel from
the frame #95 to the frame #122. Moreover, the
shadow of the right-side polyhedron passes through
the pixel from the frame #176 to the frame #201.
Let x[k]; k = 1, · · · , 201, be the temporal intensity
sequence in the additive Gaussian noises with stan-
dard deviation 0.3×maxk(xo[k]) in order to validate
the performance of the noise attenuation. Figures
10 and 11 show the temporal sequences without
the Gaussian noise and with the Gaussian noise at
(153, 225) pixel, respectively.

Figures 12 and 13 show the estimate of back-
ground with the M estimator[15], [16] and the
estimate of the temporal-derivative with the frame
difference. Both the estimators are influenced con-
siderably by the Gaussian noise.

We also adopt the simplest differential filter given
by (21) and (22) that is obtained by assuming
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Fig. 11 The temporal sequence x[k]; k = 1, · · · , 50 with the additive
Gaussian noise

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame;k

In
te

ns
ity

 a
nd

 b
ac

kg
ro

un
d

Fig. 12 The temporal sequence x[k]; k = 1, · · · , 50(dotted line) and
                          the background estimate(solid line)
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Fig. 13 The temporal sequence x[k]; k = 1, · · · , 50(dotted line)
and the estimate of the temporal-derivative using the frame

                                        difference(solid line)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2764

0 50 100 150 200 250
−20

−15

−10

−5

0

5

10

15

20

Frame;k

In
te

ns
ity

 a
nd

 D
er

iv
at

iv
e

Fig. 14 The intensity (dotted line) and the estimate of the
derivative(solid line) of the quadratic intensity function

that the function l(t) is constant. The following
simulation results illustrate that its simplest differ-
ential filter can estimate the variety of time-varying
functions.

1) Case of quadratic intensity function: The
nonlinear intensity function f(x[k]) is selected as
f(x[k]) = x2[k]. The output of the differential filter
l̂[k] is the estimate of the derivative of the quadratic
intensity function x2[k] using the temporal intensity
sequence x[k] in the additive Gaussian noises with
standard deviation 0.3 × maxk(xo[k]). The design
parameters of the differential filter are selected as

γ = 1, k = 0.895, σ = 0.95.

Figure 14 shows the intensity sequence (dotted line)
and the estimate (solid line) of the derivative of
the quadratic intensity function using the adaptive
observer. In this case, the estimator can detect the
largest variety of the intensity, which is the motion
of the smallest polyhedron from the frame #83 to
the frame #122.

2) Case of logistic intensity function: The non-
linear intensity function f(x[k]) is selected as the
logistic function f(x[k]) = log(cosh(x[k])). The
output of the differential filter l̂[k] is the estimate
of the derivative of the logistic intensity function.
The design parameters of the differential filter are
selected as

γ = 1, k = 0.895, σ = 0.95.

Figure 15 shows the intensity sequence (dotted line)
and the estimate (solid line) of the derivative of
the logistic intensity function using the adaptive
observer. The selection of the logistic intensity
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Fig. 15 The intensity (dotted line) and the estimate of the
derivative(solid line) of the logistic intensity function

function also allows to detect the motion of the
smallest polyhedron.

VI. CONCLUSION

This paper has presented an estimator to detect
moving objects using the adaptive identification
method. The estimator is constructed by an adaptive
differential filter of an intensity nonlinear function.
The nonlinear intensity function is introduced to
reduce the effect of noises. The derivative of the
nonlinear intensity function is estimated by an adap-
tive observer with σ-modification update law. The
main subject in this paper is a new differentiator
using the adaptive update law. It is the next issue
to get an adaptive decision rule using a temporally
varying threshold. In addition, we can get the rel-
ative differential filter. If the intensity function is
represented as

x(t) = cf(t), c : constant,

we have the following differential equation:

dx(t)

dt
= l(t)x(t)

where l(t) = f ′(t)
f(t)

. The signal l(t) is the relative
derivative of the intensity. We can derive the es-
timate of l(t) by using the adaptive identification
method in the same manner as in Chapter III.
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