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Time-Delay Estimation

Using Cross- B-Energy Operator 

Z. Saidi, A.O. Boudraa, J.C. Cexus, and S. Bourennane 

Abstract—In this paper, a new time-delay estimation

technique based on the cross B-energy operator [5] is 

introduced. This quadratic energy detector measures how

much a signal is present in another one. The location of the

peak of the energy operator, corresponding to the maximum of 

interaction between the two signals, is the estimate of the

delay. The method is a fully data-driven approach. The 

discrete version of the continuous-time form of the cross B-

energy operator, for its implementation, is presented. The

effectiveness of the proposed method is demonstrated on real

underwater acoustic signals arriving from targets and the

results compared to the cross-correlation method.

Keywords—Teager-Kaiser energy operator, Cross-energy

operator, Time-Delay, Underwater acoustic signals.

I. INTRODUCTION

Time-delay (TD) estimation between signals in the

presence of noise and interference is a problem of

importance in areas such as communications (radio 

transmitter,…), sonar, radar, biomedicine and geophysics [1]-

[4]. For example, in sonar signal processing the TD between

the observed signals is used to estimate the sources (targets)

ranges and bearings. TD is often referred to by TD estimation

(TDE), time of arrival (TDOA), and time-of-arrival difference 

(TOAD). A common method for measuring the TD involves

cross correlating the receiver outputs; an estimate of the TD is 

given by the argument that maximizes the cross-correlation 

(CC) function. The CC is linear similarity measure. However,

often it is not possible to avoid nonlinearities of the sensors

used. Furthermore, in practice the interaction between the

signals, generated by sensors, may not be linear, and thus the

maximum of CC does not, necessarily, corresponds to

maximum of interaction. Consequently the resulting TD value

is problematic. To tackle this problem we present a similarity

method that takes into account the nonlinearity of the signals 

and their interaction. This method is based on cross B-energy

operator witch is a nonlinear measure, recently proposed in

[5]. Furthermore this operator is well suited for nonstationary

signals [6]. B-energy operator is derived from a second

energy-like function, called cross Teager-Kaiser energy 

operator (CTKEO) [7]-[8], which measures the interaction

between two real time functions. B measures how much a 

signal is present in another one. Based on a nonlinear

operator, B, the method may be viewed as a nonlinear

matched filtering.
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In this paper we propose to use the B method in the acoustic

array processing to estimate the TD. The proposed method is

compared to the experimental, considered as the standard, and 

cross-correlation TD estimation methods on real underwater

acoustic data.

II. B-BASED TIME DELAY ESTIMATION

A. Cross- B-Energy Operator

Recently the CTKEO has been extended to complex-

valued signals and an operator called B introduced [5]. Let 

 and  be two complex signals,x y B  is defined as follows

[5]:

*

B =0.5 x,y y,x

0.5 x y+xy 0.25 xy +x y+yx +y x

x,y

              =

where
*

x,y =0.5 x y+xy 0.5 xy +x y

x

. It has 

been shown that the cross B-energy operator of  and  is 

equal to the cross-Teager energies of their real and imaginary

parts [5]:

y

r r i i

k k k k k k k k

B B B

B

x,y = x ,y x ,y

x ,y =x y 0.5 x y +x y ,  k r,i

where
r i

x t x t +jx t  and
r i

y t y t +jy t .

Where  denotes the imaginary unit. To discretizej B , two-

sample backward difference is used. The aim is to obtain a

discrete operator, noted Bd, closely related to continuous

version of B and operating on discrete-time signals x n

and y n . Thus, we replace  by  ( T  is the sampling

period),

t
S

nT
S

x n  with
S

x nT  or simply x n , x t  with

S
x xn x-2 n-1 n-2 T  and x t  with

S
Tx n x- n-1 . Then, for k r,i we have:
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where denotes the mapping from continuous to discrete.

Thus from B we obtained Bd shifted by one sample to the

right and scaled by . If we ignore the one-sample shift and 

the scaling by T , one can transform

-2

S
T

-2

S B x t ,y t  into

 as follows:x n n
Bd

,y

r r i i

k k k k

k k k k

B Bd Bd

Bd

x t ,y t x n ,y n x n ,y n

x n ,y n x n y n

0.5 x n+1 y n-1 x n-1 y n+1

It is easy to see that the two-sample forward difference gives 

the same result. However, three-sample symmetric difference

leads to more complicated expression . Note that if , the 

operator

x=y

Bd is reduced to the discrete Teager-Kaiser operator

.
2

Bd x n ,x n x n x n-1 x n+1

B. Time-Delay Estimation Problem

Consider the signal from a remote source being received in 

the presence of noise at two spatially separated receivers. The

time histories of the receiver outputs, denoted by 
m

r t  and 

k
r t , are given by

m m

k k

r t =s t +n t

r t =A.s t- k-m D +n t

where  is the signal waveform,  and s t
m

n t
k

n t

1

 are 

the noise waveforms at the respective receivers, A  is an

attenuation factor and D  is the difference in the wavefront

arrival times at two consecutive receivers , TD.k=2,m=

Proposition:

Suppose that the noises  and , and the signals

 and  are mean square differentiable and mutually

uncorrelated. Then 

m
n t

k
n t

m
r t

k
r t

m kB Br t ,r t s t ,s t-E A.E    (1) 

where and= k-m .D E .  is the expectation operator.

Proof:

m
n t  and  have zero-mean and are uncorrelated.

Then,

m
r t

k m
m k m k

dn t dn t
.n n t . =- n t .

dt dt
E E En t t 0

ts  and  are independent. Then 
m

n t

k ks t .n t s t . n t 0E E E

2 2
k k

k
2 2

ds t dn t d n t d s t1 1
. s t . n t

2 2dt dt dt dt
E E E .

Similarly, for t-s  and  we can write 
m

n t

2 2
m m

m
2 2

ds t dn t d n t d s t1 1
. s t- . n t .

2 2dt dt dt dt
E E E

where
ds t- ds t

dt dt

m k

m k

2 2 2 2
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m
2 2 2 2

B

d s t n t d a.s t- n t
.

dt dt

d s t d n t d s t d n t1
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2 dt dt dt dt

n tk

r t ,r t

m k

k m m

B Br t ,r t A. s t ,s t- +

dn t ds t dn t ds t dn t dn t
2 . 2 . 2 .

dt dt dt dt dt dt

E E

.E A.E E k

m k m m k k
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. lim . lim
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E E

E E

E E

h = .hwhere and is a constant.

Similarly,

m kdn t ds t dn t ds t
. . . .

dt dt dt dt
E E 0

and (1) results. 

Let
0

t = k-m .D be the unknown time representing the delay

of the received signal. Let 
min max

T= T ,T

0
t

 be the possible

range of values for . For any given  the maximum of

interaction between

0
t T

t
m

r  and 
k

r t  measured with the cross 

B-energy operator is given by

T m k
t T

B B
arg maxT = r t ,r t     (2)

Thus the quadratic detector, B, calculates the interaction

between the received signal and all possible time-shifted

versions of the transmitted signal and picks the largest energy

interaction as the decision. The location of the peak is the 

estimate of the unknown parameter BT = d c  where and 

is the path length difference (Figure 1).
k m

d=d -d
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Figure 1: Geometry used to estimate the TD associated with 

plane waves.

C. Pseudo-code 

Both the reference signal, , and the received one, 

, are smoothed using Savitzky-Golay filter [9]. The

complex form of the signals are obtained using Hilbert

transform. The quadratic operator involves the following

steps:

s m

r n

Inputs:

 Reference signal: s a bm =s (m)+js (m), m 1,2, ,w

Received signal: a br n =r (n)+jr (n), n 1,2, ,N

Output: (time-delay)BT

For k=1 to (N-w+1)   // k is the current window
kg n-k+1 r(n), n F= k,w+k-1

d

l k
r B a a(s (l),g (l)) , l 1, ,w

d

l k
i B b b(s (l),g (l))

d

k l
B r(s(l),g (l)) +

  Compute the sum I( of values over F:

I(

k)

dB (s(l

dB

k (l))

w+k-1

l=k

k) ),g

EndFor

B
1 k M

T argmax I k

where denotes the affectation operation.

III. RESULTS 

TD B method is tested on underwater acoustic signals. A 

linear array composed of n uniformly spaced sensors (Figure

1) is used. Each sensor received signals arriving from the 

sources (targets) supposed sufficiently distant from the

receivers. In this case, the wavefronts are assumed to be 

planar. The TD, T , between the wave fronts impinging upon

the m

B

th and the kth sensors are given by the experimental

method as follows:

BT = k-m d.sin c        (3)

where is the distance between two consecutive receivers d

k=2, 1

Data1

m=

=22

,  is the celerity in the medium and  is the

direction of arrival of a plane wave (Figure 1). TD is

estimated on real acoustical data measured in a tank with a

linear array of twenty sensors (n=20) where air-full cylindrical

objects are buried under the sand. Two cylinders for Data 1

and one cylinder for Data 2: , d=2mm,

, , sample number=2000 points,

sampling rate=10MHz. 2D plots, samples-sensor, of Figure

2(b) and 3(b) represent sensors output of signals (echoes)

arriving from two (Data 1) and one (Data 2) cylinders

respectively. Signals are smoothed using a third-order

Savitzky-Golay filter over a moving window of width 51. 

Both the

c

-1
c=1485ms

Data2
=64.15

B and the CC methods, applied to filtered signals, 

are implemented in the time-domain. 1D plots, amplitude-

samples, of Figure 2(a) and 3(a) represent the output of the

first sensor, selected as reference signal s(n), for Data 1 and 

Data 2 respectively. The Experimental, CC and B estimated

time delays, for all array sensors, are plotted, as a function of 

the position indexes of the sensors along the array, in Figures

4(a)-(b) for Data 1 and Data 2 respectively. In each case delay 

estimation is performed between the first sensor of the array

and the remaining ones. Root mean square error (RMSE)

between pair of sensors, calculated using equation (4), for 

Data 1 and Data 2 is reported in Table I. 

n 2

Bi=1

B

Exp

-Exp

TD i -TD i
RMSE =

( ) n-1
(4)

As shown in Figure 4(b), for Data 2 there is a parfait

agreement (except for sensor 2 where the error is one sample)

between the B and the experimental method (Eq. (3)). This is

confirmed by the RMSE value (0.0526). The RMSE of the CC

method is 3.42 times higher than that of the B method.

Figure 4(a) shows that, for Data 1, the estimated TD by the B

and the CC deviate moderately from TD values given by Eq. 

(3). Note that the B performs slightly better than the CC with

RMSE value of 0.217. For both Data 1 and Data 2, globally,

the B performs better than the CC method. This may suggest,

even partially, the nonlinear relationship between the signals

that linear method such as the CC cannot account for. The 

mismatch between expected TD values and the B TD ones 

may be due to the error in the estimation of the bearing angles

and , and the  value which depends on the

temperature of the propagation media. It is important to keep 

in mind that there is no a golden method for evaluating the TD 

estimation. The method based on Eq. (3) can be used, in the

far field case, as reference method if we have good measures

of  and .

Data1 Data2
c

d

Sensor

m
Sensor

k
(k-m).d

TB.c Plane wave

dm
dk

Target
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Fig. 2: Two buried targets example. (a) The selected reference 

signal . (b) Time-sensors representation of Data 1. s(n)

Fig. 3: Two buried targets example. (a) The selected reference 

signal . (b) Time-sensors representation of Data 2. s(n)

Fig. 4: TD estimations by experimental, CC and B methods.

Estimated TD versus the sensors position indexes along the

array in Data 1 (a) and  Data 2 (b) respectively.

a) b)
Table I 

RMSE between B and experimental TD, CC and 

experimental TD for Data 1 and Data 2. 
Data 1 Data 2 

B( -Exp)RMSE (CC-Exp)RMSE
B( -Exp)RMSE (CC-Exp)RMSE

0.2170 0.250 0.0526 0.180

IV. CONCLUSION 
a)

In this paper, a new method for TD estimation, based on B

operator is introduced. B measures how much a signal is 

present in another one. As the CC method, the B is simple

and very easy to implement efficiently. A discrete version of 

the continuous-time of B for its implementation is presented.

Presented preliminaries results on real underwater acoustic

signals are very close to that of the experimental method. The

obtained results show that the B method globally performs

better than the CC method. To confirm the effectiveness of the

B method must be evaluated with a large class of signals and 

in different experimental conditions such as high noise levels,

sampling rates and sample sizes. As future work, we plan to

estimate TD in the case of non uniform array. We also plan to

modify the approach to tackle the problem of mutually

correlated noises. It is also interesting to use TD estimated by

B in order to correct sensor gain and phase uncertainties.

b)

a)
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