
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:11, No:1, 2017

35

Thermal Effect on Wave Interaction in Composite
Structures

R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract—There exist a wide range of failure modes in composite
structures due to the increased usage of the structures especially in
aerospace industry. Moreover, temperature dependent wave response
of composite and layered structures have been continuously studied,
though still limited, in the last decade mainly due to the broad
operating temperature range of aerospace structures. A wave finite
element (WFE) and finite element (FE) based computational method
is presented by which the temperature dependent wave dispersion
characteristics and interaction phenomenon in composite structures
can be predicted. Initially, the temperature dependent mechanical
properties of the panel in the range of -100 ◦C to 150 ◦C are
measured experimentally using the Thermal Mechanical Analysis
(TMA). Temperature dependent wave dispersion characteristics of
each waveguide of the structural system, which is discretized as a
system of a number of waveguides coupled by a coupling element, is
calculated using the WFE approach. The wave scattering properties,
as a function of temperature, is determined by coupling the WFE
wave characteristics models of the waveguides with the full FE
modelling of the coupling element on which defect is included.
Numerical case studies are exhibited for two waveguides coupled
through a coupling element.

Keywords—Temperature dependent mechanical characteristics,
wave propagation properties, damage detection, wave finite element,
composite structure.

I. INTRODUCTION

COMPOSITE structures are being increasingly used in

many industrial fields, such as aerospace and military,

due to their versatile physical and mechanical properties.

However, an aerospace structure typically operates within a

broad temperature range, varying between 100 ◦C and 200
◦C for launch vehicles and 60 ◦C and +50 ◦C for aircrafts.

Hence, an attempt is made in order to exhibit the sensitivity

of the wave interaction properties of a composite structure to

the ambient flight temperature.

Recently, the effect of high temperature on the

thermomechanical response of various composite structures,

such as multi-layered plates and shells [1], glass epoxy

composites [2], [3] and carbon fibre epoxy composites [4],

[5], has been extensively assessed. However, investigation of

the thermoacoustic behaviour of composites has been found

almost in-existent in the open literature. So, there is a great

need for the investigation of temperature dependent dynamic

behaviour of composite laminates. Of particular importance
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is investigating the interaction of wave propagation with

damage with respect to temperature.

Wave propagation damage detection methods are based on

calculating the reflection and transmission coefficients at the

point of inhomogeneity. Of these, the WFE method [6]-[9]

is one of the most efficient computational methods suitable

for predicting the vibrational response and wave interaction

with damage in various types of structures. The method has

recently found applications in predicting the vibroacoustic

and dynamic performance of composite panels and shells

[10]-[16], with pressurized shells [17], [18] and complex

periodic structures [19]-[21] having been investigated. The

variability of acoustic transmission through layered structures

[22], [23], as well as wave steering effects in anisotropic

composites [24] have been modelled through the same

methodology. However, this numerical method has not been

implemented to investigate the effect of temperature on wave

scattering. Temperature dependent wave interaction properties

would be useful for structural defect and evaluation within

broad range of temperature.

In this work, the effect of temperature on the wave

interaction of composite laminates is considered. The

temperature dependent mechanical properties of the laminate

constituents materials are experimentally calculated using the

Thermal Mechanical Analysis. A WFE approach is used to

calculate the wave propagation properties, and then coupled

to finite element modelling of the coupling joint in order to

calculate wave interaction coefficients form the joint.

The paper is organised as follows: Section II presents

the experimental measurement of the temperature dependent

mechanical properties of the composite facesheet and

core materials. Section III presents the calculations waves

propagation properties. Waves interaction modelling is

presented in Section IV. Numerical examples are presented

in Section V. Section VI presents concluding remarks of the

work.

II. MEASUREMENT OF MECHANICAL CHARACTERISTICS

A TMA device is used to measure the mechanical

characteristics of a sandwich panel comprising of a carbon

epoxy facesheet and a quasi-isotropic honeycomb core, which

absorbs and adheres to the resin in which the facesheet is

impregnated. In the polymerisation process, the resin serves

as the facesheet matrix as well as the binding agent. The

nominal mechanical characteristics of the composite panel’s

constituents at 20 ◦C are shown in Table I. Measurements are

made at a temperature range of -5◦C to 150 ◦C.
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TABLE I
NOMINAL MECHANICAL PROPERTIES OF THE COMPOSITE LAMINATE’S

CONSTITUENTS AT 20 ◦C
Carbon Epoxy Honeycomb foam
E = 54 GPa Ex = 85 MPa
ρ = 1410 kg/m3 Ey = 85 MPa
ν = 0.09 ρ = 48 kg/m3

νxy = 0.23
Gyz = 44 MPa
Gxz = 44 MPa

Fig. 1 Configuration of a segment of the facesheet traction test in the TMA
device

Fig. 2 Configuration of a segment of the core shear deformation in the
TMA device

Respective segments of the facesheet and the core materials

are subjected to longitudinal traction (Fig. 1) and shear

deformation (Fig. 2) respectively in order to determine the

elastic and shear moduli respectively

The measured elastic (Fig. 3) and shear (Fig. 2) moduli

decrease slightly while their corresponding material loss ratios

increase slightly with respect to temperature until 110 ◦C,

where the glass transition occurs. Beyond this temperature,

the moduli and the loss factor decrease rapidly, then the loss

factor (about 130 ◦C) starts increasing again due to the high

viscosity of the resin.

III. WAVE PROPAGATION BY A WAVE AND FINITE

ELEMENT METHOD

Wave propagation along the x direction of an arbitrary

layered structural waveguide (Fig. 5) is modelled by a WFE

method using the transfer matrix approach [25].

By the WFE method, a periodic segment (of length

equivalent to one element along x) is modelled. The frequency
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Fig. 3 Experimentally measured temperature dependent elastic modulus (-)
and material loss factor (· · ·) for the facesheet material
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Fig. 4 Experimentally measured temperature dependent shear modulus (-)
and material loss factor (· · ·) for the honeycomb core material

Fig. 5 WFE modelled waveguide with left and right side nodes bullet
marked; range of interior nodes also illustrated

and temperature dependent dynamic stiffness matrix (DSM) of

the segment is given as

D(ω, T ) = K(ω, T )− ω2M(ω) + iωC(ω, T ) (1)

where K, M and C are the temperature dependent stiffness,

mass and damping matrices of the FE model for each

considered frequency and temperature. The DSM can be

partitioned with respect to left, right and internal DoFs as
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with q and f the displacement and forcing vectors, respectively.

Using a Guyan-type condensation for the internal DoFs, the

problem can be expressed as

[
D∗

LL D∗
LR

D∗
RL D∗

RR

]{
qL

qR

}
=

{
fL
fR

}
(3)

Assuming no external forces are applied, the displacement

continuity and force equilibrium at the interface of two

consecutive periodic segments r and r + 1 are given as

qR
(r) = qL

(r+1); fR
(r) = −fL

(r+1) (4)

combining (3) and (4) gives

{
qL

(r+1)

fL
(r+1)

}
= T

{
qL

(r)

fL
(r)

}
(5)

where matrix T is the symplectic transfer matrix expressed as

T =

[ −D∗
LR

−1D∗
LL D∗

LR
−1

−D∗
RL +D∗

RRD
∗
LR

−1D∗
LL −D∗

RRD
∗
LR

−1

]
(6)

The propagation constant λ = exp−ikδx of the wave relates

the right and left nodal displacements and forces as

λqL
(r) = qR

(r); −λfL
(r) = FR

(r) (7)

and substituting (4) and (7) into (5) gives the eigenproblem

whose eigenvalues and eigenvectors solution sets provide a

comprehensive description of propagation constants and wave

modes of waves along the waveguide at specified frequency

and temperature.

IV. WAVE INTERACTION BY A HYBRID WFE/FE METHOD

Consider two waveguides connected through a coupling

joint (Fig. 5). The joint is fully FE modelled and can contain

damage, geometric or material inconsistencies.

The wavemodes, obtained at each frequency and

temperature, for each waveguide in the system can be

grouped as

Φ =

[
Φq

inc Φq
ref

Φf
inc Φf

ref

]
(8)

where inc and ref denote the positive and negative going

waves respectively. The modes of the two waveguides in the

system can be grouped as

Ψq
inc =

[
Φq1

inc 0

0 Φq2
inc

]
(9)

with similar expressions for Ψq
ref , Ψf

inc and Ψf
ref .

Assuming modal decomposition, the physical domain can be

converted to the wave domain as

{
qL

fL

}
= Φ

{
Qinc

Qref

}
(10)

where Q denotes the amplitudes of the wave modes.

The DSM of the joint can be partitioned with regard to the

interface and non-interface nodes with the waveguides as

[
D11 D12

D21 D22

]{
q1

q2

}
=

{
f1
f2

}
(11)

where subscript 1 corresponds to the interface DoFs and 2 the

non-interface DofFs. Condensing the non-interface DoFs, the

DSM can be expressed as

D∗
C = D11 −D12D

−1
22 D21 (12)

Applying displacement continuity and equilibrium of forces

at the connecting interfaces, the scattering matrix S of the

joint, whose partitions relate the amplitudes of the incident

and scattered waves as

{
Q1

ref

Q2
ref

}
= S

{
Q1

inc

Q2
inc

}
(13)

where

S = −[Ψf
ref −D∗

CΨq
ref ]−1[Ψf

inc −D∗
CΨq

inc] (14)

with diagonal elements being the reflection coefficients and

off the diagonal the transmission coefficients of the scattered

waves.

V. NUMERICAL RESULTS

The methodology presented in this work is demonstrated on

two numerical case examples: Two collinear rods connected

through a finite joint, and two sandwich laminates connected

through a laminate joint. Calculations are made at five different

temperatures, -100, 25, 90, 110 and 150 ◦C for the composite

laminate example and at three different temperatures, 25, 90

and 150 ◦C for the rod example.

A. Two Collinear Rods Coupled through a Finite Rod

Consider two similar and collinear long rods undergoing

longitudinal vibration. A finite rod of a different material

properties is sandwiched between them as shown in Fig. 7)

Cross-sectional areas A1 = A2 = AJ = 0.003 m2, lengths

L1 = L2 = 0.2 m and L = 0.003 m. Both rods are made of

carbon epoxy while the coupling joint is made of honeycomb

foam (Table I).

The results of the analytically [26] and numerically obtained

wave dispersion relation and interaction coefficients for the

problem are presented in Figs. 8 and 9.

Excellent agreement is observed between the analytically

and numerically obtained results with little deviation at high

frequency due to FE discetisation errors. The results also show

a linear proportional increase in the interaction coefficient with

respect to temperature. The proportional increment is observed
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FE model of the coupling element WFE model of each waveguide

Fig. 6 Caption of a system as two collinear waveguides connected through a coupling joint

Fig. 7 Two rods coupled through a finite rod joint
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Fig. 8 Predicted temperature dependent dispersion curves for the rod

until the glass transition temperature (110 ◦C), beyond this

temperature, the coefficient value decreases proportionally.

B. Composite Laminate

Two collinear composite laminates connected by through

a coupling joint(another composite panel on which damage

is modelled) of the same cross-section (5 mm × 10 mm).

A periodic segment of the quasi-isotropic sandwich panel

comprises of a honeycomb foam core sandwiched between

two carbon fibre facesheets. The temperature dependent

mechanical properties (elastic and shear moduli) and their
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Fig. 9 Predicted temperature dependent reflection coefficients for a finite
joint connecting two rods

respective material loss factor of the materials are presented in

Figs. 3 and 4. The thickness of the core, hc, is 10 mm while

that of the facesheet, hc, is 1 mm. The length of the coupling

joint is 3 mm while that of each waveguide is arbitrary, as

only a periodic segment (as shown in Fig. 6) is needed for the

WFE model.

Surface breaking crack of 1 mm width and 2 mm depth

located at 1 mm along the length of the coupling joint. The

crack is modelled through the node duplication approach [27].

Temperature dependent dispersion curves for the

propagating waves within the system are shown in Figs. 10

and 11.

Four propagating waves, in-plane and out-of-plane flexural

waves as well as torsional and axial waves, exist below the

frequency of 10 kHz. The cut-on frequencies and number

of waves within the considered frequency range depend on

temperature as shown in Fig. 10.



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:11, No:1, 2017

39

Frequency [104Hz]

0 2 4 6 8 10

W
av

en
um

b
er

 [1
/m

]

10-2

100

102

(a) 25◦C

Frequency [104Hz]

0 2 4 6 8 10

W
av

en
um

b
er

 [1
/m

]

10-2

100

102

(b) 150◦C

Fig. 10 Dispersion relations for waves in the composite laminate at 25◦C
and 150◦C
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Fig. 11 Dispersion relations for torsional waves in the composite laminate at
-100◦C (o), 25◦C (+), 90◦C (*), 110◦C (x) and 150◦C (· · ·)

While at 25 ◦C, there are nine waves within the the

frequency range with cut-ons occurring at about 10, 18, 25, 75

and 90 kHz as shown in Fig. 10a, there are eleven waves at 150
◦C, with cut-ons occurring at about 10, 12, 22, 68, 78, 102 and

109 kHz as shown in Fig. 10b. The effect of temperature on the

wavenumber magnitude can be analysed using the temperature

dependent torsional wave dispersion relation shown in Fig. 11.

There is a difference of about 30% between the wavenumbers

at -100 ◦C, 25 ◦C and 90 ◦C, and at 150 ◦C. The variation

in the waves properties as a function of temperature can be

said to be as a result of the variation in the material properties

and material loss factor at different temperature.

Results of the reflection coefficients magnitude of the

propagating waves are presented in Figs. 12-14.

Scattering coefficient trends of the axial and torsional waves

show more sensitivity to change in temperature at higher

frequencies in the range above 60 kHz, while that of the
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Fig. 12 The temperature dependent reflection coefficient magnitude of the
flexural wave from cracked joint of the composite laminate at -100 ◦C (o),

25 ◦C (+), 90 ◦C (*), 110 ◦C (x) and 150 ◦C (· · ·)
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Fig. 13 The temperature dependent reflection coefficient magnitude of the
torsional wave from cracked joint of the composite laminate at -100 ◦C (o),

25 ◦C (+), 90 ◦C (*), 110 ◦C (x) and 150 ◦C (· · ·)

flexural wave shows significant difference only in the range

25 kHz to 85 kHz but insignificant to temperature change

outside this frequency range. The overall difference of the

scattering coefficients in these two temperature ranges (before

and after glass transition) for all the waves is about 50%.

However, the effect of temperature on the reflection coefficient

below, within and after the glass transition temperature varies

significantly. Below the glass transition temperature, there

exist slight increase in the reflection coefficients of all the

wave types with a maximum difference of about 10% per

50 ◦C change in temperature. Above the glass transition

temperature, a considerable difference is observed with respect
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Fig. 14 The temperature dependent reflection coefficient magnitude of the
axial wave from cracked joint of the composite laminate at -100 ◦C (o), 25

◦C (+), 90 ◦C (*), 110 ◦C (x) and 150 ◦C (· · ·)
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to temperature change with an observed difference of about

28% per 50 ◦C change in temperature.

VI. CONCLUDING REMARKS

The temperature dependent mechanical characteristics of

a quasi-isotropic sandwich laminate are presented in this

article. The composite is made of two materials, carbon

epoxy facesheet, impregnated in the resin and draped over

the mould, and a quasi-isotropic honeycomb core. The

thermomechanical characteristics of each of these materials

are separately measured experimentally and it is observed

that there is a large divergence of the material loss factor,

elastic and shear moduli especially within and above the glass

transition temperature of the resin. The thermomechanical

characteristics are then used to determine the temperature

dependent wave propagation properties of the panel using a

wave finite element approach. The panel is then idealised

as a system of two waveguide segments connected through

a coupling joint. The wave finite element modelling of each

waveguide segment is then coupled with the full finite element

of the coupling joint, on which damage is modelled, in order

to calculate the scattering coefficients of the waves interaction

with the damage. As in the case of the experimental results

for the moduli and the material loss factor, the numerical

predicted wave propagation properties and the wave scattering

coefficients exhibit notable differences in their results before

the glass transition temperature compared to after the glass

transition temperature. It can be concluded that temperature is

a significant factor that should be taken into consideration in

the design process of aerospace material in order to improve

its wave response performance.
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