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   Abstract—Equilibrium and stability equations of a thin 
rectangular plate with length a, width b, and thickness 

1 2( )h x C x C= + , made of functionally graded materials under 
thermal loads are derived based on the first order shear deformation 
theory. It is assumed that the material properties vary as a power 
form of thickness coordinate variable z. The derived equilibrium and 
buckling equations are then solved analytically for a plate with 
simply supported boundary conditions. One type of thermal loading, 
uniform temperature rise and gradient through the thickness are 
considered, and the buckling temperatures are derived. The 
influences of the plate aspect ratio, the relative thickness, the gradient 
index and the transverse shear on buckling temperature difference are 
all discussed. 

 
Keywords—Stability of plate; Thermal buckling; Rectangular 

plate; Functionally graded material; First order shear deformation 
theory 

I. INTRODUCTION 
N recent years, functionally graded materials (FGMs) which 
named by a group of material scientists in Japan [1] in 

1984, have attracted much interest as heat shielding materials 
for aircraft, space vehicles and other engineering applications. 
Functionally graded materials are composite materials, which 
are microscopically inhomogeneous, and the mechanical 
properties vary smoothly or continuously from one surface to 
the other. It is this continuous change that results in gradient 
properties in functionally graded materials. Typically, these 
materials are made from a mixture of metal and ceramic, or a 
combination of different metals. Unlike fiber matrix 
composites which have a strong mismatch of mechanical 
properties across the interface of two discrete materials 
bonded together and may result in debonding at high 
temperatures, functionally graded materials have the 
advantage of being able to survive environment with high 
temperature gradient, while maintaining their structural 
integrity.  

The ceramic material provides high temperature resistance 
due to its low thermal conductivity, while the ductile metal 
component prevents fracture due to thermal stresses. 
Furthermore, a mixture of ceramic and metal with a 
continuously varying volume fraction can be easily 
manufactured.  
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In view of the advantages of functionally graded materials, 
a number of investigations dealing with thermal stresses had 
been published in the scientific literature. In recent years, 
Tanigawa et al. [2] derived a one dimensional temperature 
solution for a non-homogeneous plate in transient state and 
also optimized the material composition by introducing a 
laminated composite model. Analytical formulation and 
numerical solution of the thermal stresses and deformations 
for axisymmetrical shells of FGM subjected to thermal 
loading due to fluid was obtained by Takezono et al. [3]. 
Aboudi et al. developed a new kind of higher order shear 
deformation theory for functionally graded materials that 
explicitly couples the micro-structural and macrostructural 
effects[4]. The response of a functionally graded ceramic-
metal plate was investigated by Praveen and Reddy using a 
finite element model that accounts for the transverse shear 
strains, rotary inertia, and moderately large rotations in the 
Von Karman sense [5]. In Ref. [6], Reddy et al. developed the 
relationship between the bending solutions of the classical 
plate theory and the first order plate theory for functionally 
graded circular plates. Sumi studied the propagation and 
reflection of thermal and mechanical waves in FGMs under 
impulsive heat addition [7]. javaheri and Eslami reported 
mechanical and thermal buckling of rectangular functionally 
graded plates (FGPs) based on the classical plate theory [8,9]. 
hey used energy method and reached to the closed form 
solutions. They derived equilibrium and stability equations for 
functionally graded plates are identical to the equations for 
laminated composite plates. They have also investigated 
thermal buckling of FGPs based on the higher order 
displacement field [10]. They obtained buckling loads by 
solving the system of five stability equations. Motivated by 
Javaheri, Lanhe studied thermal buckling of moderately thick 
rectangular FGPs based on the first order shear deformation 
theory [11]. Considerable research has also been performed on 
the analysis of the stresses and deformations of functionally 
graded structures. However, Buckling analyses of FGM 
structures are scarce in the open literature. A formulation of 
the stability problem for FGM plates was presented by Birman 
[12] where a micro-mechanical model was employed to solve 
the buckling problem for a rectangular plate subjected to 
uniaxial compression. The stability of a functionally graded 
cylindrical shell under axial harmonic loading was 
investigated by Ng et al. [13]. Recently, Wu et al. presented 
the thermal buckling analysis of a simply supported thin 
rectangular FGM plate based on the classical plate theories 
[16]. In that paper, we initially consider an FGM rectangular 
thin flat plate of length a, width b, and thickness 
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1 2( )h x C x C= + , subjected to the thermal loads. The material 
properties are assumed to vary as a power form of thickness 
coordinate variable, the linear stability equations are derived 
using the critical equilibrium method, and then the closed 
form of solutions for the linear stability equations is presented. 
They also investigated the influence of neutral plane 
deformation, the aspect ratio, the relative thickness, and the 
graded index of the plate on the critical buckling temperature 
difference. In view of the fact that one solutions to buckling of 
linear variational thickness plates under thermal loads exist, an 
attempt is made to solve the thermal buckling problem of a 
functionally graded plate with moderately thickness and 
simply supported boundary conditions. In this paper, the 
stability equations are established based on the first order 
shear deformation theory Then five equations are combined 
into one governing equation with respect to w  by eliminating 
the other variables. At last, the analytical solution for this 
equation is presented and the influence of transverse shear 
deformation on buckling is discussed. In our study, one kinds 
of thermal loading, uniform temperature rise and gradient 
through the thickness are considered. Functionally Graded 
Plates (FGMs) are typically made from a mixture of ceramics 
and metal or a combination of different metals. The ceramic 
constituent of the material provides the high-temperature 
resistance due to its low thermal conductivity. The ductile 
metal constituent, on the other hand, prevents fracture caused 
by stresses due to high-temperature gradient in a very short 
period of time. Further, a mixture of a ceramic and a metal 
with a continuously varying volume fraction can be easily 
manufactured. 

II. MATERIAL PROPERTIES 
Consider a rectangular plate made of a mixture of metal and 

ceramic. The material in top surface and in bottom surface is 
metal and ceramic respectively. The modulus of elasticity E, 
the coefficient of thermal expansion α and the Poisson’s ratio 
ν are assumed as 

( )( ) 1 ,c c m cE z E V E V= + −  

( ) 0( ) 1 , ( )c c m cE z V V zα α ν ν= + − =                                
            (1)            

where mE and mα denote the elastic moduli and the 
coefficient of thermal expansion of metal respectively; cE  and 

cα denote the elastic moduli and the coefficient of thermal 

expansion of ceramic respectively; CV  denotes the volume 
fraction of the ceramic and is assumed as a power function as 
follows: 

2 , 1
2

k

c m c
z hV V V

h
+⎛ ⎞= = −⎜ ⎟

⎝ ⎠
    (2) (2) 

Where z  is the thickness coordinate variable; and 

( )2 2
h hz− ≤ ≤ , where h is the thickness of the plate and k  is 

the power law index that takes values greater than or equals to 
zero. Substituting Eq.(2) into Eq.(1), material properties of the 
FGM plate are determined, which are the same as the 
equations proposed by Praveen and Reddy [5]. 

2( ) ,
2

k

m cm
z hE z E E

h
+⎛ ⎞= + ⎜ ⎟

⎝ ⎠

0
2( ) , ( )

2

k

c c cm
z hz V z

h
α α α ν ν+⎛ ⎞= + =⎜ ⎟

⎝ ⎠                                    
(3)                   

   Where 
,cm c m cm c mE E E α α α= − = −                                                 (4)   

III. EQUILIBRIUM AND STABILITY EQUATIONS 
 

We initially consider an FGM rectangular thin plate of 
length a , widthb , and thickness 

1 2( )h x C x C= + , subjected to 
the thermal loads. Rectangular Cartesian coordinates ( ), ,x y z  

are assumed for derivations. According to the first order shear 
deformation theory, the strains of the plate can be expressed 
as: 

2
, ,

1
2x x xu wε = +

              
2

, ,
1
2y y yv wε = +   

, , , ,xy y x x yu v w wε = + +      , ,xz z xu wε = +         , ,yz z yv wε = +  (5) 

where xε  and yε are the normal strains and ,xy xzε ε , and 

yzε  are the shear strains. Here ,u v and w  denote the 

displacement components in the ,x y  and z  directions, 
respectively, and a comma indicates the partial derivative. 
According to the first order shear deformation theory, used in 
the present study is based on the following displacement:   
( ) ( )
( ) ( ) ( ) ( )

0 1

0 1 0

, , ( , )

, , ( , ), , ,

u x y u x y zu x y

v x y v x y zv x y w x y w x y

= +

= + =
 (6) 

Substituting Eqs. (6) into nonlinear strain-displacement 
relations (5) gives the kinematic relations as 

 

0 0
0

0 0
0

0 0

,
x x x

xz xz
y y y

yz yz
xy xy xy

k
z k

k

ε ε
ε ε

ε ε
ε ε

ε ε

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟

= + = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                                  (7)                  

where 
2
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0

0 2
0 , 0 ,

0

0 , 0 , 0 , 0 ,

0
1 0 ,

0
1 0 ,

0
1,

0
1,

0
1, 1,

1
2
1
2

x x

x

y y y

xy
y x x y
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x x

y y

xy y x

u w

v w

u v w w

u w
u w

k u
k v
k u v

ε
ε
ε

ε
ε

⎛ ⎞+⎜ ⎟
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ + +⎜ ⎟⎜ ⎟

⎝ ⎠
+⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

=⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 (8) 

Hooke’s law for a plate is defined as:  

0 02
0

0 02
0

0 0 0

( ) (1 ) ( )
1

( ) (1 ) ( )
1

( ) ( ) ( ), ,
2(1 ) 2(1 ) 2(1 )

x x y

y y x

xy xy xz xz yz yz

E z z T

E z z T

E z E z E z

σ ε ν ε ν α
ν

σ ε ν ε ν α
ν

σ ε σ ε σ ε
ν ν ν

⎡ ⎤= + − +⎣ ⎦−

⎡ ⎤= + − +⎣ ⎦−

= = =
+ + +

  
                  (9) 
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The forces and moments per unit length of the plate 
expressed in terms of the stress components through the 
thickness are 

( ) ( )2

2
, 1,

h

i i ih
N M z dzσ

−
= ∫

        
, ,i x y xy=   (10) 

Substituting Eqs. (3), (5), and (9) into Eqs. (10), gives the 
constitutive relations as 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

1 2 1
, 0 , , 0 ,2 2

0 0 0

1 2 1
0 , , 0 , ,2 2

0 0 0

1 2
, , , ,

0 0

32 2
, 0 , , 0 ,2 2

0 0 0

32
0 , , 02 2

0 0

1 1 1

1 1 1

2 1 1

1 1 1

1 1

x x y x x y y

y x y x x y y
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x x y x x y y
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E EN u v

E EN u v

E EN u v

EEM u v

EEM u v

φν φ ν φ
ν ν ν

φν ν φ φ
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φ φ
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ν ν ν

ν ν φ
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= + + + −
− − −

= + + + −
− − −

= + + +
+ +

= + + + −
− − −

= + +
− −

( )

( ) ( )

2
, ,

0

1 2
, , , 0 ,2 2

0 0

1

1 1

x y y
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E EM u v

φφ
ν

φ ν φ
ν ν

+ −
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        (11) 

Where 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
1 2 3

2

2
1 2

2

2 2 2

2

, , 1, , ( )

, 1, , , ( )

( ) , ,

h

h

h

h

h

h

E E E z z E z dz

z z T x y z E z dz

E z z T x y z dz

φ φ α

ψ α

−

−

−
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=

=

∫

∫

∫

        (12) 

* 1 1( )
1 2 1m m m cm cm m cm cmT E E E E

k k
μ α α α α⎡ ⎤= Δ + + +⎢ ⎥+ +⎣ ⎦

          (13) 

The nonlinear equations of equilibrium according to Von 
Karman’s theory are given by 

, , , , , ,

, , 0, 0, 0,

0, 0, 0

0, 2 0
x x xy y xy x y y x x xy y

xy x y y x xx xy xy y yy

N N N N M M

M M N w N w N w

+ = + = + =

+ = + + =
  (14) 

The stability equations of the plate may be derived by the 
adjacent equilibrium criterion [17]. Assume that the 
equilibrium state of a FGP under mechanical or thermal loads 
is defined in terms of the displacement components 0 0,u v and 

0w . The displacement components of a neighboring stable 

state differ by 1 1,u v  and 1w  with respect to the equilibrium 
position. Thus, the total displacements of a neighboring state 
are 

0 1 0 1 0 1, ,u u u v v v w w w= + = + = +   (15) 
Similarly, the force resultants of a neighboring state may be 

related to the state of equilibrium as 
0 0 0, ,x x x y y y xy xy xyN N N N N N N N N= + Δ = + Δ = + Δ   (16) 

Where 
11, yx NN and 1xyN  represent the linear parts of the 

force increments corresponding to 1 1,u v  and 1w .The stability 
equations may be obtained by substituting Eqs. (15) and (16) 
in Eq. (14). Upon substitution, the terms in the resulting 
equations with superscript 0 satisfy the equilibrium condition 
and therefore drop out of the equations. Also, the nonlinear 

terms with superscript 1 are ignored because they are small 
compared to the linear terms. The remaining terms form the 
stability equations as 

1, 1, 1, 1, 1, 1,

1 1 1
1, 1, 0 0, 0 0, 0 0,

0, 0, 0

0, 2 0
x x xy y xy x y y x x xy y

xy x y y x xx xy xy y yy

N N N N M M

M M N w N w N w

+ = + = + =

+ = + + =
  (17) 

The superscript 1 refers to the state of stability and the 
superscript 0 refers to the state of equilibrium conditions. 

IV. BUCKLING OF FUNCTIONALLY GRADED PLATES UNDER 
UNIFORM TEMPERATURE RISE 

The initial uniform temperature of the plate is assumed to 
be 1T .The plate is simply supported along the edges in 
bending and rigidly fixed in extension. Under these boundary 
conditions, the temperature can be uniformly raised to a final 
value 2T  such that the plate buckles [9].To find the critical 
buckling temperature difference, 12 TTT −=Δ  the pre-
buckling thermal stresses should be found. Solving the 
membrane form of equilibrium equations, using the method 
developed by Meyers [18] in conjunction with Galerkin’s 
formulation, gives the pre-buckling force resultants 

( )

( )

* *0 01
0 1 1 1 22

0 1 1 0

* *0 01
0 0 1 1 1 22

0 1 1 0

0

1 1 1
1 2 1

1 1 1
1 2 1
0

x

x

xy

EN C x C a C x C
E E

EN C x Ca C x C
E E

N

ν νμ μ
ν ν

ν νν μ μ
ν ν

⎛ ⎞+ +
= − − +⎜ ⎟− −⎝ ⎠

⎛ ⎞+ +
= − − +⎜ ⎟− −⎝ ⎠
=

  (18) 

The simply supported boundary condition is defined as 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1
0 0 0 0

1 1 1 1
0 0 0 0

1 1 1 1
0 0 1 1

,0 , 0, , 0

,0 , 0, , 0

,0 , 0, , 0

,0 , 0, , 0y y x x

w x w x b w y w a y

u x u x b v y v a y

u x u x b v y v a y

M x M x b M y M a y

= = = =

= = = =

= = = =

= = = =

 (19) 

The following approximate solution is seen to satisfy both 
the differential equation and the boundary conditions 

( )

( )

( )

( )

( )

1
0 0

1 1

1
1 1

1 1

1
0 0

1 1

1
1 1

1 1

1
0 0
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, cos sin

, cos sin

, sin cos

, sin cos

, sin sin

m n
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m n

m n
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m n

m n
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m n

m n
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m n

m n
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m n

u x y u x y

u x y u x y

v x y v x y

v x y v x y

w x y w x y

α β

α β

α β

α β

α β

= =

= =

= =

= =

= =

=

=

=

=

=

∑∑

∑∑

∑∑

∑∑

∑∑

 (20) 

Where    m
a
πα =  , n

b
πβ =  , 1, 2,3,...m n =  

Where m  and n  are number of half waves in x  and y  
directions, respectively, and ( )0 1 0 1 0, , , ,mn mn mn mn mnu u v v w  

are 
constant coefficients. Substituting Eqs. (20) into the stability 
equations (17) and using the kinematic and constitutive 
relations yield a system of five homogeneous equations for 
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0 1 0 1, , , ,mn mn mn mnu u v v  and 0mnw , that is, 

0 ,

0 ,

0 ,

1,

1,

0

mn

mn

mnij

mn

mn

u
v
wk
u
v

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤ =⎣ ⎦ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  (21) 

In which ijk  is a symmetric matrix with the components 

( )2 2 2 2
1 0

11 1 2 2

1
2

Em nk E
a b

νπ π−⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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Em n m nk E
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νπ π π πν
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Em n m nk E
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νπ π π πν
−⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
  

21 12k k= −  (22) 

( )2 2 2 2
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En mk E
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⎝ ⎠ ⎝ ⎠
 

23 0k =   

( )2 0
24 2 0

1
2

Em n m nk E
a b a b

νπ π π πν
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Substituting pre-buckling forces form Eqs.(18) into the 

relation of 33k  and setting 0=ijk  to obtain the nonzero 

solution, the value of crTΔ is found as 
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                        (24)      

 
Where

     detd ijK k=         , 1, 2,3i j =                                   (25) 
 

The critical temperature difference crTΔ  is obtained for the 
values of m and n that make the preceding expression a 
minimum. By setting the power law index equal to one 
( 1)k = , Eq. (24) is reduced to the critical temperature 
difference for an FGP with a linear composition of ceramics 
and metal. In addition, by setting the power law index equal to 
zero ( 0)k = Eq. (24) is reduced to the critical temperature 
difference of homogeneous plates. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:6, 2011

983

 

 

15 24 42 52 12 25 44 51 14 22 45 51

14 25 41 52 15 21 44 52 11 24 45 52

15 22 41 54 11 25 42 54 12 21 45 54

12 24 41 55 14 21 42 55 11 22 44 55

14 25 42

 
        +
        +
        +
      

cK k k k k k k k k k k k k
k k k k k k k k k k k k
k k k k k k k k k k k k
k k k k k k k k k k k k
k k k k

= + +

+ +

+ +

+ +

− 51 15 22 44 51 12 24 45 51

15 24 41 52 11 25 44 52 14 21 45 52

12 25 41 54 15 21 42 54 11 22 45 54

14 22 41 54 11 24 42 55 12 21 44 55

      
      
      

k k k k k k k k
k k k k k k k k k k k k
k k k k k k k k k k k k
k k k k k k k k k k k k

− −

− − −

− − −
− − −

   (26) 

V. ILLUSTRATION 
To illustrate the proposed approach, a ceramic-metal FGP is 

considered. Variation of the critical temperature difference 

crTΔ  versus the aspect ratio b/a, and power law index k  are 
listed for four loading cases in Tables 1. In each table, the 
values of the critical temperature difference crTΔ  obtained by 
the method developed in the present article based on first 
order theory are compared with respective values obtained 
based on classical plate theory [9]. In Tables 1,2 the results of 
buckling analysis for the plate under uniform temperature rise 
are presented.  

 
TABLE  I 

 CRITICAL BUCKLING TEMPERATURE OF THE FGP UNDER UNIFORM 
TEMPERATURE RISE DUE TO THE CLASSICAL (C) AND FIRST ORDER (F) 

THEORIES WITH RESPECT TO k AND /b a  (C1=C2=.005) 
aluminum alumina 

70mE Gpa=  380CE Gpa=  

5

0

1023m c
α

−

= ×  
5

0

107.4C c
α

−

= ×  

5204mk W mk=  5204Ck W mk=  

5/ =ab  4/ =ab  3/ =ab  2/ =ab  1/ =ab     
222.288 145.34 85.495 27.47 17.099 C 0 

220.667 144.64 85.252 26.88 17.088 F  

103.269 67.522 39.718 9.859 7.943 C 1 

102.634 67.25 39.624 9.835 7.939 F  

94.454 61.758 36.328 8.164 7.265 C 5 

93.605 61.395 36.203 8.132 7.26 F  

97.1 63.488 37.346 8.673 7.469 C 10 

96.12 63.068 37.2 8.636 7.462 F  

 
Figure 1,2 show that the buckling temperature increases by 

the increase of the aspect ratio /b a  and decreases with 
increase of the power law index k  from 0 to 10. The 
combination of materials consists of aluminum and alumina. 
The Young’s modulus, coefficient of thermal expansion and 
thermal conductivity. which has come in the following table.  
Poisson’s ratio is chosen to be 0.3. The plate is assumed to be 
simply supported on all four edges. 

It is interesting to note that the buckling temperatures for 

homogeneous plates ( 0)k = are considerably higher than those 
for the FGPs ( 0 )k 〉  especially for the comparatively longer 
and thicker plates. The critical buckling temperatures obtained 
based on classical plate theory are noticeably greater than 
values obtained based on first order shear deformation theory. 
The differences are considerable for long and thin plates. 

 

 
Fig. 1 Critical buckling temperature of the FGP under uniform 

temperature rise due to the classical (C) and first order (F) theories 
with respect to k and /b a  (C1=C2=.005) 

 
TABLE  II 

CRITICAL BUCKLING TEMPERATURE OF THE FGP UNDER UNIFORM 
TEMPERATURE RISE DUE TO THE CLASSICAL (C) AND FIRST ORDER (F) 

THEORIES WITH RESPECT TO k AND /b a = 1,(C1 , C2=.05) 

6
1

10

5
−×

=C  
6

1

10

4
−×

=C  
6

1

10

3
−×

=C  
6

1

10

2
−×

=C  
6

1

10

1
−×

=C  
   

47.261 41.694 36.604 31.992 27.856 C 

46.853 41.124 36.082 31.388 27.012 F 
0 

15.568 13.143 10.925 8.916 7.114 C 

15.036 12.725 10.108 8.265 6.709 F 
1 

14.302 12.147 9.776 7.974 6.465 C 

14.018 11.603 9.365 7.507 6.296 F 
5 

13.302 11.147 9.177 7.392 5.791 C 

13.018 10.603 8.765 7.025 5.382 F 
10 

 

 
Fig. 2 Critical buckling temperature of the FGP under uniform 

temperature rise due to the classical (C) and first order (F) theories 
with respect to k and /b a =1 (C1 , C2=.05) 

VI. CONCLUSIONS 
In this research article, equilibrium and stability equations 

for rectangular simply supported FGPs are obtained. The 
derivation is based on the higher order shear deformation 
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theory, with the assumption of power law composition for the 
constituent materials. The buckling analysis of FGPs under 
one types of thermal loading are presented. Closed form 
solutions for the critical buckling temperatures of plates are 
presented. It is concluded that the equilibrium and stability 
equations are identical to the corresponding equations for 
laminated composite plates. The critical buckling temperature 
differences crTΔ  for the FGPs are generally lower than the 
corresponding values for homogeneous plates. Functionally 
graded plates have many of the same advantages as heat 
resistant material, but it is important to check their strength 
due to the thermal buckling. The critical buckling temperature 
difference crTΔ  for FGPs is increased by increasing the 
aspect ratio /b a .The first order shear deformation theory 
underestimates the buckling load compared with the classical 
plate theory.  

i. The equilibrium and stability equations are identical to 
the corresponding equations for laminated composite 
plates.  

ii. The critical buckling temperature differences crTΔ for the 
FGPs are generally lower than the corresponding values 
for homogeneous plates. Functionally graded plates have 
many of the same advantages as heat resistant material, but 
it is important to check their strength due to the thermal 
buckling.     

iii. The critical buckling temperature difference 
C_1crTΔ  for FGPs 

is increased by increasing the aspect ratio /b a . 
iv. The critical buckling temperature difference crTΔ  for FGPs is 

decrease by increasing the aspect ratio k . 
v. For different /b a  ratio decrease The critical buckling 

temperature difference 
crTΔ  for FGPs decreases by increasing 

the aspect ratio k . 
vi. For different /b h  ratio decrease The critical buckling 

temperature difference 
crTΔ  for FGPs decreases by increasing 

the aspect ratio k . 
vii. For constant /b a  and increase 1C  ratio decrease The 

critical buckling temperature difference 
crTΔ  for FGPs decreases 

by increasing the aspect ratio k . 
viii. The critical buckling temperature difference crTΔ  for FGPs is 

increase by increasing index 
1C . 
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