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Abstract—This paper presents the buckling analysis of short and 

long functionally graded cylindrical shells under thermal and 
mechanical loads. The shell properties are assumed to vary 
continuously from the inner surface to the outer surface of the shell. 
The equilibrium and stability equations are derived using the total 
potential energy equations, Euler equations and first order shear 
deformation theory assumptions. The resulting equations are solved 
for simply supported boundary conditions. The critical temperature 
and pressure loads are calculated for both short and long cylindrical 
shells. Comparison studies show the effects of functionally graded 
index, loading type and shell geometry on critical buckling loads of 
short and long functionally graded cylindrical shells. 
 

Keywords—Buckling, Functionally graded materials, Short and 
long cylindrical shell, Thermal and mechanical loads. 

I. INTRODUCTION 
EORETICAL formulation on buckling of elastic shells 
have been reported by Donnell [1]. He obtained the 

critical buckling loads for short cylindrical shells under 
torsion. Koiter [2], Flügge [3] and Brush and Almorth [4] 
have derived other equations for cylindrical shells under 
different loads. Shahsiah and Eslami [5] employed the 
improved Donnell theory to study the instability of 
functionally graded cylindrical shells subjected to thermal 
loading. Woo and Meguid [6] investigated the postbuckling 
behaviour of functionally graded shallow cylindrical shells 
and plates under thermal and mechanical loads. Khazaeinejad 
and Najafizadeh [7] studied the critical buckling loads for 
functionally graded cylindrical shells under different 
mechanical loads. They employed the first order shear 
deformation theory to obtain the buckling equation. 

The stability of short and long functionally graded 
cylindrical shells under thermal and mechanical loads are 
studied in the present paper.  The properties are assumed to 
vary continuously from the inner surface to the outer surface 
of the shell. Employing the first order shear deformation 
theory, the kinematic relations are obtained. The equilibrium 
and stability equations are derived using the total potential 
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energy equations and Euler equations. The resulting equations 
are solved for simply supported boundary conditions. The 
critical temperature and pressure loads are calculated for both 
short and long cylindrical shells. 

II. FUNDAMENTAL RELATIONS 
A circular cylindrical shell made of functionally graded 

materials with thickness h, radius R and length L is 
considered. The material properties are assumed to be graded 
through the thickness direction. The constituent materials are 
assumed to be ceramic and metal. The volume fractions of the 
ceramic Vc and metal Vm corresponding to the power law are 
expressed as [8] 
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Here, subscripts m and c are the metal and ceramic 
constituents, respectively, z is the thickness coordinate (-h/2 ≤ 
z ≤ h/2), and k is the power law index that takes values greater 
than or equal to zero. The variation of the composition of 
ceramic and metal is linear for k=1. The value of k equal to 
zero represents a fully ceramic shell. The properties of 
functionally graded cylindrical shell are determined from the 
volume fraction of the material constituents. The Young's 
modulus, E, and coefficient of thermal expansion, α, are 
assumed to change in the thickness direction [8] 
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The Poisson’ ratio, ν, is assumed to be constant across the 

plate thickness. Substituting Eq. (1) into (2), the material 
properties of the FG plate are determined, which are the same 
as the equations proposed by Praveen and Reddy [8] 
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For both short and long cylindrical shells, the displacement 
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field based on the first order shear deformation theory is 
expressed as 

 

0( , , ) ( , ) ( , )θ θ β θ= + xu x z u x z x  
0( , , ) ( , ) ( , )θθ θ β θ= +v x z v x z x                (4) 

( , , ) ( , )θ θ=w x z w x  
 
where u, v, w are the displacement of the shell in the x, θ, z 
directions, respectively. The displacement-strain relations for 
long cylindrical shells are written as 
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For cylindrical shells under thermal and mechanical loads, 

the total strain components may be expressed as 
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The related stress components can be written as 
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The stress and moment resultants are defined by the 

following relations 
 

/2 3
/ 2( . , ) (1, , ) , , ,σ θ θ−= ∫ =h

i i i h iN M P z z dz i x x  
/2 2
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Substitution of Eq. (7) into Eq. (8), the stress and moment 

resultants can be obtained in terms of strain components 
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Employing the total potential energy associated with Euler 
equation, the equilibrium equations for long functionally 
graded cylindrical shells can be derived based on the first 
order shear deformation theory as follows 
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For short cylindrical shells the v0 term in Eq. (5) should be 
set to zero, thus, the equilibrium equations for short 
functionally graded are reduced to 

 
, , 0θ θ+ =x x xaN N  

, , 0θ θ θ+ =x xaN N  

 , , , , ,
1 ( ) 2 0θ θθ θ θ θ θ θ− + + + + + =x xx x x x xN aN w aQ w N N w Q
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, , 0θ θ+ − =x x x xaM M aQ                            

                                   

, , 0θ θ θ θ+ − =x xaM M aQ                (11) 
 

If V is the total potential energy of the shell embedded in an 
elastic medium, its variation in equilibrium state using the 
Taylor series can be expressed as 
 

2 31 1 ... .
2! 3!

δ δ δΔ = + + +V V V V  (12) 

 
where the first term is associated with the state of equilibrium. 
To establish the stability equations, the condition 2 0δ =V  is 
used. The stability of original configuration of the shell in the 
neighborhood of the equilibrium state can be obtained by the 
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sign of the second variation  2 .δ V  For all virtual 
displacement, the equilibrium is stable for 2 0δ >V  and for at 
least one admissible set of virtual displacements,  the 
equilibrium is unstable for 2 0.δ <V  If we assume that the 
equilibrium state of a FG cylindrical shell under external 
pressure is defined in terms of displacement components 

0 0,  ,u v  and 0w , the displacement components of a 

neighboring stable state differ by 1 1,  ,u v  and 1w  with respect 
to the equilibrium position. Thus, the total displacements of a 
neighboring state are [9] 
 

0 1= +u u u  
(13) 0 1= +v v v  

0 1= +w w w  
 

In similar way, the resultants of a neighboring state may be 
related to the equilibrium state according to the following 
relations: 
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where 0 0,  θxN N  and 0

θxN  are the prebuckling mechanical forces 
that describe the linear parts of the force increments 
corresponding to 1 1,  ,u v  and 1.w  The stability equations may 
be obtained by substituting Eqs. (13) and (14) into equilibrium 
equations (11) as follows 
For long cylindrical shell: 
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1 1, 1, 0θ θ− + + =x x x xaQ aM M  
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For short cylindrical shell: 
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1 1, 1, 0θ θ− + + =x x x xaQ aM M  
1 1, 1, 0θ θ θ θ− + + =x xaQ aM M              (16) 

 
Here, the superscript 1 and 0 describe the states of stability 
and equilibrium conditions, respectively. The terms in the 
stability equations with superscript 0 satisfy the equilibrium 
condition and therefore drop out of the equations. The 
functionally graded cylindrical shell has simply supported 
boundary conditions and the following approximate solutions 
satisfy the resulting equations and the simply supported 
boundary conditions are assumed 
 

1 1' cos( ) sin( ), 0λ θ= ≤ ≤u u x n x L  
1 1' sin( ) cos( ), 0 2λ θ θ π= ≤ ≤v v x n  

1 1' sin( ) sin( )λ θ=w w x n  
1 1 cos( ) sin( )β β λ θ′=x x x n  

1 1 sin( ) cos( )θ θβ β λ θ′= x n               (17) 
 
where λ=mπ/L. For functionally graded cylindrical shell under 
thermal loading, the temperature function and pre-buckling 
forces are expressed as 
 
For Uniform temperature changes: 
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For radial temperature changes: 
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For mechanical loading, the pre-buckling forces are defined 
by 
 

0 0 0,  0θ θ= − = =e x xN P a N N              (19) 
 

Substituting Eq. (17) into the Eqs. (15) and (16), leads to a 
five sets of differential equations with respect the unknown 
constants defined in Eq. (17). Solving these equations gives a 
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function for buckling pressure dependent on the half-wave 
numbers power law index of functionally graded material, and 
geometry parameters of the functionally graded shell. 

III. RESULTS AND DISCUSSION 
The critical temperature and pressure loads of a functionally 

graded cylindrical shell under thermal and mechanical loads 
are obtained based on the first order shear deformation theory. 
The functionally graded cylindrical shell is composed of 
aluminum and alumina as metal and ceramic materials, 
respectively. The material properties are listed in Table 1. The 
numerical results are calculated for a=0.5 m and h/a=0.05. 
Figures 1-3 show the variations of critical temperature and 
pressure loads for short and long functionally graded 
cylindrical shells with different geometry. 

 
TABLE I 

MATERIAL PROPERTIES 
ν α × 10-6 (1/°C) E (GPa) Material 
0.3 11.7 200 Stainless steel 
0.3 7.4 380 Alumina 

 
 

 
Fig. 1 Comparison of critical pressure loads (Pa) for short and long 

functionally graded cylindrical shells. 
 
 

 
Fig. 2 Comparison of critical temperatures (°C) for short and long 
functionally graded cylindrical shells under uniform temperature. 

 
 

 
Fig. 3 Variations of critical temperatures (°C) for short and long 

functionally graded cylindrical shells under radial temperature with 
functionally graded index and L/a ratio. 

 
 

 
Fig. 4 Variations of critical temperatures (°C) for short and long 

functionally graded cylindrical shells under radial temperature with 
functionally graded index and L/a=1. 

 

IV. CONCLUSIONS 
The buckling analysis of functionally graded cylindrical shells 
under thermal and mechanical loads is presented in this paper. 
The following are concluded: 
1. The difference between the short and long functionally 
graded cylindrical shells can be seen in their longitudinal 
strain. For long functionally graded cylindrical shells, this 
strain is equal to zero. 
2. The critical pressure loads are increased for both short and 
long functionally graded cylindrical shells as the thickness-to-
radius ratio h/a is increased. 
3. The critical pressure loads are increased for both short and 
long functionally graded cylindrical shells as the length-to-
radius ratio L/a is increased 
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