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The symmetric solutions for three-point singular
boundary value problems of differential equation

Li Xiguang

Abstract—In this paper, by constructing a special operator and
using fixed point index theorem of cone, we get the sufficient
conditions for symmetric positive solution of a class of nonlinear
singular boundary value problems with p-Laplace operator, which
improved and generalized the result of related paper.

Keywords—Banach space, cone, fixed point index, singular differ-
ential equation, p-Laplace operator, symmetric solutions.

I. INTRODUCTION

THE boundary value problems with p-Laplace operator
arises in a variety of applied mathematics and physics,

and they are widely applied in studying for non-newtonian
fluid mechanics, cosmological physics, plasma physics, and
theory of elasticity, etc. In recent years, some important results
have been obtained by a variety of method(see[1-4]). On the
other hand, the study for the symmetric and multiple solutions
to this problem is more and more active (see[5-6]). In paper
[5], Sun study for the problem{

(u)
′′

+ a(t)(t)f(t, u(t)) = 0, t ∈ (0, 1)
u(0) = αu(η) = u(1),

where α ∈ (0, 1), η ∈ (0, 1
2 ], by using spectrum theory, Sun

get the existence of symmetric and multiple solution. But when
p �= 2, φp(u) is nonlinear, so the method of the paper [5] is
not suitable to p-laplace operator. In paper [6], Tian and Liu
study for the problem{

(φp(u
′))

′

+ a(t)(t)f(t, u(t)) = 0, t ∈ (0, 1)
u(0) = αu(η) = u(1),

where φ(s) is p-Laplace operator. Motivated by paper [5,6], we
consider the existence of solution for the following problems:⎧⎪⎪⎨

⎪⎪⎩
(φp(u

′))
′

+ h1(t)f(u, v) = 0,

(φp(v
′))

′

+ h2(t)g(u) = 0,
u(0) = γu(η) = u(1),
v(0) = γv(η) = v(1),

(1)

where t ∈ (0, 1), γ ∈ (0, 1), η ∈ (0, 1
2 ], φ(s) is a p-Laplace

operator, i.e. φp(s) = |s|p−2s, p > 1. Obviously, if 1
p
+ 1
q

= 1,

then (φp)
−1 = φq .

Compare with above paper, our method is different. By
constructing a new operator, and using fixed point index
theorem, we get the sufficient condition of the existence of
symmetric solution, which improved and generalized the result
of paper [5,6,7].
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In this paper, we always suppose that the following condi-
tions hold:

(H1) f ∈ C([0,+∞) × [0,+∞), [0,+∞)), g ∈
C([0,+∞), [0,+∞)).

(H2) hi ∈ C((0, 1), [0,+∞)), hi(t) = hi(1 − t), t ∈
(0, 1), for any subinterval of (0, 1), hi(t) �≡ 0, and∫ 1

0

hi(t)dt < +∞(i = 1, 2).

(H3) There exists α ∈ (0, 1], such that lim inf
u→+∞

g(u)

u
p−1

α

= +∞

and lim inf
v→+∞

f(u, v)

v(p−1)α
> 0 hold uniformly to u ∈ R+.

(H4) There exists β ∈ (0,+∞), such that

lim sup
u→0+

g(u)

u
p−1

β

= 0 and lim sup
v→0+

f(u, v)

v(p−1)β
< +∞ hold

uniformly to u ∈ R+.

(H5) There exists n ∈ (0, 1], such that lim inf
u→0+

g(u)

u
p−1

n

=

+∞ and lim inf
v→0+

f(u, v)

v(p−1)n
> 0 hold uniformly to u ∈ R+.

(H6) f(u, v) and g(u) are nondecreasing with re-
spect to u and v, and there exists R > 0, such that

γ

1−γ

∫ 1
2

0

φq(k1(s))dsf(R,
γ

1 − γ

∫ 1
2

0

φq(k1(s))ds × g(R)) <

R, where ki(s) =

∫ 1
2

s

hi(τ)dτ, i = 1, 2.

For convenience, we list the following definitions and lem-
mas:

Definition 1.1 If u(t) = u(1 − t), t ∈ [0, 1], we call u(t)
is symmetric in [0, 1].

Definition 1.2 If (u, v) is a positive solution of problem
(1), and u, v is symmetric in [0, 1], we call (u, v) is symmetric
positive solution of problem (1).

Definition 1.3 If u(λt1 + (1 − λ)t2) ≥ λu(t1) + (1 −
λ)u(t2), we call u(t) is concave in [0, 1].

Let E = C[0, 1], define the norm ||u|| = max
t∈[0,1]

|u(t)|,

obviously (E, ||.||) is a Banach space.

Let K = {u ∈ E|u(t) > 0, u(t) is a symmetric concave
function, t ∈ [0, 1]}, then K is a cone in E. By (H1), (H2),
the solution of problem (1) is equivalent to the solution of
system of equation (2).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds,

0 ≤ t ≤ 1
2 ,∫ 1

t

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds,

1
2 ≤ t ≤ 1,

v(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

φq(

∫ s

1
2

h2(τ)g(u(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds,

0 ≤ t ≤ 1
2 ,∫ 1

t

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds+

γ
1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds,

1
2 ≤ t ≤ 1.

(2)
We define T : K → E :

(Tu)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds,

0 ≤ t ≤ 1
2 ,∫ 1

t

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds,

1
2 ≤ t ≤ 1,

(3)
where

v(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

φq(

∫ s

1
2

h2(τ)g(u(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds, 0 ≤ t ≤
1

2
,∫ 1

t

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds+

γ
1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds,
1

2
≤ t ≤ 1.

(4)
Obviously Tu ∈ E, it is easy to show if T has fixed point u,
then by (4), problem (1) has a solution (u, v).

Lemma 1.1 Let (H1), (H2), then T : K → K is
completely continuous.

Proof ∀u ∈ K, by (H1), (H2), we can get (Tu)(t) ≥
0, t ∈ [0, 1].

v
′

(t) =

⎧⎪⎪⎨
⎪⎪⎩

φq(

∫ 1
2

t

h2(τ)g(u(τ))dτ), 0 ≤ t ≤
1

2
,

−φq(

∫ 1

t

h2(τ)g(u(τ))dτ),
1

2
≤ t ≤ 1,

correspondingly (φp(v
′

))
′

= −h2(t)g(u) ≤ 0, 0 < t < 1, so
v is concave in [0, 1].

Next we show v is symmetric in [0, 1].
When t ∈ [0, 1

2 ],1 − t ∈ [ 12 , 1], so

v(1 − t) =

∫ 1

1−t

φq(

∫ s

1
2

h2(τ)g(u(τ))dτ)ds+

γ
1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

=

∫ t

0

φq(

∫ s

1
2

h2(τ)g(u(τ))dτ)ds+

γ
1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

= v(t).

Similarly, we have v(1 − t) = v(t), t ∈ [ 12 , 1]. So v is a
symmetric concave function in [0, 1].

(Tu)
′

(t) =

⎧⎪⎪⎨
⎪⎪⎩

φq(

∫ 1
2

t

h1(τ)f(u(τ), v(τ))dτ), 0 ≤ t ≤
1

2
,

−φq(

∫ 1

t

h1(τ)f(u(τ), v(τ))dτ),
1

2
≤ t ≤ 1,

so (φp((Tu)
′

))
′

= −h1(t)f(u, v) ≤ 0, 0 < t < 1, i.e.Tu is
concave in [0, 1].

Next we show Tu is symmetric in [0, 1]. when t ∈ [0, 1
2 ],1−

t ∈ [ 12 , 1], so

(Tu)(1 − t) =

∫ 1

1−t

φq(

∫ s

1
2

h1(τ)f(u(τ), v(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds

=

∫ t

0

φq(

∫ s

1
2

h1(τ)f(u(τ), v(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)g(u(τ), v(τ))dτ)ds

= (Tu)(t).

Similarly, we have (Tu)(1 − t) = (Tu)(t), t ∈ [ 12 , 1]. so Tu
is concave in [0, 1], so TK ⊂ K. On the other hand, let D is
a arbitrary bounded set of K , then there exist constant c > 0,
such that D ⊂ {u ∈ K|||u|| ≤ c}. Let b = max

u∈[o,c]
g(u), so

∀u ∈ D, we have

||v|| = |

∫ 1
2

0

φq(

∫ s

1
2

h2(τ)g(u(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds|

≤ bq−1

1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h2(τ)dτ)ds = a.

Let L = max
u∈[o,c],v∈[0,a]

f(u, v), so ∀u ∈ D, we have

||Tu|| = |

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds

+ γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds, |

≤ Lq−1

1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds.
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‖(Tu)
′

‖ = max{|φq(

∫ 1
2

0

h1(τ)f(u(τ), v(τ))dτ)|,

|φq(

∫ 1

1
2

h1(τ)f(u(τ), v(τ))dτ)|}

≤ Lq−1φq(

∫ 1
2

0

h1(τ)dτ).

By Arzela-Ascoli theorem, we know TD is compact set.
By Lebesgue dominated convergence theorem, it is easy to
show T is continuous in K , so T : K → K is completely
continuous.

Lemma 1.2 For any 0 < ε < 1
2 , u ∈ K , we have

(1) u(t) ≥ ‖u‖t(1 − t), ∀t ∈ [0, 1];
(2) u(t) ≥ ε2‖u‖, t ∈ [ε, 1 − ε]. ( the proof is elementary,
we omit it.)

Lemma 1.3( see [8]) Let K is a cone of E in Banach
space, Ω1 and Ω2 are open subsets in E, θ ∈ Ω1,Ω1 ⊂ Ω2, and
T : K

⋂
(Ω2\Ω1) → K is a completely continuous operator,

and satisfy one of the following conditions:

(1)‖Tx‖ ≤ ‖x‖, ∀x ∈ K
⋂
∂Ω1, ‖Tx‖ ≥ x, ∀x ∈

K
⋂
∂Ω2,

(2)‖Tx‖ ≥ ‖x‖, ∀x ∈ K
⋂
∂Ω1, ‖Tx‖ ≤ x, ∀x ∈

K
⋂
∂Ω2,

then A has at least one fixed point in K
⋂

(Ω2\Ω1).

Lemma 1.4(see [9]) Let K is a cone of E in Banach space,
Kr = {x ∈ K| ‖ x ‖≤ r}, suppose A : Kr → K is a
completely continuous, and satisfy Tx �= x, ∀x ∈ ∂Kr,

(1) If ‖Tx‖ ≤ x, ∀x ∈ ∂Kr, then i(T,Kr,K) = 1,

(2) If ‖Tx‖ ≥ x, ∀x ∈ ∂Kr, then i(T,Kr,K) = 0.

II. CONCLUSION

Theorem 2.1 Suppose (H1)− (H4) hold, then problem (1)
has at least one positive solution.

Proof By (H3), there exist ν and a sufficient large number
M > 0, such that

f(u, v) ≥ νp−1v(p−1)α, ∀u ∈ R+, v > M, (5)

g(u) ≥ Cp−1
0 u

p−1
α , ∀u > M, (6)

where C0 = max{( γ

1−γ

∫ η

ε

φq(k2(s))ds)
−1,

(
2

νγαε2( 1
1−γ

∫ η

0

φq(k1(s))
α+1

)
1
α }. Let N = (M + 1)ε−2,

if u ∈ K
⋂
∂KN , by Lemma 2, min

ε≤t≤1−ε
u(t) ≥ ε2||u|| =

ε2N = M + 1, by (3)-(6) and the symmetric property, for
any t ∈ [ε, 1 − ε]

v(t) =

∫ t

0

φq(

∫ s

1
2

h2(τ)g(u(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

≥ γ
1−γ

∫ η

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

≥ γ
1−γ

∫ η

ε

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

≥ C0γ

1−γ

∫ η

ε

φq(

∫ 1
2

s

h2(τ)(u(τ)
p−1

α )dτ)ds

≥ C0γ

1−γ

∫ η

ε

φq(

∫ 1
2

s

h2(τ))dτ)ds(ε
2 ||u||)

1
α

≥ C0γ

1−γ

∫ η

ε

φq(

∫ 1
2

s

h2(τ))dτ)ds(M + 1)
1
α

≥M + 1.

||Tu|| = |

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds+

γ

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds, |

≥ 1
1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds,

≥ ν
1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)v(τ)
(p−1)αdτ)ds,

≥ ν
1−γ

∫ η

ε

φq(

∫ 1
2

s

h1(τ)dτ)ds×

(C0γ

1−γ

∫ η

ε

φq(

∫ 1
2

s

h1(τ)dτ)ds)
αε2||u||

= νCα0 γ
αε2( 1

1−γ

∫ η

0

φq(

∫ 1
2

s

h1(τ)dτ)ds)
α+1 ||u||

≥ 2||u||,

so ||Tu|| > ||u||, ∀ ∈ K
⋂
KN , by lemma 1.4, we can get

i(T,K
⋂
KN ,K) = 0. (7)

On the other hand, by the second limit of H4, there exists a
sufficient small number r1 ∈ (0, 1) such that

Cp−1
1 = sup{

f(u, v)

v(p−1)β
|u ∈ R+, v ∈ (0, r1]} < +∞. (8)

Let ε = min{
r1(1 − γ)∫ 1

2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds

,

(
C1

1 − γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds)
−β−1

β }, by the first limit of

H4, there exist a sufficient small number r2 ∈ (0, 1) such that

g(u) ≤ εp−1u
p−1

β , ∀u ∈ [0, r2]. (9)
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Take r = min{r1, r2}, by (9), we can get

v(t) =

∫ 1
2

0

φq(

∫ s

1
2

h2(τ)g(u(τ))dτ)ds+

γ
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

≤ 1
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

≤ ε
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h2(τ)dτ)ds||u||
1
β

≤ r
1+ 1

β

1 < r1, ∀u ∈ K
⋂
∂Kr, s ∈ [0, 1].

By (8), we can get

||Tu|| ≤ |

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds+

γ
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds, |

≤ C1
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds×

( ε
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds)
β ||u||

= C1ε
β( 1

1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds)
β+1||u||

≤ ||u||, ∀u ∈ K
⋂
∂Kr, t ∈ [0, 1].

So ||Tu|| ≤ ||u||, ∀u ∈ K
⋂
∂Kr, by lemma 1.4, we get

i(T,K
⋂
Kr,K) = 1. (10)

By lemma 1.5, T has at least one fixed point in K
⋂

(KN\Kr),
so problem (1) has at least a system positive solution.

Theorem 2.2 Suppose (H1), (H2), (H3), (H5), (H6)
hold, then problem (1) has at least two systems positive
solutions.

Proof By (H5), there exists μ > 0 and a sufficient small
number ξ ∈ (0, 1), such that

f(u, v) ≥ μp−1vn(p−1), ∀u ∈ R+, 0 ≤ v ≤ ξ, (11)

g(u) ≥ (C2u)
p−1

n , ∀0 ≤ u ≤ ξ, (12)

where

C2 = 2( με
2

1−γ ( γ

1−γ )n
∫ η

ε

φq(k1(s))ds

∫ η

ε

(φq(k2(s)))
nds)−1

since g ∈ C(R+, R+), g(0) ≡ 0, so there exists σ ∈ (0, ξ)
such that ∀u ∈ [0, σ], we have

g(u) ≤ (
1

1 − γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds)
−1,

this imply

v(t) ≤ 1
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds

≤ ξ, ∀u ∈ K
⋂
∂Kσ.

(13)

By using Jensen inequality, 0 < q ≤ 1, and (11)-(13), we
can get

(Tu)(1
2 ) ≥ μ

1−γ

∫ η

ε

φq(

∫ 1
2

s

h1(τ)dτ)ds×

( γ

1−γ

∫ η

ε

φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)ds)n

≥ μ
1−γ

∫ η

ε

φq(

∫ 1
2

s

h1(τ)dτ)ds×

( γ
1−γ )n

∫ η

ε

(φq(

∫ 1
2

s

h2(τ)g(u(τ))dτ)nds

≥ μC2ε
2

1−γ ( γ

1−γ )n
∫ η

ε

φq(

∫ 1
2

s

h1(τ)dτ)ds×∫ η

ε

(φq(

∫ 1
2

s

h2(τ)dτ))
nds||u||

= 2||u||, ∀u ∈ K
⋂
∂Kσ.

So ||Tu|| > ||u||, ∀u ∈ K
⋂
∂Kσ, by lemma 1.4, we can get

i(T,K
⋂
Kσ,K) = 0. (14)

We can choose N > R > σ, such that (7),(14) hold together.
On the other hand by (3),(4) and H6 we can get

(Tu)(t) < 1
1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)f(u(τ), v(τ))dτ)ds

≤ γ

1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)ds×

f(R, γ

1−γ

∫ 1
2

0

φq(

∫ 1
2

s

h1(τ)dτ)dsg(R))

< R, ∀u ∈ K
⋂
KR, ∀t ∈ [0, 1].

So for any u ∈ K
⋂
KR, by lemma 1.4, we can get

i(T,K
⋂
KR,K) = 1. (15)

By (7),(14),(15), we have

i(T,K
⋂

(KN \KR),K)
= i(T,K

⋂
KN ,K) − i(T,K

⋂
KR,K)

= −1.

i(T,K
⋂

(KR \Kσ),K)
= i(T,K

⋂
KR,K) − i(T,K

⋂
Kσ,K)

= 1

So T have at least two fixed points in K
⋂

(KN \ KR and
K
⋂

(KR \ Kσ, by (4), problem (1) has at least two system
solutions.
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