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The study of the discrete risk model with random

income
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Abstract—In this paper, we extend the compound binomial model
to the case where the premium income process, based on a binomial
process, is no longer a linear function. First, a mathematically
recursive formula is derived for non ruin probability, and then, we
examine the expected discounted penalty function, satisfy a defect
renewal equation. Third, the asymptotic estimate for the expected
discounted penalty function is then given. Finally, we give two
examples of ruin quantities to illustrate applications of the recursive
formula and the asymptotic estimate for penalty function.
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I. INTRODUCTION

IN the classical compound binomial risk model, the num-

ber of claims is assumed to follow a binomial process

{N(t), t = 0, 1, 2, · · ·}. The premium received in each period

is one. In any period the probability of claim is p(0 < p < 1),
and the probability of no claim is q = 1− p. We assume that

claims occur at the end of the period and denote by ξt = 1 the

event where a claim occurs in period (t− 1, t] and ξt = 0 the

event where no claim occurs in period (t−1, t]. The individual

claim amounts {X1, X2, · · ·} are independent and identically

distributed(i.i.d.) positive integer valued random variables with

distribution function(d.f.) F (x) = 1 − F (x) = Pr(X ≤ x)
and probability function(p.f.) f(x) and finite mean µ, where

the X is an arbitrary Xi and Xi is the size of the ith claim

and X is independent of the binomial process {N(t)}. The

aggregate claim amount up to time t is S(t) =
N(t)
∑

i=1

Xi. For

t = 0, 1, 2, · · ·, the surplus of the insurer at time t is

U(t) = u+ t−
t
∑

i=1

Xiξi, (1)

where u = U(0), which is a non-negative integer, is

the initial surplus. This model has been studied by many

researchers in recent years. See, for example, Gerber[1],

Shiu[2], Dickson[3], Cheng and Zhu[4]and Cheng et al.[5],

and references therein.

In this paper, we suppose that the premium income is no

longer a linear function of time but another binomial process

{M(t), t = 0, 1, 2, · · ·} with parameter p1, independent of

{N(t), t = 0, 1, 2, · · ·} and {X1, X2, · · ·}. Where M(t) is

corresponding to the number of the customers up to time t.

For simplicity, we assume that the size of premium payment

is 1 for each one. The insurer’s surplus process at the time of

t is
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U(t) = u+M(t)−
N(t)
∑

i=1

Xi = u− V (t), t = 0, 1, 2, · · ·,

(2)

the readers can see Temnov[6] for more details of related mod-

el. In detail, we denote by ηt = 1 the event where a payment

occurs in period (t − 1, t] and ηt = 0 the event where no

payment occurs in period (t−1, t]. If the event occurs in period

(t−1, t], we suppose that the event happen at the beginning of

the period. Let Pr(ηt = 1) = p1, P r(ηt = 0) = q1 = 1− p1.

Then the model(2) can also be expressed as

U(t) = u+
t
∑

i=1

ηi −
t
∑

i=1

Xiξi, t = 0, 1, 2, · · ·.

We suppose that the positive security loading condition holds,

that is, if we denote by θ the relative security loading then,

θ = p1

pµ
− 1 > 0, (3)

Let p(k) = Pr(X = k), k = 1.2. · · · be the (p.f.) of the claim

amounts. Let

p(0) = 0, P (n) =
n
∑

k=0

p(k) = 1− P (n), P (0) = 0,

µ = E(X) =
∞
∑

k=0

kp(k) =
∞
∑

k=0

P (k),

let T = inf{t ≥ 0, U(t) < 0} be the time of ruin, and Ψ(u) =
Pr{T < ∞} be the probability of ultimate ruin from initial

surplus u, Φ(u) = 1−Ψ(u) denotes the non ruin probability.

If ruin occurs, |U(T )| is the deficit at ruin and U(T-) is the

surplus immediately prior to ruin. Denote by

mv(u) = E[vTw(U(T−), |U(T )|)I(T < ∞)|U(0) = u],

the (Gerber-Shiu) expected discounted penalty function,

which was first introduced by Gerber and Shiu[7]. Here,

w(x1, x2), x1 ≥ 0, x2 ≥ 0, is a non-negative bounded

function, 0 < v ≤ 1 is the discount factor and I(.) is the

indicator function. The expected discounted penalty function

provides a unified means of studying the joint distribution of

the surplus immediately prior to ruin and the deficit at ruin.

For further discussion of it, see Bao[8], K. P. Pavlova and G.E.

Willmot[9],J. Cai and D.C.M. Dickson [10], G. E. Willmot and

D.C.M. Dickson[11], and references therein.

In this paper we study the expected discounted penalty

function of model (2) when the discount factor v = 1,

for simplicity, we write m(u) = m1(u). In Section 2, We

first derive a mathematically recursive formula for non ruin

probability Φ(u). In Section 3, We derive a defective renewal

equation for the penalty function m(u). in Section 4, we

give the asymptotic estimate for m(u). Finally, we give two
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examples of ruin quantities to illustrate applications of the

recursive formula and the asymptotic estimate for m(u).

II. NON RUIN PROBABILITY

In this section, we derive the recursive formula for Φ(u).
Theorem2.1. The non ruin probability Φ(u) satisfies the

following recursive formula

Φ(u+1) = Φ(0)+ p
p1q

u
∑

k=0

Φ(k)[p1P (u+1−k)+q1P (u−k)]

(4)

where

Φ(0) = p1−pµ
p1q

, (5)

Proof. We consider U(t) in the first period (0, 1] and separate

the five possible cases as following:

(1) no premium arrives in (0, 1] and no claim occurs in

(0, 1];
(2) a premium arrives in (0, 1] and no claim occurs in (0, 1];
(3) no premium arrives in (0, 1] and a claim occurs in (0, 1],

but no ruin;

(4) a premium arrives in (0, 1] and a claim occurs in (0, 1],
but no ruin;

(5) except the four cases of above.

According to the laws of conditional probability, the non ruin

probability is equal to

Φ(u) = q1qΦ(u) + p1qΦ(u+ 1) + q1p
u
∑

k=1

Φ(u− k)p(k) +

p1p
u+1
∑

k=1

Φ(u+ 1− k)p(k). (6)

Using p(0) = 0, then (6) is equivalent to

(1− q1q)Φ(u) =

p1qΦ(u+ 1) + p
u
∑

k=0

Φ(k)[p1p(u+ 1− k) + q1p(u− k)], (7)

summing (7) over u from 0 to t, we obtain

(1− q1q)
t
∑

u=0
Φ(u) =

p1q
t
∑

u=0
Φ(u+1)+p

t
∑

u=0

u
∑

k=0

Φ(k)[p1p(u+1−k)+q1p(u−k)].

(8)

Owing to

t
∑

u=0

u
∑

k=0

Φ(k)[p1p(u+ 1− k) + q1p(u− k)]

=
t
∑

k=0

t
∑

u=k

Φ(k)[p1p(u+ 1− k) + q1p(u− k)]

=
t
∑

k=0

Φ(k)[p1P (t+ 1− k) + q1P (t− k)]. (9)

Substitution (9) into (8) and rearranging terms, then (8) is

equivalent to

p1q[Φ(t+ 1)− Φ(0)] =

p
t
∑

k=0

Φ(k)− p
t
∑

k=0

Φ(k)[p1P (t+ 1− k) + q1P (t− k)]

= p
t
∑

k=0

Φ(k)[p1P (t+ 1− k) + q1P (t− k)],

from which we get

p1qΦ(t+ 1) =

p1qΦ(0) + p
t
∑

k=0

Φ(k)[p1P (t+ 1− k) + q1P (t− k)]. (10)

Owning to p1 > pµ, then we get

lim
u→∞

Φ(u) = 1. (11)

By the Dominated Convergence Theorem and (11), we have

lim
t→∞

t
∑

k=0

Φ(k)[p1P (t+ 1− k) + q1P (t− k)]

= lim
t→∞

t
∑

k=0

Φ(t− k)[p1P (k + 1) + q1P (k)]

=
∞
∑

k=0

[p1P (k + 1) + q1P (k)] = µ− p1 (12)

Then we take t → ∞ in (10), by the Dominated Convergence

Theorem and (11)(12), yields

p1qm = p1qΦ(0) + p(µ− p1). (13)

Obviously Eq.(10) and Eq.(13) lead to (4) and (5).

Remark. Actually, we can get another recursive formula from

(7), but we can easily get Φ(0) from (4).

III. DEFECTIVE RENEWAL EQUATION FOR THE PENALTY

FUNCTION

In this section, we derive a defective renewal equation

for the penalty function m(u). Throughout this paper we

will use the curly capital letters to denote the corresponding

generating functions.

Theorem3.1. The penalty function m(u) satisfies the follow-

ing defective renewal equation

m(u) = p
1−qq1

{
u
∑

k=0

m(u− k)[p1P (k) + q1P (k − 1)] +

∞
∑

k=u

w(k)− p1w(u)}, u ∈ N, (14)

where w(u) =
∞
∑

k=u+1

w(u, k − u)p(k), and

m(0) = p
qp1

[
∞
∑

k=0

w(k)− p1w(0)]. (15)

Proof. We consider U(t) in the first period (0, 1] and separate

the four possible cases as following:

(1) no premium arrives in (0, 1] and no claim occurs in

(0, 1];

(2) a premium arrives in (0, 1] and no claim occurs in (0, 1];

(3) no premium arrives in (0, 1] and a claim occurs in (0, 1];

(4) a premium arrives in (0, 1] and a claim occurs in (0, 1].
According to the laws of conditional probability, the penalty

function is equal to
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m(u) = q1qm(u) + p1qm(u+ 1) + q1p
u
∑

k=1

m(u−

k)p(k) + p1p
u+1
∑

k=1

m(u+ 1− k)p(k) + q1p
∞
∑

k=u+1

w(u, k −

u)p(k) + p1p
∞
∑

k=u+2

w(u+ 1, k − u− 1)p(k). (16)

Let w(u) =
∞
∑

k=u+1

w(u, k−u−)p(k), and after rearranging

them in (16), we have

qp1m(u+ 1) = (1− qq1)m(u)− pq1
u
∑

k=1

m(u− k)p(k)

−pp1
u+1
∑

k=1

m(u+ 1− k)p(k)− pp1w(u+ 1)− pq1w(u).

(17)

Owing to

M (z) =
∞
∑

u=0
zum(u),W (z) =

∞
∑

u=0
zuw(u),P(z) =

∞
∑

k=0

zkp(k).

Multiplying by zu and summing over u from 0 to ∞ Eq.(17)

yields

qp1[M (z)−m(0)] = (1−qq1)zM (z)−pp1M (z)P(z)−
pq1zM (z)P(z)− pp1[W (z)− w(0)]− pq1zW (z),

or equivalently,

[qp1 − (1− qq1)z + pp1P(z)− pq1zP(z)]M (z) =
qp1m(0) + pp1W (z)− pq1zW (z) + pp1w(0). (18)

Owing to P(1) =
∞
∑

k=0

p(k) = 1 and pq1+pp1+qp1+qq1 = 1,

thus z = 1 is the root to the equation

qp1 − (1− qq1)z + pp1P(z) + pq1zP(z) = 0,

we set z = 1 in Eq(18), then we have

qp1m(0) + pp1w(0) = pp1W (1) + pq1zW (1) = pW (1).
(19)

Substituting (19) into (18) results in

[qp1 − (1− qq1)z + pp1P(z)− pq1zP(z)]M (z) =
pp1[W (1)− W (z)] + pq1[W (1)− zW (z)]. (20)

We subtract

qp1 − (1− qq1) + pp1P(1) + pq1P(1) = 0

from the first term on the left hand side of (20) to obtain

[(1− qq1)(1− z)− pp1(P(1)− P(z))− pq1(P(1)−
zP(z))]M (z)

= pp1[W (1)− W (z)] + pq1[W (1)− zW (z)].

that is

M (z) =
p

1−qq1
{p1

P(1)−P(z)
1−z

M (z) + q1
P(1)−zP(z)

1−z
M (z)

+p1
W (1)−W (z)

1−z
+ q1

W (1)−zW (z)
1−z

}. (21)

Now for any function a(x), x ∈ N , with generating function

A (z), one has (see Pavolva and Willot [9])

A (t)−A (z)
t−z

=
∞
∑

u=0
zu

∞
∑

i=u+1

ti−u−1a(i).

Also, one has easily that

tA (t)−zA (z)
t−z

=
∞
∑

u=0
zu

∞
∑

i=u

ti−ua(i).

Thus, equating the coefficients of zu in (21) we obtain

m(u) = p
1−qq1

{
u
∑

k=0

m(u− k)[p1P (k) + q1P (k − 1)] +

p1
∞
∑

k=u+1

w(k) + q1
∞
∑

k=u+1

w(k)}

= p
1−qq1

{
u
∑

k=0

m(u− k)[p1P (k) + q1P (k − 1)] +

∞
∑

k=u

w(k)− p1w(u)}. (22)

We now demonstrate the renewal equation (22) is defective.

In fact, by the positive relative security condition, we have

p
1−qq1

∞
∑

k=0

[p1P (k) + q1P (k − 1)] = p[p1µ+q1µ+q1]
1−qq1

,

= pµ+pq1
1−qq1

< p1+pq1
1−qq1

= 1,

which means renewal equation (22) is defective renewal

equation. Let u = 0 in (22), then we get (15).

IV. ASYMPTOTIC ESTIMATE

In this section, we derive the asymptotic estimate for m(u).
Let

GX(r) = P(r) = E[rX ] =
∞
∑

n=1
p(n)rn

We suppose that: there is a r∞ > 1 such that GX(r) → ∞ as

r → r∞ ( r∞ is possibly +∞).

Definition. If the equation E[rV (1)] = 1 has a root R > 1,

then R is called the adjustment coefficient and E[rV (1)] = 1
is called the adjustment coefficient equation.

According to the definition GV (1)(r) = E[rS(1)−η1 ] =
(pGX(r) + q)(p1

1
r
+ q1) = 1, from which we get

(pGX(r) + q)(q1r + p1) = r (23)

Write H(r) = (pGX(r) + q)(q1r+ p1), G(r) = r, then H(r)
denotes the left side of Eq.(23), G(r) denotes the right side of

Eq.(23). It is easy to check out that G(r) is a straight line with

slope 1, H(r) is a monotonously increasing convex function in

[0, r∞) and H(0) = p1q,H(1) = 1. That is to say, there exist

at most two real roots of Eq.(23) in [0, r∞) and one of them

is 1. According to (3) we have H ′(1) = pµ + q1 = p1

1+θ
=

1+q1θ
1+θ

< 1, the slope of the straight line, Hence, if there exist

two real roots of Eq.(23), the other is greater than 1, we denote

by R the root greater than 1, R is the adjustment coefficient.

According to the assumption GX(r) → ∞ as r → r∞ and

H ′′(r) > 0, R necessarily exists. In this paper we always

assume that R exists.

Lemma. Let {ak, k = 0, 1 · · ·} and {bk, k = 0, 1 · · ·} be two

nonnegative sequences. Suppose that
∞
∑

k=0

ak = 1,
∞
∑

k=1

kak <
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∞,
∞
∑

k=0

bk < ∞, and that the greatest common divisor of the

integers k for which a(k) > 0 is 1. if the renewal equation

un =
n
∑

k=0

an−kuk + bn, n = 0, 1 · · ·

is satisfied by a bounded sequence {un} of real numbers, then

lim
n→∞

un exist and

lim
n→∞

un =

∞
∑

k=0

bk

∞
∑

k=1

kak

.

If
∞
∑

k=1

kak = ∞, let lim
n→∞

un = 0.

Proof. According to the Karlin and Taylor[12] ( Chapter 3),

it is easy to get the conclusion.

Theorem4.1. The asymptotic estimate for the penalty function

m(u) is

m(u) ∼ CR−u(u → ∞), (24)

where

C = 1−R
R

(p1+q1R)W (R)−
∑

∞

i=0
w(i)

(1−R)(p1+q1R)P′(R)+P(R)−1 . (25)

Proof.

Denote by m∗(u) = Rum(u),

a(k) = Rk p
1−qq1

[p1P (k) + q1P (k − 1)],,

b(u) = Ru p
1−qq1

[
∞
∑

k=u+1

w(k) + q1w(u))],

where R is the adjustment coefficient.

Thus, Eq.(22) becomes

m∗(u) =
u
∑

k=0

m∗(k)a(u− k) + b(u), u ∈ N .

Owing to R is the root of Eq.(23), then we have

∞
∑

k=0

a(k)

= p
1−qq1

[p1
∞
∑

k=0

Rk
∞
∑

i=k+1

p(i) + q1
∞
∑

k=0

Rk
∞
∑

i=k

p(i)]

= p
1−qq1

[p1
∞
∑

i=1

p(i)
i−1
∑

k=0

Rk + q1
∞
∑

i=0

p(i)
i
∑

k=0

Rk]

= p
1−qq1

[p1
∞
∑

i=1

p(i) 1−Ri

1−R
+ q1

∞
∑

i=0

p(i) 1−Ri+1

1−R
]

= p
1−qq1

[ p1

1−R
(1− P(R)) + q1

1−R
(1−RP(R))]

= p[1−P(R)(p1+q1R)]
(1−qq1)(1−R)

= 1

Note that
∞
∑

k=0

ka(k)

= p
1−qq1

[p1
∞
∑

k=1

kRkP (k) + q1
∞
∑

k=1

kRkP (k − 1)]

= p
1−qq1

[p1
∞
∑

k=1

kRk(
∞
∑

i=k

p(i)−p(k))+ q1
∞
∑

k=1

kRk
∞
∑

i=k

p(i)]

= p
1−qq1

[
∞
∑

k=1

kRk
∞
∑

i=k

p(i)− p1
∞
∑

k=1

kRkp(k)]

= p
1−qq1

[
∞
∑

i=1

p(i)
i
∑

k=1

kRk − p1RP ′(R)]

= p
1−qq1

[ R
(1−R)2

∞
∑

i=1

p(i)(1−Ri)− R
1−R

∞
∑

i=1

iRi+1p(i)−

p1RP ′(R)]

= p
1−qq1

[ R
(1−R)2 (1− P(R))− R2

1−R
P ′(R)− p1RP ′(R)]

= p
1−qq1

[ R
(1−R)2 (1− P(R))− ( R

1−R
+ p1)RP ′(R)]

Similarly, we have

∞
∑

k=0

b(k) = p
1−qq1

[
∞
∑

k=0

Rk
∞
∑

i=k+1

w(i) + q1
∞
∑

k=0

Rkw(k)]

= p
1−qq1

[
∞
∑

k=0

Rk
∞
∑

i=k

w(i)− p1
∞
∑

k=0

Rkw(k)]

= p
1−qq1

[
∞
∑

i=0

w(i)
i
∑

k=o

Rk − p1W R]

= p
1−qq1

[ 1
1−R

∞
∑

i=0

w(i)(1−Ri+1)− p1W R]

= p
1−qq1

[ 1
1−R

∞
∑

i=0

w(i)− ( R
1−R

+ p1)W R]

According to the Lemma, we get

lim
u→∞

m∗(u) = 1−R
R

(p1+q1R)W (R)−
∑

∞

i=0
w(i)

(1−R)(p1+q1R)P′(R)+P(R)−1 . (26)

Then (24) and (25) follow from (26).

V. SOME EXAMPLES OF RUIN QUANTITIES

In this section, we give two examples of ruin quantities to

illustrate applications of the asymptotic estimate for m(u).
Example 5.1. Letting w(x1, x2) = 1, we have m(u) =
E[I(T < ∞)] = Ψ(u). In this case

W (R) = 1
1−R

[1− P(R)],

and
∞
∑

i=0

w(i) = µ.

Thus, By Theorem4.1 , the asymptotic estimate for the ulti-

mate ruin probability Ψ(u) is

Ψ(u) ∼ C1R
−u(u → ∞),

where

C1 = (p1+q1R)(1−P(R))−(1−R)µ
R{(1−R)(p1+q1R)P′(R)+P(R)−1} .

Example 5.2. Letting w(x1, x2) = I(x2 ≤ y), (y ∈ N),
then m(u) = Pr(|U(T )| ≤ y, T < ∞) = G(u, y) is the

distribution function of the deficit at ruin. In this case

W (R) = 1−R−y

1−R
[1− P(R)] +R−y

y−1
∑

i=0

RiP (i),

and
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∞
∑

i=0

w(i) =
y−1
∑

i=0

P (i).

Thus, By Theorem4.1 , the asymptotic estimate for G(u, y) is

G(u, y) ∼ C2R
−u(u → ∞),

where

C2 =

(p1+q1R)(1−P(R))(1−R−y)+(1−R)[R−y

y−1
∑

i=0

RiP (i)−

y−1
∑

i=0

P (i)]

R{(1−R)(p1+q1R)P′(R)+P(R)−1} .

Remark. We introduce the new discrete time risk model,

which is the generalization of the classical discrete time risk.

However, the discrete time model with random income in this

paper can be seen as analogous to the continuous time model

in Temmov[6] in a way.
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