ISSN: 2517-9934 Vol:2, No:11, 2008

The Structure of Weakly Left C-wrpp Semigroups

Xiaomin Zhang

Abstract—In this paper, the class of weakly left C-wrpp semigroups which includes the class of weakly left C-rpp semigroups as a subclass is introduced. To particularly show that the spined product of a left C-wrpp semigroup and a right normal band which is a weakly left C-wrpp semifroup by virtue of left C-full Ehremann cyber groups recently obtained by authors Li-Shum, results obtained by Tang and Du-Shum are extended and strengthened.

Keywords—Left C-semigroup,left C-wrpp semigroup,left quasinormal band,weakly left C-wrpp semigroup

I. INTRODUCTION

THROUGHOUT this paper, we adopt the notation and terminologies given by Howei[1] and Li-Shum[2].

By modifying Green's relations on rpp semigroups, Tang [3]has introduced a new set of Green's relations on a semigroup S and by using these new Green's relations, he was able to give a description for a wider class of C-rpp semigroups, namely, the class of C-wrpp semigroups. Tang[3] considered a Green-like right congruence relation L^{**} on a semigroup S for $a,b \in S$ $aL^{**}b$ if and only axR $ay \Leftrightarrow bxR$ by for all $x,y \in S^1$. Moreover, Tang pointed out in [3] that a semigroup S is a wrpp semigroup if and only if each L^{**} -class of S contains at least one idempotent.

Recall that a wrpp semigroup S is a C-wrpp semigroup if the idempotents of S are central. It is well known that a semigroup S is a C-wrpp semigroup if and only if S is a strong semilattice of left- R cancellative monoids(see[3]). Because a Clifford semigroup can be expressed as a strong semilattice of groups and a C-rpp semigroup can be expressed as a strong semilattice of left cancellative monoids(see[4]), we see immediately that the concept of C-wrpp semigroups is a common generalization of Clifford semigroups and C-rpp semigroups.

For wrpp semigroups, Du-Shum [5] first introduced the concept of left C-wrpp semigroups, that is,a left C-wrpp semigroup whose satisfy the following conditions: (i)for all $e \in E(L_a^{**})$, a = ae where $E(L_a^{**})$ is the set of idempotents in L_a^{**} ; (ii)for all $a \in S$, there exists a unique idempotent a^+

X. M. Zhang is with the Department of Mathematics, Linyi Normal University, Shandong 276005 P.R.China (corresponding phone: 86-539-2068718; fax: 86-539-2058033; e-mail: lygxxm@ tom..tom).

satisfying $aL^{**}a^+$ and $a=a^+a$; (iii) for all $a \in S, aS \subseteq L^{**}(a)$, where $L^{**}(a)$ is the smallest left **-ideal of S generated by a. For left C-wrpp semigroups, Du-Shum[5] gave a method of construction.

Guo [6] has investigated weakly left C-semigroups, and he pointed out that a semigroup S is a weakly left C-semigroup if and only if S is a completely regular semigroup with idempotents set E(S) forming a left quasi-normal band.

In this paper, we first define the concept of weakly left C-wrpp semigroups. A structure theorem for weakly C-wrpp semigroups is obtained, and we prove this theorem in view of the structure of left C-full Ehresmann cyber groups recently obtained by Li and Shum[2].

II. PRELIMINARIES

We first recall that some known results used in the sequel. The following results due to [2] and [7].

Let S be a semigroup, and U a subset of the set E(S)) which is the set of all idempotents of S. For all $a \in S$, let $U_a^l = \{u \in U \mid ua = a\}$, $U_a^r = \{u \in U \mid au = a\}$, $U_a = U_a^l \cap U_a^r = \{u \in U \mid ua = a = au\}$. According to Lawson[8] and He[7], we have the following relations on S:

$$\begin{split} \tilde{\mathbf{L}}^{U} &= \left\{ (a,b) \in S \times S \mid U_{a}^{r} = U_{b}^{r} \right\}, \tilde{\mathbf{R}}^{U} = \left\{ (a,b) \in S \times S \mid U_{a}^{l} = U_{b}^{l} \right\}, \\ \tilde{\mathbf{H}}^{U} &= \tilde{\mathbf{L}}^{U} \cap \tilde{\mathbf{R}}^{U}, \tilde{\mathbf{Q}}^{U} = \left\{ (a,b) \in S \times S \mid U_{a} = U_{b} \right\}. \end{split}$$

It is easy to verify that above relations are equivalent relations. For all $a \in S$, a $\tilde{\mathbf{L}}^U$ -class, a $\tilde{\mathbf{R}}^U$ -class, a $\tilde{\mathbf{H}}^U$ -class and a $\tilde{\mathbf{Q}}^U$ -class of S containing a, denoted by \tilde{L}_a^U , \tilde{R}_a^U , \tilde{H}_a^U and \tilde{Q}_a^U , respectively. For the sake of convenience, we denote the semigroup S with a projective set U which is a subset of all idempotents E(S) by S(U).

Consider the special semigroup S(U) with U=E(S). Then the equivalent relations on S=S(U), say $\tilde{\mathbf{L}}^{E(S)}$, $\tilde{\mathbf{R}}^{E(S)}$, $\tilde{\mathbf{R}}^{E(S)}$, respectively. For brevity, we write $\tilde{\mathbf{L}}$, $\tilde{\mathbf{R}}$, $\tilde{\mathbf{H}}$ and $\tilde{\mathbf{Q}}$, respectively.

Defintion 2.1 A semigroup S(U) is called a U-semi-lpp semigroup if each $\tilde{\mathbb{R}}^U$ -class of S contains at least one element in U, that is, $\tilde{R}^U_a \cap U \neq \emptyset$ for all $a \in S$. A semigroup S(U) is called a U-semi-rpp semigroup if each $\tilde{\mathbb{L}}^U$ -class of S contains at least one element in U, that is, $\tilde{L}^U_a \cap U \neq \emptyset$ for all

ISSN: 2517-9934 Vol:2, No:11, 2008

 $a\in S$. A semigroup S(U) is called a U-semiabundant semigroup if both each $\tilde{\mathbf{L}}^U$ -class and each $\tilde{\mathbf{R}}^U$ -class of S contain at least one element in U, that is, $\tilde{L}_a^U\cap U\neq \varnothing$ and $\tilde{R}_a^U\cap U\neq \varnothing$ for all $a\in S$. A semigroup S(U) is called U-abundant semigroup if each $\tilde{\mathbf{Q}}^U$ -class of S contains at least one element in U, that is, $\tilde{Q}_a^U\cap U\neq \varnothing$. Denoted the unique element in U by a_v^0 if $|\tilde{Q}_a^U\cap U|=1$, In special case U=E(S), a E(S)-abundant semigroup is called a full abundant semigroup, in this case, a_E^0 is usually written as a^0 .

Lawson[8] point out that $\tilde{\mathbf{L}}^U$ is not necessarily a riht congruence and $\tilde{\mathbf{R}}^U$ is not necessarily a left congruence on S(U). We have

Definition 2.2 A semigroup S(U) is called satisfying U -right(left) congruence condition if $\tilde{L}^U \in RC(S)$ ($\tilde{R}^U \in LC(S)$, a semigroup S(U) is called satisfying U - congruence condition if $\tilde{L}^U \in RC(S)$ and $\tilde{R}^U \in LC(S)$, where RC(S) is a lattice that all right congruences form, and LC(S) is a lattice that all left congruences form.

Definition 2.3 A U -semiabundant semigroup S(U) is called an Ehresmann semigroup if S(U) satisfies U -congruence condition and U is a subsemilattice of U. In particular, an Ehresmann semigroup S(U) is called a C-Ehresmann semigroup if U lies in center of S(U).

Definition 2.4 A U-abundant semigroup S(U) is called an orthodox U-abundant semigroup if U is a subsemigroup of S(U) and $(ab)_U^{\circ} D(U) a_U^{\circ} b_U^{\circ}$ for all $a,b \in S$, where $D=L \vee R$ is a usual Green's D relation.

Definition 2.5 An orthodox U -abundant semigroup is called a left C-Ehresmann semigroup if $uS \subseteq Su$ holds for all $u \in U$.

Definition 2.6 An orthodox U -abundant semigroup is called a left C-Ehresmann cyber group if the identity uxuy = uxy holds for all $u \in U, x, y \in S$.

When U = E(S), we call an orthodox E(S) -abundant semigroup(left C-Ehresmann semigroup, left C-Ehresmann cyber group) an orthodox full abundant semigroup(left C-full Ehresmann semigroup, left C-full Ehresmann cyber group).

Recall that the direct product $I \times T$ of a left zero band I and a monoid T is called a left monoid, and the direct product $I \times T$ of a left zero band I and a unipotent semigroup T is called a left unipotent semigroup. It is well known that a right normal band Λ can be expressed as a strong semilattice of right zero bands, that is, $\Lambda = [Y; \Lambda_{\alpha}; \varphi_{\alpha,\beta}]$. By using the above results,

He[7] have proved that the following results:

Lemma 2.7 The following statements are equivalent for a semigroup S:

- (i) S(U) is a left C-Ehresmann semigroup for some $U \subseteq E(S)$;
 - (ii) S is a semilattice Y of left monoids $S_{\alpha} = I_{\alpha} \times T_{\alpha}$ and

 $U = \{(i, 1_{\alpha}) \mid i \in I_{\alpha}\}$ is a subsemigroup of S where $\alpha \in Y$, 1_{α} is the identical element in T_{α} .

By virtue of above lemma, a left C-Ehresmann semigroup $S(U) = [Y; S_{\alpha} = I_{\alpha} \times T_{\alpha}]$ may be defined as a semilattice of left monoids $S_{\alpha} = I_{\alpha} \times T_{\alpha}$, and the set $U = \{(i, 1_{\alpha}) | i \in I_{\alpha}, \alpha \in Y\}$ is also a subsemigroup of S(U).

The followinglemma have been recently proved by Li-Shum [2].

Lemma 2.8 Let S be a semigroup. Then S(U) is a left C-Ehresmann cyber group for some $U \subseteq E(S)$ if only and if S is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-Ehresmann semigroup $S_1 = [Y; I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to the semilattice Y.

By using Lemma 2.7, we can easily follow that S is a left C-full Ehresmann semigroup if and only if S is a semilattice of left unipotent semigroups. Hence we can denote a left C-full Ehresmann semigroup S by $S = [Y; S_{\alpha} = I_{\alpha} \times T_{\alpha}]$ (see[7]).

By using Lemma 2.8, we can easily imply that S is a left C-full Ehresmann cyber group if and only if S is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-full Ehresmann semigroup $S_1 = [Y; I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to the semilattice Y (see [2]).

III. THE STRUCTURE OF WEAKLY LEFT C-WRPP SEMIGROUPS

In this section, the concept of weakly left C-wrpp semigroups is introduced. We shall prove that a structure theorem for weakly left C-wrpp semigroups. First, we introduce the cocept of weakly left C-wrpp semigroups.

Definition 3.1 A semigroup *S* is called a weakly left C-wrpp semigroup, if *S* is a strong wrpp semigroup and satisfy identity $exe_{Y} = ex_{Y}$ for all $e \in E(S)$ and $ex_{Y} \in S$.

According to [5]. we know that the left C-wrpp semigroup is a special case of the weakly left C-wrpp semigroup.

Lemma 3.2 Let S be a strongly wrpp semigroup. Then S is a full abundant semigroup with $a^{\circ} = a^{+}$, for all $a \in S$.

Proof. Let S be a strongly wrpp. To prove S is a full abundant semigroup,we only need to prove $a^{\circ}=a^{+}$ for all $a\in S$. Let $I_{a}=\{e\mid ea=ae=a\}$. For all $e\in I_{a}$, since

 $(a^+e)^+a=(a^+e)^+(a^+e)a=(a^+e)a=a(a^+e)(a^+e)^+=a(a^+e)^+,$ and $a=aeL^{**}a^+eL^{**}(a^+e)^+$. So we have $(a^+e)^+\in L_a^{**}\cap I_a$. This implies that $(a^+e)^+=a^+$. Thus, we have $a^+ea^+=a^+e$ and whence $a^+e\in E(S)$. Consequently, we obtain that $a^+e=(a^+e)^+=a^+$. On the other hand, we can easily verify that $ea^+\in L_a^{**}\cap I_a$. Therefore, $ea^+=a^+$, and so $e\in I_{a^+}$. Thus, it follows that $I_a\subseteq I_{a^+}$. Clearly, $I_{a^+}\subseteq I_a$ and whence $I_a=I_{a^+}$. This means that $(a,a^+)\in \tilde{\mathbb{Q}}$. Therefore, S is a full abundant semigroup with $a^\circ=a^+$. The proof is completed.

Lemma 3.3 Let S be a weakly left C-wrpp semigroup. Then

ISSN: 2517-9934 Vol:2, No:11, 2008

S is a left C-full Ehresmann cyber group.

Proof. Let S be a weakly left C-wrpp semigroup. Then we have $exe_V = ex_V$ for all $e \in E(S)$, $x, y \in S$, and hence E(S) is a left quasi-normal band. According to Lemma 3.2, we know that S is a full abundant semigroup with $a^{\circ} = a^{+}$. To prove that S is a left C-full Ehresmann cyber group, it suffices to prove S(E(S)) satisfying $(ab)^{\circ} D(E(S))a^{\circ}b^{\circ}$ for all $a, b \in S$. Now, Let $a, b \in S$. For all $x, y \in S^1$, we can infer that $(ab)^+ xR (ab)^+ y \Leftrightarrow abxR aby (R is a left congruence)$ $\Leftrightarrow a^+ba^+b^+xR\ a^+ba^+b^+y\ (E(S)\ is\ a\ left\ quasi-normal\ band)$ $\Leftrightarrow aba^+b^+xR\ aba^+b^+y$ (R is a left congruence) $\Leftrightarrow (ab)^+ a^+ b^+ x R (ab)^+ a^+ b^+ y$. This means that $(ab)^+L^{**}(ab)^+a^+b^+$. Since $(ab)^+,(ab)^+a^+b^+ \in E(S)$, we can verify that $(ab)^+L(ab)^+a^+b^+$, and whence $(ab)^+=$ $(ab)^+a^+b^+$. For all $x, y \in S$, we have $(ab)^+a^+xR(ab)^+a^+y \Leftrightarrow aba^+xRaba^+y$ $\Leftrightarrow a^+ba^+xR a^+ba^+y$ $\Leftrightarrow b^+a^+ba^+xR\ b^+a^+ba^+y$ (R is a left congruence) $\Leftrightarrow (ba)^+b^+a^+ba^+xR(ba)^+b^+a^+ba^+y$ (R is a left congruence) $\Leftrightarrow ba^{+}xR ba^{+}y \Leftrightarrow b^{+}a^{+}xR b^{+}a^{+}y$ $\Leftrightarrow a^+b^+a^+xR a^+b^+a^+y$ (R is a left congruence) $\Leftrightarrow (ab)^+ a^+ b^+ a^+ x R (ab)^+ a^+ b^+ a^+ y$ (R is a left congruence) $\Leftrightarrow (ab)^+ a^+ x R (ab)^+ a^+ y$. So we have $(ab)^{+}a^{+}L^{**}a^{+}b^{+}a^{+}$, and hence $(ab)^{\circ} = (ab)^{+}R$ $(ab)^+a^+La^+b^+a^+Ra^+b^+=a^\circ b^\circ$. The proof is completed.

We now characterize the weakly left C-wrpp semigroups. Theorem 3.4 A semigroup S is a weakly left C-wrpp semigroup if and only if S is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-wrpp semigroup $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to semilattice Y.

Proof. Necessity. Let S be a weakly left C-wrpp semigroup. Then by Lemma 3.3, S is a left C-full Ehresmann cyber group with $a^{\circ}=a^{+}$ for all $a\in S$. According to Lemma 2.8, we know that S can express as $S_{1}\times_{Y}\Lambda$, where $S_{1}=[Y;S_{\alpha}=I_{\alpha}\times T_{\alpha}]$ is a left C-full Ehresmann semigroup and $\Lambda=[Y;\Lambda_{\alpha};\varphi_{\alpha,\beta}]$ is a right normal band. We only need to show that S_{1} is a strongly wrpp semigroup and T_{α} is a left-R cancellative monoid.

For all
$$(i,a) \in S_{\alpha}$$
, $(j,b) \in S_{\beta}$ and $(k,c) \in S_{\gamma}$, we have $(i,a)(j,b)R$ $(i,a)(k,c) \Rightarrow (i,a)(i,1_{\alpha})(j,b)R$ $(i,a)(i,1_{\alpha})(k,c)$ $\Rightarrow ((i,a),\lambda)((i,1_{\alpha})(j,b),\mu)R$ $((i,a),\lambda)((i,1_{\alpha})(k,c),\mu)$ ($\lambda \in \Lambda_{\alpha}$, $\mu \in \Lambda_{\alpha\beta} = \Lambda_{\alpha\gamma}$) $\Rightarrow ((i,1_{\alpha}),\lambda)((i,1_{\alpha})(j,b),\mu)R$ $((i,1_{\alpha}),\lambda)((i,1_{\alpha})(k,c),\mu)$ ($\lambda \in \Lambda_{\alpha}$, $\mu \in \Lambda_{\alpha\beta} = \Lambda_{\alpha\gamma}$) $\Rightarrow (i,1_{\alpha})(j,b)R$ $(i,1_{\alpha})(k,c)$ since $((i,a),\lambda)^{+} = ((i,a),\lambda)^{\circ} = ((i,1_{\alpha}),\lambda)$, where 1_{α} is the

identity in $T_{\alpha}(\alpha \in Y)$. Similarly, we can deduce that (i, a)(j, b)

$$\begin{split} & \text{R } (i,a) \Rightarrow (i,1_a)(j,b) \text{R } (i,1_a) \text{. Thus } (i,a) \text{L}^{**}(i,1_a) \text{. By } (i,1_a) \\ & \text{being the unique element in } L_a^{**} \cap I_{(i,a)}, \text{ we observe that } S_1 \text{ is a strongly wrpp semigroup with } (i,a)^+ = (i,1_a) \text{. If } a,b,c \in T_a \text{ such that } ab \text{R } ac \text{, then } (i,a)(i,b) \text{R } (i,a)(i,c) \text{ for all } i \in I_a \text{. By } (i,a) \\ & \text{L}^{**}(i,1_a), \text{ we have } (i,1_a)(i,b) \text{R } (i,1_a)(i,c) \text{, and whence } b \text{R } c \text{,} \\ & \text{this means that } T_a \text{ is a left-R } \text{ cancellative monoid.} \end{split}$$

Sufficiency. Assume that $S = S_1 \times_Y \Lambda$, where $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ is a left C-wrpp semigroup and $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ is a right normal band, then $(i,a)^+ = (i,1_\alpha)$ for $(i,a) \in S_\alpha$, where 1_α is the identity in T_α . We easily verify that S is a strongly wrpp semigroup with $((i,a),\lambda)^+ = ((i,1_\alpha),\lambda)$, and whence we can also check that S is a weakly left C-wrpp semigroup.

Weakly left C-semigroups were first investigated by Guo[6] in 1996, and weakly left C-rpp semigroups were investigated by Cao [9] in 2000. It is clear that weakly left C-semigroups and weakly left C-rpp semigroups are special weakly left C-wrpp. As applications of Theorem 3.4, we have the following corollaries:

Corollary 3.5 A semigroup S is a weakly left C-rpp semigroup if and only if S is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C-rpp semigroup $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to semilattice Y.

Corollary 3.6 A semigroup S is a weakly left C- semigroup if and only if S is isomorphic to a spined product $S_1 \times_Y \Lambda$ of a left C- semigroup $S_1 = [Y; S_\alpha = I_\alpha \times T_\alpha]$ and a right normal band $\Lambda = [Y; \Lambda_\alpha; \varphi_{\alpha,\beta}]$ with respect to semilattice Y.

REFERENCES

- J. M. Howie, An introduction to semigroup theory, London: London Acaemic Press, 1976
- [2] G.Li, and K. P.Shum, "On left C-Ehresmann cyber group," Advances in Algebra and Analysis, Vol 1, no. 1, pp. 13-25, 2006.
- [3] X.D. Tang, "On a theorem of C-wrpp semigroups," Comm. Algebra, vol.25,no.5,pp. 1499-1504,1997.
- [4] J. B.Fountain, "Right pp monoids with central idempotents," Semigroup Forum, vol.13,pp.229-237,1977.
- [5] L.Du, and K. P.Shum, "On left C-wrpp semigroups," Semigroup Forum, vol.67, no.3,pp.373-387,Aug.,2003.
- [6] Y. Q. Guo, "On weakly left C-semigroups," Chinese Sci. Bull., vol.40,no.19,pp.1744-1747,1996.
- Y.He, "Some studies on regular semigroups and generalized regular semigroups," Ph D. dissertation, Zhongshan University, China, 2002.
- [8] M.V.Lawson, "Rees matrix semigroups," Proc.Edinb.Math.Soc.,vol.33, pp. 23-27,1990.
- [9] Y. L.Cao, "The structure of weakly left C-rpp semigroups," J.Zibo University,vol.2,no.4,pp.3-8,Dec.,2000.
- [10] P.Y. Zhu, Y.Q.Guo, and K. P.Shum, "Structure and characterization of left Clifford semigroups," Sci. China, Ser. vol. 35A, pp.791-805, Oct., 1991.
- [11] Y. Q.Guo , K. P.Shum, and P.Y.Zhu, "The structure of left C-rpp semigroups," Semigroup Forum, vol.50,no.1,pp.9-23,Dec.,1995.
- [12] X.M.Ren, and K. P.Shum, "Structure theorem for right pp semigroups with left central idempotents, "Disscuss.Math.Gen.Algebra Appl., vol.20,no.3,pp.63-75, Sept.,2000.