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The stability of Almost n-multiplicative maps in
fuzzy normed spaces
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Abstract—Let A and B be two linear algebras. A linear map
ϕ : A → B is called an n-homomorphism if ϕ(a1...an) =
ϕ(a1)...ϕ(an) for all a1, ..., an ∈ A. In this note we have a
verification on the behavior of almost n-multiplicative linear maps
with n > 2 in the fuzzy normed spaces.
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I. INTRODUCTION

LET A and B be two linear algebras. A linear mapping ϕ :
A → B is called an n-homomorphism if ϕ(a1...an) =

ϕ(a1)...ϕ(an) for each a1, ..., an in A, (See [6]).
The stability of functional equations is an interesting area of

research for mathematicians, but it can be also of importance to
persons who work outside of the realm of pure mathematics.
For example, physicists are interested in the stability of the
mathematical formulae which they use to model physical
processes. More precisely, physicists and other scientists are
interested in determining when a small change in an equation
used to the model of a phenomenon gives a large changes in
the results.

It seems that the stability problem of functional equations
had been first raised by Ulam [12]: For what metric groups G
is it true that an approximate additive of G is necessarily near
to a strict linear map?

An answer to the above problem has been given as follows
[11]. Suppose E1 and E2 are two real Banach spaces and
f : E1 → E2 is a mapping. If there exist δ ≥ 0 and 0 ≤ p <
1 such that ||f(x + y) − f(x) − f(y)|| ≤ δ(||x||p + ||y||p)
for all x, y ∈ E1, then there is a unique additive mapping
T : E1 → E2 such that ||f(x) − T (x)|| ≤ 2δ||x||p/|2 − 2p|
for every x ∈ E1.

In 1991, Gajda [3] gave a solution to this question for p > 1.
In 1992, Gavruta [4] generalized the result of Rassias for the
admissible control functions.

Moreover the approximated mappings have been studied
extensively in several papers. (See for instance [7], [8]).

Fuzzy notion introduced firstly by Zadeh [13] that has been
widely involved in different subjects of mathematics. Zadeh’s
definition of a fuzzy set characterized by a function from a
nonempty set X to [0, 1]. Goguen in [5] generalized the notion
of a fuzzy subset of X to that of an L-fuzzy subset, namely
a function from X to a lattice L.
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Later in 1984, Katsaras [9] defined a fuzzy norm on a linear
space to construct a fuzzy vector topological structure on the
space. Defining the class of approximate solutions of a given
functional equation one can ask whether every mapping from
this class can be somehow approximated by an exact solution
of the considered equation in the fuzzy Banach algebra.

To answer this question, we use here the definition of fuzzy
normed spaces given in [9] to exhibit some reasonable notions
of fuzzy approximately additive and almost n-multiplicative
functions in fuzzy normed algebras and we will prove that
under some suitable conditions an approximately additive and
almost n-multiplicative f from an algebra X into a fuzzy
Banach algebra Y can be approximated in a fuzzy sense by
an n-homomorphism mapping T from X to Y .

II. PRELIMINARIES

In this section, we provide a collection of definitions and
related results which are essential and used in the next discus-
sions.

Definition 2.1: Let A and B be Banach algebras and, ϕ :
A −→ B a linear map. We say ϕ is an almost multiplicative
map if there exists an ε > 0 such that for all x, y ∈ A,
||ϕ(xy) − ϕ(x)ϕ(y)|| ≤ ε||x||||y||.

Definition 2.2: Let A and B be two linear algebras and n >
2 an integer. A linear map ϕ : A→ B is an n- homomorphism
if for all a1, a2, ..., an ∈ A,
ϕ(a1a2...an) = ϕ(a1)ϕ(a2)...ϕ(an).
In [1] we define the concept of almost n-multiplicative

maps:
Definition 2.3: Let A and B be Banach algebras and n > 2

an integer. A linear map ϕ : A → B is called an almost
n-multiplicative map if there exists ε > 0 such that for all
a1, a2, ..., an ∈ A,

||ϕ(a1a2...an) − ϕ(a1)ϕ(a2)...ϕ(an)|| ≤ ε||a1||||a2||...||an||.
Definition 2.4: Let X be a real linear space. A function

N : X × R → [0, 1] is said to be a fuzzy norm on X if for
all x, y ∈ X and all t, s ∈ R,

(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c �= 0;
(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function on R and

limt→∞N(x, t) = 1;
(N6) for x �= 0, N(x, .) is (upper semi) continuous on R.

The pair (X,N) is called a fuzzy normed linear space.
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Example 2.5: Let (X, ||.||) be a normed linear space. Then

N(x, t) =

⎧⎨
⎩

0, t ≤ 0;
t

||x|| , 0 < t ≤ ||x||;
1, t > ||x||.

is a fuzzy norm on X .
Definition 2.6: Let (X,N) be a fuzzy normed linear space

and {xn} be a sequence in X . Then {xn} is said to be conver-
gent if there exists x ∈ X such that limn→∞N(xn−x, t) = 1
for all t > 0. In that case, x is called the limit of the sequence
{xn} and we denote it by N − limn→∞xn = x.

Definition 2.7: A sequence {xn} in X is called Cauchy if
for each ε > 0 and each t > 0 there exists n0 such that for
all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1 − ε.

It is known that every convergent sequence in a fuzzy
normed space is Cauchy and if each Cauchy sequence is
convergent, then the fuzzy norm is said to be complete and
furthermore the fuzzy normed space is called a fuzzy Banach
space.

Let X be an algebra and (X,N) be complete fuzzy normed
space. The pair (X,N) is said to be a fuzzy Banach algebra
if for every x, y ∈ X and s, t ∈ R we have: N(xy, st) ≥
min{N(x, s), N(y, t)}.

Example 2.8: Let(X, ||.||) be a Banach algebra. Define,

N(x, a) =
{

0, a ≤ ||x||;
1, a > ||x||.

Then (X,N) is a fuzzy Banach algebra.
Theorem 2.9: Let X be a linear space and (Y,N) be a

fuzzy Banach space. Let ϕ : X × X → [0,∞) be a control
function such that

ϕ̃(x, y) =
∑∞
n=0 2−nϕ(2nx, 2ny) <∞,

for all x, y ∈ X . Let f : X → Y be a uniformly approximately
additive function with respect to ϕ in the sense that

limt→∞N(f(x+ y) − f(x) − f(y), tϕ(x, y)) = 1
uniformly on X × X . Then T (x) = N − limn→∞

f(2nx)
2n

for all x ∈ X exists and defines a unique additive mapping
T : X → Y such that if for some δ > 0, α > 0

N(f(x+ y) − f(x) − f(y), δϕ(x, y)) > α,
for all x, y ∈ X; then

N(T (x) − f(x), δ/2ϕ̃(x, x)) > α,
for every x ∈ X .

Proof: [10]
corollary 2.10: Let X be a normed linear space and (Y,N)

a fuzzy Banach space. Let θ ≥ 0 and 0 ≤ q < 1. Suppose that
f : X → Y is a function such that
limt→∞N(f(x+ y) − f(x) − f(y), tθ(||x||q + ||y||q)) = 1

uniformly on X × X . Then there is a unique additive
mapping T : X → Y such that

limt→∞N(T (x) − f(x), 2θt||x||
q

1−2q−1 ) = 1
uniformly on X .

Proof: [10]
Remark 2.11: Using the sequence {2nf(2−nx)}, one can

get dual version of Theorem 2.9 and Corollary 2.10 when the
control function satisfies∑∞

n=0 2nϕ(2−nx, 2−ny) <∞.

In particular, the similar results hold for ϕ(x, y) = ||x||q +
||y||q, where q > 1.

Theorem 2.12: Let X be a linear space and let (Z,N ′) be
a fuzzy normed space. Let ψ : X × X → Z be a function
such that for some 0 < α < 2,

N ′(ψ(2x, 2y), t) ≥ N ′(αψ(x, y), t)
for all x, y ∈ X and t > 0. Let (Y,N) be a fuzzy Banach
space and let f : X → Y be a mapping in the sense that

N(f(x+ y) − f(x) − f(y), t) ≥ N ′(ψ(x, y), t)
for each t > 0 and x, y ∈ X . Then there exists unique additive
mapping T : X → Y such that

N(f(x) − T (x), t) ≥ N ′( 2ψ(x,x)2−α , t),
where x ∈ X and t > 0.

Proof: [10]

III. UNIFORM VERSION OF FUZZY STABILITY OF

ALMOST N-MULTIPLICATIVE MAPPINGS

Eshaghi Gordji [2] investigate the stability of almost n-
multiplicative and almost n-multiplicative derivations. We
start our work with definition of fuzzy approximately n-
multiplicative maps.

Definition 3.1: Let X be a linear algebra, (Y,N) a fuzzy
Banach algebra and θ ≥ 0. We say that f : X → Y is a fuzzy
approximately n-multiplicative map if
limt→∞N(f(x1...xn)−f(x1)...f(xn), tθ||x1||q...||xn||q) =

1,
uniformly on X .

Theorem 3.2: Let X be a normed linear algebra and (Y,N)
a fuzzy Banach algebra. Let θ ≥ 0 and q ≥ 0, q �= 1. Suppose
that f : X → Y is a function such that,
limt→∞N(f(x+ y) − f(x) − f(y), tθ(||x||q + ||y||q)) = 1

uniformly on X ×X and
limt→∞N(f(x1...xn) − f(x1)...f(xn), tθ||x1||q...||xn||q) =

1
uniformly on X × ...×X .

Then there is a unique n-multiplicative additive mapping
T : X → Y such that

limt→∞N(T (x) − f(x), 2θt||x||
q

|1−2q−1| ) = 1
uniformly on X .

Proof: Theorem 2.9 and Corollary 2.10 show that there
exists a unique additive mapping T = N − limm→∞

f(2mx)
2m

such that

limt→∞N(T (x) − f(x), 2θt||x||
q

|1−2q−1| ) = 1

uniformly on X .
We will show that T is an n-multiplicative map. For every

x1, ..., xn ∈ X we have

N(n−2sf(n2sa2) − n−2sT (n2sa2), n
−2sδθ||n2sa2||q

|1−2q−1| ) ≥ α.

Now, since
N(n−2sf(n2sa2) − n−2sT (n2sa2), n

−2sδθ||n2sa2||q
|1−2q−1| ) =

N(n−2sf(n2sa2) − T (a2), n
−2sδθ||n2sa2||q

|1−2q−1| ).

So,

N(n−2sf(n2sa2) − T (a2), n
−2sδθ||n2sa2||q

|1−2q−1| ) ≥ α,

for all n ∈ N .
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As same as the above argument, one can show that

N(n−sf(nsa) − T (a), n
s(q−1)δθ||a||q
|1−2q−1| ) ≥ α

for every n ∈ N .
The latter inequalities state that:

limt→∞N(n−2sf(n2sa2) − T (a2),
2n2s(q−1)tθ||a2||q

|1 − 2q−1| ) = 1,

(1)
and

limt→∞N(n−sf(nsa) − T (a),
2ns(q−1)tθ||a||q

|1 − 2q−1| ) = 1. (2)

By assumption we get

limt→∞N(f(a2) − f(a)2, tθ||a||2q) = 1,

so

limt→∞N(f(n2sa2) − f(nsa)2, n2stθ||a||2q) = 1,

for all n ∈ N . Hence

limt→∞N(n−2s(f(n2sa2) − f(nsa)2), n2s(q−1)tθ||a||2q) =
1.

For all t > 0 we have:
N(T (a2) − T (a)2, t) ≥ min{N(T (a2) −

n−2sf(n2sa2), t/3), N(n−2sf(n2sa2) −
n−2sf(nsa)2, t/3), N(n−2sf(nsa)2 − T (a)2, t/3)}.

Given ε > 0, we can find some t1 > 0 such that

N(T (a2) − n−2sf(n2sa2), t/3) ≥ 1 − ε,

for all t/3 ≥ t1 and all a ∈ X .
Since limn→∞n2s(q−1)tθ||a||2q = 0, there is some n0 such

that n2s(q−1)tθ||a||2q < t/3 for all n ≥ n0. On the other hand
since N is a nondecreasing function hence for each n ≥ n0,
N(n−2s(f(n2sa2)−f(nsa)2), t/3) > N(n−2s(f(n2sa2)−

f(nsa)2), n2s(q−1)tθ||a||2q).
By the hypothesis, for given ε > 0 we can find some t2 > 0

such that

N(n−2s(f(n2sa2) − f(nsa)2), t/3) ≥ 1 − ε,

for all t/3 ≥ t2 and all a ∈ X .
Also, by Lemma ?? for given ε > 0, we can find some

t3 > 0 such that

N(n−2sf(nsa)2 − T (a)2, t/3) ≥ 1 − ε,

for all t/3 ≥ t3 and all a ∈ X .
Let t0 = min{t1, t2, t3}. So N(T (a2) − T (a)2, t) ≥ 1 − ε

for all t > 0, and by the item (N2) in the Definition 2.4 we
have T (a2) = T (a)2.

It remains to show that if a �= 0 and a2 = 0 then T (a2) =
T (a)2.

As follows from Corollary 2.10, there exists an additive
mapping T : X → Y such that

limt→∞N(f(x) − T (x), 2θt||x||
q

|1−2q−1| ) = 1,

for all x ∈ X .

It suffices to show that T (a2) = T (a)2 for all a ∈ X .
Pick a ∈ X − {0} arbitrarily. In this case, we can not apply
the pervious proof. In fact, if a2 = 0 then ||a2||q = 0 and
hence the relation 1 is meaningless by the item (N1) in the
Definition 2.4. We will show that T (a)2 = 0 whenever a2 = 0.
It follows from limt→∞N(f(a2) − f(a)2, tθ||a||2q) = 1 and
the hypothesis f(0) = 0, that

limt→∞N(n−2f(na)2, tθn−2||na||2q) = 1.

Hence,

limt→∞N(n−2f(na)2, tθn2(q−1)||a||2q) = 1. (3)

Note also that

limt→∞N(f(x) − T (x), 2θt||x||
q

|1−2q−1| ) = 1,

and

limt→∞N(n−1f(na) − n−1T (na), 2θt||na||
q

|1−2q−1| ) = 1.

So we have limt→∞N(n−1f(na)−T (a), 2θtn
q−1||a||q

|1−2q−1| ) = 1
for all n ∈ N .

In the remaining of the proof we will take into consideration
the following two cases:

Case 1. If 0 ≤ q < 1, temporarily fix
t > 0. Given ε > 0 we can find some t1 > 0 such that
N(n−1f(na) − T (a), 2θtn

q−1||a||q
|1−2q−1| ) ≥ 1 − ε for all t ≥ t1.

Since limn→∞
2tθnq−1||a||q

|1−2q−1| = 0, there is some n0 such that
2tθnq−1||a||q

|1−2q−1| < t for all n ≥ n0. Hence for all n ≥ n0

N(n−1f(na) − T (a), t) >
N(n−1f(na) − T (a), 2tθn

q−1||a||q
|1−2q−1| ) ≥ 1 − ε.

We have N − limn→∞n−1f(na) = T (a). By Lemma ??
one gets

N − limn→∞n−2f(na)2 = T (a)2.

Given ε > 0 we can find some t2 > 0 such that
N(T (a)2 − n−2f(na)2, t/2) ≥ 1 − ε for all t/2 ≥ t2. On
the other hand for given ε > 0 we can find some t3 > 0
such that N(n−2f(na)2, t/2) ≥ 1− ε for all t/2 ≥ t3. Hence
taking t0 = min{t1, t2, t3} we have
N(T (a)2 − 0, t) ≥ min{N(T (a)2 −

n−2f(na)2, t/2), N(n−2f(na)2, t/2)} ≥ 1 − ε.
This completes the proof for 0 ≤ q < 1.
Case 2. If q > 1, by assumption we have

limt→∞N(f(a2) − f(a)2, tθ||a||2q) = 1 and since f(0) = 0
it holds

limt→∞N(n2f(n−1a)2, tθn2(1−q)||a||2q) = 1.

Note also that limt→∞N(nf(n−1a) −
nT (n−1a), 2θt||n

−1a||q
|1−2q−1| ) = 1.

So limt→∞N(nf(n−1a) − T (a), 2θtn
1−q||a||q

|1−2q−1| ) = 1 for all
n ∈ N . Following an argument such as that of the proof of
case 1 verifies case 2.

Finally suppose that T ∗ : X → Y is another Jordan additive
function such that limt→∞N(f(x)−T ∗(x), 2θt||x||

q

|1−2q−1| ) = 1 for
all x ∈ X .
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Then it holds

limt→∞N(n−sf(nsa) − T (a), 2n
s(q−1)tθ||a||q
|1−2q−1| ) = 1

for T = T ∗. We thus obtain
N(T (a) − T ∗(a), t) ≥ min{N(T (a) −

n−sf(nsa), t/2), N(n−sf(nsa) − T ∗(a), t/2)}.

Since limn→∞
2ns(q−1)tθ||a||q

|1−2q−1| = 0, there is some n0 such

that 2ns(q−1)tθ||a||q
|1−2q−1| < t/2 for all n ≥ n0. Given ε > 0, we

can find some t0 > 0 such that
N(T (a) − n−sf(nsa), t/2) ≥ 1 − ε and also

N(n−sf(nsa) − T ∗(a), t/2) ≥ ε for all t ≥ t0. Hence
N(T (a) − T ∗(a), t) ≥ 1 − ε for all t > 0 and again by the
item (N2) in the Definition 2.4, we have T (a) = T ∗(a).

Remark 3.3: Using the similar argument such as that of the
proof of Theorem 3.2 one can get the similar results where
q < 1.

In the following example we will show that Theorem 3.2
does not necessarily hold for q = 1.

Example 3.4: Let X be a Banach algebra, x0 ∈ X and α, β
are real numbers such that |α| ≥ 1 − ||x||2 and β ≤ ||x||, for
every x ∈ X . Put
f(x) = αx+ βx0||x||, (x ∈ X).
Moreover, for each fuzzy norm N on X , we have

N(f(x+ y) − f(x) − f(y), t(||x|| + ||y||))
= N(βx0(||x+ y|| − ||x|| − ||y||), t(||x|| + ||y||)),

= N(βx0,
t(||x||+||y||)

||x+y||−|x||−||y|| ) ≥
N(βx0, t) (x, y ∈ X, t ∈ R).

Therefore by the item (N5) of the Definition 2.4,
limt→∞N(f(x + y) − f(x) − f(y), t(||x|| + ||y||)) = 1,
uniformly on X ×X .

Also
N(f(x2) − f(x)2, t||x||2) =

N(αx2 + βx0||x2|| − α2x2 − β2x20||x||2 − 2αβxx0||x||,
t||x||2) ≥ min{N((1 − α)αx2, t||x||

2

4 ), N(||x2||βx0, t||x||
2

4 )
, N(−β2x20||x||2, t||x||

2

4 ), N(−2αβxx0||x||, t||x||
2

4 )}
where x ∈ X and t ∈ R.

Taking into account the following inequalities

N((1− α)αx2,
t||x||2

4
) = N(αx2,

t||x||2
4|1 − α| ) ≥ N(αx2, t/4),

(4)

N(||x2||βx0, t||x||
2

4
) = N(βx0,

t||x||2
4||x2|| ) ≥ N(βx0, t/4),

(5)

N(−β2x20||x||2,
t||x||2

4
) = N(β2x20, t) ≥ N(β2x20, t/4), (6)

N(−2αβxx0||x||, t||x||
2

4
) = N(2αxx0,

t||x||
4|β| ) ≥ N(2αxx0, t/4),

(7)
it can be easily seen that limt→∞N(f(x2) −

f(x)2, t||x||2) = 1, uniformly on X and therefore the
conditions of Theorem 3.2 are fulfilled.

Now, we suppose that there exists a unique linear Jordan
map T satisfying the conditions of Theorem 3.2. By the
equation

limt→∞N(f(x+ y)− f(x)− f(y), t(||x||+ ||y||)) = 1, (8)

for given ε > 0, we can find some t0 > 0 such that
N(f(x+ y) − f(x) − f(y), t(||x|| + ||y||)) ≥ 1 − ε,

for all x, y ∈ X and all t ≥ t0. By using the simple induction
on n, we shall show that

N(f(2nx) − 2nf(x), tn2n||x||) ≥ 1 − ε. (9)

putting y = x in 8, we get 9 for n = 1. Let 9 holds for
some positive integer n. Then

N(f(2n+1x) − 2n+1f(x), t(n+ 1)2n+1||x||) ≥
min{N(f(2n+1x) − 2f(2nx), t(||2nx|| +

||2nx||)), N(2f(2nx) − 2n+1f(x), 2tn(||2n−1x|| +
||2n−1x||)) ≥ 1 − ε.

This completes the induction argument. We observe that
limn→∞N(T (x) − f(x), nt||x||) ≥ 1 − ε.

Hence

limn→∞N(T (x) − f(x), nt||x||) = 1. (10)

One may regard N(x, t) as the truth value of the statement
’the norm of x is less than or equal to the real number t’. So
10 is a contradiction with the non-fuzzy sense. This means
that there is no such a T .

IV. NON-UNIFORM TYPE OF STABILITY OF FUZZY

APPROXIMATELY JORDAN MAPPINGS

We are in a position to give non-uniform type of Theorem
3.2.

Theorem 4.1: Let X be a linear algebra, (Z,N ′) a fuzzy
Banach algebra and ϕ : X ×X → Z a function such that for
some 0 < α < 2,

N ′(ϕ(2x, 2y), t) ≥ N ′(ϕ(x, y), t)
for all x, y ∈ X and t > 0. Let (Y,N) be a fuzzy Banach
algebra and let f : X → Y be a function such that

N(f(x+ y) − f(x) − f(y), t) ≥ N ′(ϕ(x, y), t),
and

N(f(x2) − f(x)2, s) ≥ N ′(ϕ(x, x), s),
for each t, s > 0 and x, y ∈ X . Then there exists a unique
additive Jordan mapping T : X → Y such that

N(f(x) − T (x), t) ≥ N ′( 2ϕ(x,x)2−α , t),
where x ∈ X and t > 0.

Proof: Theorem 2.12 shows that there exists an additive
function T : X → Y such that

N(f(x) − T (x), t) ≥ N ′( 2ϕ(x,x)2−α , t),

where x ∈ X and t > 0. Now we only need to show that T
is a Jordan map. If a = 0, since T (0) = 0 it is obvious. In
the other case,

N(n−2f(n2a2)−n−2T (n2a2), n−2t) ≥ N ′( 2ϕ(n
2a2,n2a2)
2−α , t),

for all a ∈ X , t > 0 and n ∈ N . by the additivity of T it is
easy to see that
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N(n−2f(n2a2) − T (a2), t) ≥ N ′(
2ϕ(n2a2, n2a2)

2 − α
, n2t),

(11)
for all a ∈ X , t > 0 and n ∈ N . Letting n tend to infinity in
11 and using the items (N2) and (N5) of the Definition 2.4,
we see that

T (a2) = N − limn→∞n−2f(n2a2). (12)

Also with a similar argument represented above shows that:

N(n−1f(na) − T (a), t) ≥ N ′( 2ϕ(na,na)2−α , nt),

for all a ∈ X , t > 0 and n ∈ N . Hence we have

T (a) = N − limn→∞n−1f(na). (13)

On the other hand

N(f(n2a2) − f(na)2, s) ≥ N ′(ϕ(na, na), s),

for all a ∈ X , s > 0 and n ∈ N . We observe that

N(n−2f(n2a2) − n−2f(na)2, s) ≥ N ′(ϕ(na, na), n2s),

for all a ∈ X , s > 0 and n ∈ N . So again by taking n tend
to infinity we have

N− limn→∞n−2f(n2a2) = N− limn→∞n−2f(na)2. (14)

Applying 12, 13 and 14 we have

T (a2) = N − limn→∞n−2f(n2a2) =
N − limn→∞n−2f(na)2 =

(N − limn→∞n−1f(na))2 = T (a)2.

To prove the uniqueness property of T , assume that T ∗ is an-
other additive Jordan mapping satisfying N(f(x)−T (x), t) ≥
N ′( 2ϕ(x,x)2−α , t). Since both T and T ∗ are additive we deduce
that

N(T (a) − T ∗(a), t) ≥ min{N(T (a) −
n−1f(na), t/2), N(n−1f(na) − T ∗(a), t/2)} ≥

N ′( 2ϕ(na,na)2−α , nt/2)

for all a ∈ X and all t > 0. Letting n tend to infinity we find
that T (a) = T ∗(a) for all a ∈ X .
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