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The Splitting Upwind Schemes
for Spectral Action Balance Equation

Anirut Luadsong∗ and Nitima Aschariyaphotha

Abstract—The spectral action balance equation is an equation that
used to simulate short-crested wind-generated waves in shallow water
areas such as coastal regions and inland waters. This equation consists
of two spatial dimensions, wave direction, and wave frequency which
can be solved by finite difference method. When this equation with
dominating convection term are discretized using central differences,
stability problems occur when the grid spacing is chosen too coarse.
In this paper, we introduce the splitting upwind schemes for avoiding
stability problems and prove that it is consistent to the upwind scheme
with same accuracy. The splitting upwind schemes was adopted
to split the wave spectral action balance equation into four one-
dimensional problems, which for each small problem obtains the
independently tridiagonal linear systems. For each smaller system
can be solved by direct or iterative methods at the same time which
is very fast when performed by a multi-processor computer.

Keywords—upwind scheme, parallel algorithm, spectral action
balance equation, splitting method.

I. INTRODUCTION

A third-generation model is a number of advanced spectral
wind-wave models. It has been developed such as WAM
model of WAMDI Group [9], in which all processes of wave
generation, dissipation and nonlinear wave-wave interactions
are accounted for explicitly. WAM model considers problems
on oceanic scales, and make used of explicit propagation
schemes in geographical and spectral spaces. Tolman [8]
developed model base on spectral action balance equation,
WAVEWATCH model incorporates all relevant wave-current
interaction mechanism, including changes of absolute frequen-
cies due to unsteadiness of depth and currents. The model
explicitly accounts for growth and decay of wave energy and
for nonlinear resonant wave-wave interactions. Booij [1] and
Ris [7] et. al. summarized the research attainment in the wave
energy, dissipation and nonlinear wave-wave interactions, and
developed the third generation for coastal region in shallow
water, SWAN(Simulating WAve Nearshore) model, which can
be applied in coastal zones, lake and estuaries. The model uses
the spectral action balance equation to represents the process
of wave shoaling, refraction, bottom friction, depth-induced
wave breaking, whitcapping, wind input and nonlinear wave-
wave interactions reasonably.

For the numerical treatment of the spectral action balance
equation, the finite difference approximation with the first and
second order upwind schemes are applied. The discretizations
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yield a banded-9 and band-17 linear systems, respectively that
can be solved by direct or iterative methods.

In recent years computers’ evolution is going dramatically
fast. Computers have been improved a lot and become much
more powerful. One of the new types of computers is a multi-
processing computer. So, we should develop algorithms that
support and could be suitable for this evolution. In this paper
we introduce the splitting upwind methods for solving spectral
action balance equation. This method splits the original four-
dimensional spaces problem into a set of one-dimensional
space problems. At each fractional step one has to solve m in-
dependent one-dimensional space systems of linear equations
where m is the number of unknowns in one-dimensional space
problems in appropriate direction. Therefore, we can solve
each of these systems of linear equations at every step by m
independent parallel processors. This method is preferable for
multi-processing computers.

II. UPWIND SCHEMES FOR SPECTRAL ACTION BALANCE
EQUATION

We consider the wave spectral action balance equation
which described the wave characteristic:

∂N

∂t
+

∂

∂x
(cxN) +

∂

∂y
(cyN) +

∂

∂σ
(cσN) +

∂

∂θ
(cθN) =

S

σ
, (1)

∀(x, y, σ, θ) ∈ Ω× Γ, t ∈ [0, T ],

∂N

∂n

∣
∣
∣
∣
∂Ω×∂Γ

= 0, t ∈ [0, T ],

N |t=0 = N0(x, y, σ, θ), ∀(x, y, σ, θ) ∈ Ω× Γ,

where Ω and Γ are domain in geographical and spectral R2,
∂Ω its boundary of Ω, ∂Γ its boundary of Γ, N0(x, y, σ, θ) is
an initial values, and n is a normal direction of each variable.
Which N(x, y, σ, θ, t) is the action density as a function of
relative frequency σ, direction θ, horizontal coordinate x, y,
and time t. The coefficients cx, cy, cσ and cθ are propagation
velocity in -x, -y, -σ and -θ direction respectively. The first
term of the left-hand side of the equation (1) represents the
local rate of change of action density in time, the second
and the third term represent propagation of action density in
geographical space with propagation velocities cx and cy in
x and y respectively. The fourth term represents shifting of
relative frequency due to variations in depths and currents
with propagation velocity cσ in σ. The fifth term represents
depth-induced and current-induced refraction with propagation
velocity cθ in θ. The term S in right hand side of the equation
(1) represents the source term. More details are given in Booij
et al. [1] and Ris et al. [7]
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Let us choose a rectangular grid with constant mesh sizes
�x and �y in x− and y− direction, respectively. The spectral
space is divided into elementary bins with a constant direc-
tional resolution �θ and a constant relative frequency reso-
lution �σ. We denote that the grid counters as 1 ≤ i ≤ Nx,
1 ≤ j ≤ Ny , 1 ≤ l ≤ Nσ and 1 ≤ m ≤ Nθ in x−, y−, σ−
and θ− spaces, respectively. All variables are located at points
(i, j, l,m).

A. The First-Order Upwind Scheme
When we replace the finite difference approximation using

the first-order upwind scheme into the spectral action balance
equation, yields

Nn−Nn−1

�t

∣
∣
∣
i,j,l,m

+c+x
Ni−Ni−1

�x
|nj,l,m + c−x

Ni+1−Ni

�x
|nj,l,m

+c+y
Nj−Nj−1

�y
|ni,l,m + c−y

Nj+1−Nj

�y
|ni,l,m

+c+σ
Nl−Nl−1

�σ
|ni,j,m + c−σ

Nl+1−Nl

�σ
|ni,j,m

+c+θ
Nm−Nm−1

�θ
|ni,j,l + c−θ

Nm+1−Nm

�θ
|ni,j,l = S

σl

∣
∣
∣

n−1

i,j,l,m

(2)

where n is a time step with �t and for each point (i, j, l,m)

c+x = max{c̄x, 0}, c−x = min{c̄x, 0},
c+y = max{c̄y, 0}, c−y = min{c̄y, 0},
c+σ = max{c̄σ, 0}, c−σ = min{c̄σ, 0},
c+θ = max{c̄θ, 0}, c−θ = min{c̄θ, 0},
c̄x|i,j,l,m = 1

4 (cxi−1 + 2cxi + cxi+1)j,l,m,

c̄y|i,j,l,m = 1
4 (cyj−1 + 2cyj + cyj+1)i,l,m,

c̄σ|i,j,l,m = 1
4 (cσl−1

+ 2cσl
+ cσl+1

)i,j,m,

c̄θ|i,j,l,m = 1
4 (cθm−1 + 2cθm + cθm+1)i,j,l.

Rearranging the equation (2), we have the following equa-
tion

ai,j,l,mNn
i,j,l,m − �tc+x

�x Nn
i−1,j,l,m +

�tc−x
�x Nn

i+1,j,l,m

−�tc+y
�y Nn

i,j−1,l,m +
�tc−y
�y Nn

i,j+1,l,m

−�tc+σ
�σ Nn

i,j,l−1,m +
�tc−σ
�σ Nn

i,j,l+1,m

−�tc+θ
�θ Nn

i,j,l,m−1 +
�tc−θ
�θ Nn

i,j,l,m+1

= �t
σl

Si,j,l,m +Nn−1
i,j,l,m

(3)

where i = 1, . . . , Nx; j = 1, . . . , Ny; l = 1, . . . , Nσ;
m = 1, . . . , Nθ. and

ai,j,l,m = 1 +�t

(
c+x − c−x
�x

+
c+y − c−y

�y

+
c+σ − c−σ
�σ

+
c+θ − c−θ

�θ

)
i,j,l,m

. (4)

We can see that the structure of the coefficient matrix of the
linear system (3) is in the form of banded-9 matrix. This linear
system can be solved by any direct or iterative methods under
the diagonal dominant condition, that is sum of off diagonal
entry must be less than the main diagonal of the coefficient
matrix.

Now, we are analyzing the criteria of �t, �x, �y, �σ
and �θ for existent and uniqueness solution of this linear
system. Let us consider the diagonal dominant condition

ai,j,l,m >
∣∣∣�t
�xc

+
x

∣∣∣
i−1,j,l,m

+
∣∣∣�t
�xc

−
x

∣∣∣
i+1,j,l,m

+
∣∣∣�t
�y c

+
y

∣∣∣
i,j−1,l,m

+
∣∣∣�t
�y c

−
y

∣∣∣
i,j+1,l,m

+
∣∣∣ �t
�σ c

+
σ

∣∣∣
i,j,l−1,m

+
∣∣∣ �t
�σ c

−
σ

∣∣∣
i,j,l+1,m

+
∣∣∣�t
�θ c

+
θ

∣∣∣
i,j,l,m−1

+
∣∣∣�t
�θ c

−
θ

∣∣∣
i,j,l,m+1

≡ cond

(5)

where i = 1, . . . , Nx; j = 1, . . . , Ny; l = 1, . . . , Nσ;
m = 1, . . . , Nθ.

Next, we try to simplify these stability criteria, by letting

Mx ≡ max∀i,j,l,m |cx|i,j,l,m,

My ≡ max∀i,j,l,m |cy|i,j,l,m,

Mσ ≡ max∀i,j,l,m |cσ|i,j,l,m,

Mθ ≡ max∀i,j,l,m |cθ|i,j,l,m.

(6)

Substituting the notations (6) into the relation (5), yields

cond ≤ 2�tMx

�x
+

2�tMy

�y
+

2�tMσ

�σ
+

2�tMθ

�θ

≤ 8�tmax

{
Mx

�x
,
My

�y
,
Mσ

�σ
,
Mθ

�θ

}
.

Since |ai,j,l,m| ≥ 1 and 8�tmax
{

Mx

�x ,
My

�y ,
Mσ

�σ ,
Mθ

�θ

}
≥

cond, we can choose

1 > 8�tmax

{
Mx

�x
,
My

�y
,
Mσ

�σ
,
Mθ

�θ

}
.

Thus the condition of �t that satisfy the diagonal dominant
of the linear system is following

�t <
1

8max
{

Mx

�x ,
My

�y ,
Mσ

�σ ,
Mθ

�θ

} .

B. The Second-Order Upwind Scheme

When we replace the finite difference approximation using
the second-order upwind scheme into the spectral action
balance equation, yields

Nn−Nn−1

�t

∣∣∣
i,j,l,m

+ c+x
3Ni−4Ni−1+Ni−2

2�x

∣∣∣n
j,l,m

+ c−x
−Ni+2+4Ni+1−3Ni

2�x

∣∣∣n
j,l,m

+ c+y
3Nj−4Nj−1+Nj−2

2�y

∣∣∣n
i,l,m

+ c−y
−Nj+2+4Nj+1−3Nj

2�y

∣∣∣n
i,l,m

+ c+σ
3Nl−4Nl−1+Nl−2

2�σ

∣∣∣n
i,j,m

+ c−σ
−Nl+2+4Nl+1−3Nl

2�σ

∣∣∣n
i,j,m

+ c+θ
3Nm−4Nm−1+Nm−2

2�θ

∣∣∣n
i,j,l

+ c−θ
−Nm+2+4Nm+1−3Nm

2�θ

∣∣∣n
i,j,l

= S
σl

∣∣∣n−1

i,j,l,m

(7)
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where n is a time step with �t and for each point (i, j, l,m)

c+x = max{c̄x, 0}, c−x = min{c̄x, 0},
c+y = max{c̄y, 0}, c−y = min{c̄y, 0},
c+σ = max{c̄σ, 0}, c−σ = min{c̄σ, 0},
c+θ = max{c̄θ, 0}, c−θ = min{c̄θ, 0},

c̄x|i,j,l,m = 1
6
(cxi−2 + cxi−1 + 2cxi + cxi+1 + cxi+2)j,l,m,

c̄y|i,j,l,m = 1
6
(cyj−2 + cyj−1 + 2cyj + cyj+1 + cyj+2)i,l,m,

c̄σ|i,j,l,m = 1
6
(cσl−2 + cσl−1 + 2cσl + cσl+1 + cσl+2)i,j,m,

c̄θ|i,j,l,m = 1
6
(cθm−2 + cθm−1 + 2cθm + cθm+1 + cθm+2)i,j,l.

When rearranging the equation (7), then we have the follow-
ing equation

ai,j,l,mNn
i,j,l,m − 4�tc+x

2�x Nn
i−1,j,l,m +

�tc+x
2�x Nn

i−2,j,l,m

−�tc−x
2�x Nn

i+2,j,l,m +
4�tc−x
2�x Nn

i+1,j,l,m

− 4�tc+y
2�y Nn

i,j−1,l,m +
�tc+y
2�y Nn

i,j−2,l,m

−�tc−y
2�y Nn

i,j+2,l,m +
4�tc−y
2�y Nn

i,j+1,l,m

− 4�tc+σ
2�σ Nn

i,j,l−1,m +
4�tc+σ
2�σ Nn

i,j,l−2,m

−�tc−σ
2�σ Nn

i,j,l+2,m +
4�tc−σ
�σ Nn

i,j,l+1,m

− 4�tc+θ
2�θ Nn

i,j,l,m−1 +
�tc+θ
2�θ Nn

i,j,l,m−2

−�tc−θ
2�θ Nn

i,j,l,m+2 +
4�tc−θ
2�θ Nn

i,j,l,m+1

= �t
σl

Sn−1
i,j,l,m +Nn−1

i,j,l,m

where i = 1, . . . , Nx; j = 1, . . . , Ny; l = 1, . . . , Nσ;
m = 1, . . . , Nθ, and

ai,j,l,m = 1 +
3�t

2

(
c+x − c−x
�x

+
c+y − c−y

�y

+
c+σ − c−σ
�σ

+
c+θ − c−θ

�θ

)
i,j,l,m

.(8)

We can see that the structure of the coefficient matrix of
the linear system (3) is in the form of banded-17 matrix.
This linear system can be solved by any direct or iterative
methods under the diagonal dominant condition, that is sum
of off diagonal entry must less than the main diagonal of the
coefficient matrix.

Now, we are analyzing the criteria of �t, �x, �y, �σ
and �θ for existant and uniqueness solution of this linear
system. Let us consider the diagonal dominant condition

ai,j,l,m >
∣∣∣ 4�t
2�xc

+
x

∣∣∣
i−1,j,l,m

+
∣∣∣ �t
2�xc

+
x

∣∣∣
i−2,j,l,m

+
∣∣∣ �t
2�xc

−
x

∣∣∣
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∣∣∣ 4�t
2�xc

−
x

∣∣∣
i+1,j,l,m

+
∣∣∣ 4�t
2�y c

+
y

∣∣∣
i,j−1,l,m

+
∣∣∣ �t
2�y c

+
y )

∣∣∣
i,j−2,l,m

+
∣∣∣ �t
2�y c

−
y

∣∣∣
i,j+2,l,m

+
∣∣∣ 4�t
2�y c

−
y )

∣∣∣
i,j+1,l,m

+
∣∣∣ 4�t
2�σ c

+
σ

∣∣∣
i,j,l−1,m

+
∣∣∣ �t
2�σ c

+
σ

∣∣∣
i,j,l−2,m

+
∣∣∣ �t
2�σ c

−
σ

∣∣∣
i,j,l+2,m

+
∣∣∣ 4�t
2�σ c

−
σ

∣∣∣
i,j,l+1,m

+
∣∣∣ 4�t
2�θ c

+
θ

∣∣∣
i,j,l,m−1

+
∣∣∣ �t
2�θ c

+
θ

∣∣∣
i,j,l,m−2

+
∣∣∣ �t
2�θ c

−
θ

∣∣∣
i,j,l,m+2

+
∣∣∣ 4�t
2�θ c

−
θ

∣∣∣
i,j,l,m+1

≡ cond

(9)

where i = 1, . . . , Nx; j = 1, . . . , Ny; l = 1, . . . , Nσ;
m = 1, . . . , Nθ.

In the same way as the previous section, we can simplify
this stability criteria as follows. Since

cond ≤ 5�tMx

�x
+

5�tMy

�y
+

5�tMσ

�σ
+

5�tMθ

�θ

≤ 20�tmax

{
Mx

�x
,
My

�y
,
Mσ

�σ
,
Mθ

�θ

}
.

Since |ai,j,l,m| ≥ 1 and 20�tmax
{

Mx

�x ,
My

�y ,
Mσ

�σ ,
Mθ

�θ

}
≥

cond, we can choose

1 > 20�tmax

{
Mx

�x
,
My

�y
,
Mσ

�σ
,
Mθ

�θ

}
.

Thus the condition of �t that satisfy the diagonal dominant
of the linear system is following

�t <
1

20max
{

Mx

�x ,
My

�y ,
Mσ

�σ ,
Mθ

�θ

} .

III. THE SPLITTING UPWIND SCHEMES

In the previous section, the numerical solution of the spec-
tral action balance equation was described with a very huge
coefficient matrix that needs to be solved by any direct and
iterative methods that take a lots of computer’s memory and
operation count.

In this section, we will design a new numerical method that
reduce the size of the original problem by splitting the original
problem into four smaller problems. For each smaller problem
can be solved easier than the original problem and take less
computer’s resource such as memory and operation counts.
This method is called “The splitting method”.

Let us consider the spectral action balance equation on a
domain Ω× Γ with boundary ∂Ω× ∂Γ :

∂N

∂t
+

∂

∂x
(cxN)+

∂

∂y
(cyN)+

∂

∂σ
(cσN)+

∂

∂θ
(cθN) =

S

σ
. (10)

Let Λx, Λy , Λσ, and Λθ be approximation operator of
∂
∂xcx(·), ∂

∂y cy(·), ∂
∂σ cσ(·) and ∂

∂θ cθ(·), respectively. For each
point (xi, yj , σl, θm, tk), the approximate operators are repre-
sented as following

∂
∂x (cxN)

∣∣k
ijlm

≈ ΛxN
k
ijlm,

∂
∂y (cyN)

∣∣∣k
ijlm

≈ ΛyN
k
ijlm,

∂
∂σ (cσN)

∣∣k
ijlm

≈ ΛσN
k
ijlm,

∂
∂θ (cθN)

∣∣k
ijlm

≈ ΛθN
k
ijlm.

Therefore, the equation (10) can be approximated at each point
(xi, yj , σl, θm, t) by the following

∂N

∂t

∣∣∣∣
ijlm

+ΛxNijlm+ΛyNijlm+ΛσNijlm+ΛθNijlm =
Sijlm

σl
.

For convenient writing, the indices i, j, l,m are neglected,
yields

∂N

∂t
+ ΛxN + ΛyN + ΛσN + ΛθN =

S

σ
.
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Let us consider the backward time of spectral action balance
equation at point (xi, yj , σl, θm)

Nk+1 −Nk

τ
+ΛxN

k+1+ΛyN
k+1+ΛσN

k+1+ΛθN
k+1 =

Sk+1

σ
.

(11)

and we introduce the splitting scheme

Nk+ 1
4 −Nk

τ
+ ΛxN

k+ 1
4 = 0 (12)

Nk+ 2
4 −Nk+ 1

4

τ
+ ΛyN

k+ 2
4 = 0 (13)

Nk+ 3
4 −Nk+ 2

4

τ
+ ΛσN

k+ 3
4 = 0 (14)

Nk+1 −Nk+ 3
4

τ
+ ΛθN

k+1 =
Sk+1

σ
. (15)

Now, we will prove that equations (12)-(15) are consistent with
the equation (11) by rearranging equations (12)-(15), yields

−Nk + (I + τΛx)N
k+ 1

4 = 0 (16)

−Nk+ 1
4 + (I + τΛy)N

k+ 2
4 = 0 (17)

−Nk+ 2
4 + (I + τΛσ)N

k+ 3
4 = 0 (18)

−Nk+ 3
4 + (I + τΛθ)N

k+1 =
τSk+1

σ
(19)

where I is an identity approximation operator. To eliminate
Nk+ 1

4 in equations (16) and (17), we multiply the equation
(17) by (I + τΛx) and adding the result to the equation (16),
then we obtain

−Nk + (I + τΛx)(I + τΛy)N
k+ 2

4 = 0. (20)

To eliminate Nk+ 2
4 in equations (18) and (20), we multiply

the equation (18) by (I+τΛx)(I+τΛy) and adding the result
to the equation (20) then

−Nk + (I + τΛx)(I + τΛy)(I + τΛσ)N
k+ 3

4 = 0. (21)

Similarly to eliminate Nk+ 3
4 in equations (19) and (21), we

multiply the equations (19) by (I + τΛx)(I + τΛy)(I + τΛσ)
and adding the result to the equation (21) then

−Nk + (I + τΛx)(I + τΛy)(I + τΛσ)(I + τΛθ)N
k+1

= (I + τΛx)(I + τΛy)(I + τΛσ)(
τSk+1

σ
). (22)

Since

(I+τΛx)(I+τΛy)(I+τΛσ) = I+τ(Λσ+Λx+Λy)+O(τ2)
(23)

and

(I + τΛx)(I + τΛy)(I + τΛσ)(I + τΛθ)

= I + τ(Λx + Λy + Λσ + Λθ) +O(τ2),
(24)

substituting equations (23) and (24) into the equation (22),

−Nk + [I + τ(Λx + Λy + Λσ + Λθ) +O(τ2)]Nk+1

= [I + τ(Λx + Λy + Λσ) +O(τ2)]
[
τSk+1

σ

]
.

(25)

Then

Nk+1−Nk

τ + ΛxN
k+1 + ΛyN

k+1

+ΛσN
k+1 + ΛθN

k+1 = Sk+1

σ .
(26)

Therefore, the scheme (26) and the equivalent schemes (12)-
(15) approximate the spectral action balance equation with the
same accuracy O(τ) as the scheme (11).

A. The First-Order Splitting Upwind Scheme
For the stability criteria for each system, we must choose

the type of approximate operator Λx,Λy,Λσ and Λθ. In this
section, we choose these approximate operators as the first-
order upwind approximation. We apply the first-order upwind
approximation with equations (12)-(15), yields

Nn+ 1
4 −Nn

τx

∣
∣
∣
∣
∣
i,j,l,m

+
c+x
�x

(Ni −Ni−1)

∣
∣
∣
∣

n+ 1
4

j,l,m

+
c−x
�x

(Ni+1 −Ni)

∣
∣
∣
∣

n+ 1
4

j,l,m

= 0 (27)

Nn+ 2
4 −Nn+ 1

4

τy

∣
∣
∣
∣
∣
i,j,l,m

+
c+y
�y

(Nj −Nj−1)

∣
∣
∣
∣

n+ 2
4

i,l,m

+
c−y
�y

(Nj+1 −Nj)

∣
∣
∣
∣

n+ 2
4

i,l,m

= 0(28)

Nn+ 3
4 −Nn+ 2

4

τσ

∣
∣
∣
∣
∣
i,j,l,m

+
c+σ
�σ

(Nl −Nl−1)

∣
∣
∣
∣

n+ 3
4

i,j,m

+
c−σ
�σ

(Nl+1 −Nl)

∣
∣
∣
∣

n+ 3
4

i,j,m

= 0 (29)

Nn+1 −Nn+ 3
4

τθ

∣
∣
∣
∣
∣
i,j,l,m

+
c+θ
�θ

(Nm −Nm−1)

∣
∣
∣
∣

n+1

i,j,l

+
c−θ
�θ

(Nm+1 −Nm)

∣
∣
∣
∣

n+1

i,j,l

=
Sn−1

σl

∣
∣
∣
∣
i,j,l,m

(30)

From the splitting scheme, we get four tridiagonal systems
and for each system has a unique solution when it satisfies the
diagonal dominant condition. The conditions of τx, τy, τσ and
τθ that satisfy the diagonal dominant condition of the splitting
scheme are following

τx <
�x

2Mx
, τy <

�y

2My
, τσ <

�σ

2Mσ
, τθ <

�θ

2Mθ
.

Thus the condition of τ that satisfy the diagonal dominant of
all linear systems in the splitting scheme is following

τ <
1

2
min

{�x

Mx
,
�y

My
,
�σ

Mσ
,
�θ

Mθ

}
.

B. The Second-Order Splitting Upwind Scheme

For the stability criteria for each system, we must choose
the type of approximate operators Λx,Λy,Λσ and Λθ. In
this section, we choose these approximate operators as the
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second-order upwind approximation. We apply the second-
order upwind approximation with equations (12)-(15), yields

Nn+1
4 −Nn

τx

∣∣∣∣
i,j,l,m

+
c+x
2�x (3Ni − 4Ni−1 +Ni−2)

∣∣∣n+
1
4

j,l,m

+
c−x
2�x (−Ni+2 + 4Ni+1 − 3Ni)

∣∣∣n+
1
4

j,l,m
= 0

(31)

Nn+2
4 −Nn+1

4

τy

∣∣∣∣
i,j,l,m

+
c+y
2�y (3Nj − 4Nj−1 +Nj−2)

∣∣∣n+
2
4

i,l,m

+
c−y
2�y (−Nj+2 + 4Nj+1 − 3Nj)

∣∣∣n+
2
4

i,l,m
= 0

(32)

Nn+3
4 −Nn+2

4

τσ

∣∣∣∣
i,j,l,m

+
c+σ
2�σ (3Nl − 4Nl−1 +Nl−2)

∣∣∣n+
3
4

i,j,m

+
c−σ
2�σ (−Nl+2 + 4Nl+1 − 3Nl)

∣∣∣n+
3
4

i,j,m
= 0

(33)

Nn+1−Nn+3
4

τθ

∣∣∣∣
i,j,l,m

+
c+θ
2�θ (3Nm − 4Nm−1 +Nm−2)

∣∣∣n+1

i,j,l

+
c−θ
2�θ (−Nm+2 + 4Nm+1 − 3Nm)

∣∣∣n+1

i,j,l
= Sn−1

σl

∣∣∣
i,j,l,m

.

(34)
From the splitting scheme, we get four penta-diagonal systems
and for each system has a unique solution when it satisfies the
diagonal dominant condition. The conditions of τx, τy, τσ and
τθ that satisfy the diagonal dominant condition of the splitting
scheme are following

τx <
�x

5Mx
, τy <

�y

5My
, τσ <

�σ

5Mσ
, τθ <

�θ

5Mθ
.

Thus the condition of τ that satisfy the diagonal dominant of
all linear systems in the splitting scheme is following

τ <
1

5
min

{�x

Mx
,
�y

My
,
�σ

Mσ
,
�θ

Mθ

}
.

IV. NUMERICAL EXPERIMENTS

In this section, we collect some results calculated using the
first and second order splitting upwind schemes and compare
to the central difference scheme in [2]. We wish to emphasize
the diversity of the possible applications.

We begin with spectral action balance equation:
∂N

∂t
+

∂

∂x
(cxN)+

∂

∂y
(cyN)+

∂

∂σ
(cσN)+

∂

∂θ
(cθN) =

S

σ
, (35)

∀(x, y, σ, θ) ∈ Ω× Γ

where t ∈ [0, T ], and the initial and boundary conditions are
defined as follows:

N |t=0 = N0(x, y, σ, θ), ∀(x, y, σ, θ) ∈ Ω× Γ; (36)
∂N

∂n
= 0, ∀(x, y, σ, θ) ∈ ∂Ω× ∂Γ, t ∈ [0, T ].(37)

The specific parameters used in our calculations are as follows:

xl ≤ x ≤ xr, yl ≤ y ≤ yr, σl ≤ σ ≤ σr, θl ≤ θ ≤ θr,

xl = −1, xr = 1, yl = −1, yr = 1,

σl = 0.04, σr = 1, θl = 0, θr = 2π,

Nx = 20, Ny = 20, Nσ = 20, Nθ = 20,

�x = xr−xl

Nx−1 , �y = yr−yxl

Ny−1 , �σ = σr−σl

Nσ−1 , �θ = θr−θl
Nθ−1 ,

(38)
source terms:

S(0, 9 : 11, Ny − 2, Nσ/2, Nθ/2) = 100,

S(0, 14 : 17, Ny − 2, Nσ/2, Nθ/2) = 100,

S(0, 3 : 10, 3, Nσ/2, Nθ/2) = 100,

S(t, x, y, σ, θ) = 0,

∀x, y, σ, θ ∈ Ω× Γ, t > 0.

and propagation velocity terms:

cx(i, j,Nσ/2, Nθ/2) = cos(π(i+ j)/Nx)

cx(i, j,Nσ/2, Nθ/2) = sin(π(i+ j)/Ny)

cσ(:, :, :, :) = 0.01

cθ(:, :, :, :) = 0.01

In this experiment, we simulate a spectral action balance
equation in a square domain. The physical configuration
consists of a square container filled with wave energy. The
splitting central difference scheme and the first and second
order splitting upwind schemes are presented. Firstly, we set
the initial values of N as zero for very nodes in the domain
Ω × Γ. At the initial time, we filled the wave energy into
the domain. The numerical results by these three methods
are shown in Figures 1 - 3. From these three figures, we
can see that the result from a central difference scheme is
unphysical oscillations. The reason for this lies in the fact
that, for grid spaces are too large, certain properties of the
continuous equations are no longer correctly captured by
discrete equation. But the result from the first and second
order splitting upwind schemes is very stable with the same
grid spaces as a central difference scheme and moves along
the direction field of the propagation velocities. At the first
time step for the first and second order upwind schemes, the
energy peaked at those grid point and after that its moves along
the direction field of the propagation velocities. The solution
of the first order upwind scheme is more stable than other
numerical schemes but less precision than the second order
upwind scheme. However, the second order upwind scheme
is the most precision but the numerical solution near the
boundary is very complicated to compute because it has to
use the three points forward or backward difference schemes
and need more boundary conditions.

V. CONCLUSION AND DISCUSSION

The spectral action balance equation is an equation that used
to simulate short-crested wind-generated waves in shallow
water areas such as coastal regions and inland waters. This
equation consist of two spatial dimensions, wave direction,
and wave frequency which can be solved by finite difference
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method. When this equation with dominating convection term
are discretized using central differences, stability problems
occur when the grid spacing is chosen too coarse. We have
analyzed the first and second order of the splitting upwind
schemes for numerical solution of the spectral action balance
equation with time splitting. Expression for the leading term
of the first and second order accuracy of the splitting schemes,
respectively. These numerical schemes were adopted to split
the wave spectral action balance equation into four one-
dimensional problems, which for each small problem obtains
the independently tridiagonal linear systems. Therefore, we
can solve these systems by direct or iterative methods at the
same time which is very fast when performed by a multi-
processors computer.
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Fig. 1: Numerical results for every 5 time steps by using a central difference scheme.
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Fig. 2: Numerical results for every 20 time steps by using the first order splitting upwind scheme.
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Fig. 3: Numerical results for every 20 time steps by using the second order splitting upwind scheme.


