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The Riemann barycenter computation and means of

several matrices
Miklós Pálfia

Abstract—An iterative definition of any n variable mean function
is given in this article, which iteratively uses the two-variable form of
the corresponding two-variable mean function. This extension method
omits recursivity which is an important improvement compared with
certain recursive formulas given before by Ando-Li-Mathias, Petz-
Temesi. Furthermore it is conjectured here that this iterative algorithm
coincides with the solution of the Riemann centroid minimization
problem. Certain simulations are given here to compare the con-
vergence rate of the different algorithms given in the literature.
These algorithms will be the gradient and the Newton mehod for
the Riemann centroid computation.
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I. INTRODUCTION

The theory of means of two positive matrices was first

developed by Kubo and Ando in [14] and since it has found a

number of applications in operator theory in [6] and in Diffuse

Tensor Magnetic Resonance Imaging (DT-MRI) see ([7], [11]).

The development of DT-MRI and also certain approaches in

quantum information theory led to the generalization of Lie-

Trotter formulas in the Log-Euclidean framework in [1] and

beyond. One can see that the general theory of matrix means

has some extensive literature as long as we are interested in the

means of two matrices. Although the means of two matrices

are well established we must say the converse is true for the

means of several matrices.

In [2] the geometric mean of matrices was extended to

several matrices with a recursive extension method. Although

it provides sufficient definition for the n-variable geometric

mean, practically it is inapplicable due to its recursivity. This

recursive extension was generalized to any mean function in

[20], but it suffered from the same problem, and a further one

as well, its convergence could only be proven for orderable

matrices. In [18] the recursivity was omitted, so the n-variable

mean could be constructed directly from the two-variable

form, although the proofs still needed the initial orderability.

There is another approach for extending mean functions

to several matrices, which is mainly built on differential

geometric ideas. It is based on the fact that the geometric

mean of two matrices correspond with a minimization problem

defined to be the Riemannian centroid with respect to the

Thompson metric, which induces the manifold of positive

definite self-adjoint matrices. This minimization problem was

generalized to several matrices in [16], [17] with respect to the

Thompson metric. In these two articles in particular cases, it

was possible to solve explicitly the minimization problem and
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acctually the formulas yield the corresponding several variable

version of the geometric mean.

In this article we will use the non-recursive extension given

for any mean function in [18] to the computation of the

Riemann barycenter. In the next section basic definitions will

be given, which are inherited from previous related work.

After that in the following section we will provide some ideas

related to the Riemann centroid computation, and a simulation

is given which suggests that the iterative algorithm provides

the centroid for corresponding metrics.

II. PRELIMINARIES AND RELATED WORK

Let P(n) denote the open convex cone of self adjoint,

positive definite n × n matrices.

Definition II.1. A two-variable function M : P(n)× P(n) 7→
P(n) is called a mean function if

(i) M(X, X) = X for every X ∈ P(n),
(ii) If X < Y , then X < M(X, Y ) < Y ,

(iii) If X < X ′ and Y < Y ′, then M(X,Y ) < M(X ′, Y ′),
(iv) M(X, Y ) is continuous,

(v) M(CXC∗, CY C∗) = CM(X, Y )C∗ X, Y ∈
P(n) and C is invertible.

Using the above definition 2-variable mean functions can be

defined for pairs of positive matrices. This result was carried

out by Kubo and Ando who provided certain formulas, for

defining and computing a two-variable mean function. First

of all they defined the formula for an M(A, B) matrix mean,

with the help of the class of normalized operator monotone

functions as

M(A, B) = A1/2f(A−1/2BA−1/2)A1/2. (1)

Throughout the article we will use the above definitions for

2-variable matrix means.

The next definition provides a class of extension methods

using a two-variable mean function. This is a generalized form

of the definition given for symmetric means in [18].

Definition II.2. Let X = (X0
1 . . . X0

n) where X0
i is self-

adjoint positive definite matrix and G be a directed graph, with

n vertices and edges given as that, there is one cycle in G, not

taking into account the direction of the edges, which contains

all vertices and edges (so it is at the same time a Hamiltonian-

and an Euler-cycle). This implies that in G, every vertex has

two edges and that G is coherent, which can be seen in Figure

1.

Let us define a one to one correspondence between X0
i

numbers and G-s vertices. Taking every directed edge in G
as an M(Xk

j , Xk
l ) (where M is a (not necessarily symmetric)
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Fig. 1. This graph represents an iteration scheme, which can be used to
extend a mean function to n-variables

mean function and Xk
j , Xk

l are assigned to the two ending

points of the edge as previously given), we can define a

sequence with an optional n mappings, as a correspondence

between every directed edge (Xk
j , Xk

l ) and an Xk+1
i

Xk+1
i = M(Xk

j , Xk
l ) =

=
[

Xk
j

]1/2
f

(

[

Xk
j

]−1/2
Xk

l

[

Xk
j

]−1/2
)

[

Xk
j

]1/2

i, j, l ∈ [1, . . . n] j 6= l.

(2)

The following definition will be our basic extension method

for mean functions throughout the article, according to [18].

Definition II.3. Let X = (X0
1 . . . X0

n) where X0
i is self-

adjoint positive definite matrix and M(X, Y ) be a two variable

mean function. Let us define the following iteration

Xk+1
i =











M(Xk
1 , Xk

2 ) if i = 1,

M(Xk
n−1, X

k
n) if i = n,

M(Xk
i−1, X

k
i+1) else.

(3)

If the initial matrices are orderable, it can be easily proven

that the above iterative sequences are convergent and that they

must have the same limit point, which is the limit of the

recursive extension given in [20]. For further information on

the proofs see [18].

Very recently we were able to prove in [19] for certain 2-

variable mean functions that are not necessarily symmetric,

that the iteration in Definition II.3 for unorderable matrices

are convergent and that the sequences have the same limit

point. The proof was built on the following theorem and other

lemmas, which we do not present here, beacuse they are out

of the scope of this article.

Theorem II.1. The sequences given in Definition II.3, using

the arithmetic mean M(X, Y ) = A(X, Y ) = (X + Y )/2, for

all n are convergent and have the same limit point which is

the n-variable arithmetic mean.

Proof: We have two different approach for the assertion.

According to [18] we know the above to be true for orderable

tuples, where it is proven that the iteration in Definition II.3

converge to the same limit for orderable tuples as for the

recursive extension method, which extends from n to (n + 1)
variable. It is easy to see that the arithmetic mean case for

matrices can be treated matrix-elementwise, therefor it must

be true for unordered matrices.

The second approach is to see, that the iteration in Definition

II.3 is matrix-elementwise convergent and the sequences of

matrices have the same limit according to [18]. The next step

is to check that the n-variable arithmetic mean is invariant

under one iterational step given in Definition II.3.

Xk
1 + Xk

2 + · · · + Xk
n

n
(4)

Applying one iterational step we get the following equations

Xk+1
1 + Xk+1

2 + · · · + Xk+1
n

n
=

=
Xk

1 +Xk

2

2 + · · · + Xk

i−1+Xk

i+1

2 + · · · + Xk

n−1+Xk

n

2

n
=

=
Xk

1 + Xk
2 + · · · + Xk

n

n
=

X0
1 + X0

2 + · · · + X0
n

n
for all k.

(5)

The above means that the iteration leaves invariant the

arithmetic mean of the initial matrices and it is also known

that the iteration converges for each sequence, hence their limit

must be the arithmetic mean.

In [18] it has been shown, that the iterations in Definition

II.2 and Definition II.3 will converge to the same limit as long

as the tuples are orderable. This phenomenon, coupled with

simulations done in MAPLE, suggest that all iterations with

precisely defined mappings according to [18], would converge

to the same limit for unorderable tuples as well. For inves-

tigating the convergence rate of the iterative, non-recursive

extensions and verifing numerically the above mentioned, it is

straightforward to present the following simulation. We used

the two-variable forms of the geometric and the logarithmic

mean

L(x, y) =
x − y

log x − log y
(6)

to extend to four variables of matrices. All of the matrices

were random positive definite self-adjoint 4× 4 matrices. We

have started the iteration with different random quadruples for

the two different mean. We have done two distinct simulations

for each of the two means with the same starting matrices but

with different mappings. We have measured the deviation of

the four matrices in each iterational step, which is defined as

Deviation(A, B,C, D) =

= max {R(Xi, Xj)} , where Xi, Xj ∈ {A, B,C, D} ,
(7)

where R(A, B) = max
{

ρ(A−1B), ρ(B−1A)
}

and ρ(T ) is

the spectral radius of T . It is easy to verify that

R(A, B) = 1 ⇔ A = B. (8)
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TABLE I
EXTENSION OF THE LOGARITHMIC AND GEOMETRIC MEAN TO FOUR

MATRICES.

Number of Geometric mean Geometric mean
Iterations sequence I. sequence II.

Deviation Deviation

1 16.46115759 18.80397424
2 13.86715043 15.62342582
3 3.972098457 4.182665248
4 3.709805720 2.387243298
5 1.989810482 1.594120461

10 1.177921246 1.186296397

20 1.005130284 1.003401006

Number of Logarithmic mean Logarithmic mean
Iterations sequence I. sequence II.

Deviation Deviation

1 6.637814855 7.533990676
2 4.970743956 5.670547504
3 2.493474496 2.656267728
4 2.188138612 2.095603966
5 1.571889827 1.489249289

10 1.057972042 1.061962393

20 1.003041234 1.002876438

Now Table I shows that the deviation of the matrices are

decreasing exponentially and it appears to be that they are

converging to 1. Moreover the differently mapped iterations

as well seem to converge to the same limit as the qaudruples

do individually.

In the next section we will give some convergence rate

considerations according to some topological properties of the

matrices.

III. CONVERGENCE RATE CONSIDERATIONS

We have mentioned before that for orderable tuples it was

shown in [18] that every iterational scheme in Definition II.2

converges to the same limit point as long as the mean is

symmetric. Although it has not been proven for unorderable

tuples yet, it implies numerical considerations involved in the

actual convergence rate of these algorithms. From now on, we

will assume this to be true for unorderable tuples as well.

Firstly we will consider two different mappings for 5 distinct

matrices. For the sake of simplicity we will represent these

matrices on the next two figures with points as if they were

elements of the Euclidean plane. We will apply the two-

variable arithmetic mean in the iteration given in Definition

II.2. Let us consider the next two mappings given by Figure

2 and 3.

We know that the arithmetic mean for two vectors is given

by the halving point of the straight line connecting them

together. According to this phenomenon it can be also easily

verified that the next five points given by any mapping will be

the elements of the set given by the polygon in Figure 2 with

black edges. Therefore their limit point will be the element

of this set as well. So generally the convergence rate of these

iterations is highly dependent from the choice of the mappings

in every iterational step. For instance in Figure 2 and 3 the

area of the polygons given by gray edges are significantly

different. In Figure 3 the mapping was chosen to include the

two-variable mean of the farthest points without disobeying

the rules given in Definition II.2. It can be easily decided that

Fig. 2. Iterational Scheme 1 for 5 matrices represented with points.

Fig. 3. Iterational Scheme 2 for 5 matrices represented with points.

the second mapping will provide almost the fastest iterational

scheme for 5 matrices.

Taking into account the above mentioned, we can modify

our iterational scheme with adding some heuristics, making it

adaptive to the geometry of the sets given by the points in

every iterational step. The function Idealmapping defined by

Algorithm 1 returns the array ma which containes the indexes

of matrices in such an order, that if we set up one iterational

step in such a way that we take the mean of every two matrices

that have neighboring indices in ma or have the first and last

indices, we can sufficiently reduce the distance between them.

The function defined in Algorithm 1 if applied in every

iterational step, it greatly improves the convergence rate of

the sequences. Note that a d(·, ·) distance function must be

provided as well. We suggest choosing distance functions that

are not too costly to compute, beacuse it must be carried out
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Algorithm 1 Idealmapping

Require: x1, . . . , xn

1: d ⇐ n(n − 1)/2
2: i ⇐ 1, j ⇐ 2
3: for k = 0 to d do

4: r[k, 1] ⇐ d(xi, xj)
5: r[k, 2] ⇐ i, r[k, 3] ⇐ j
6: if j = n then

7: j ⇐ n − i + 2, i ⇐ 1
8: else

9: i ⇐ i + 1, j ⇐ j + 1
10: end if

11: end for

12: sort r by r[k, 1] descending

13: ma[1] ⇐ r[1, 2]
14: j ⇐ r[1, 3]
15: for k = 2 to n do

16: find largest r[i, 1] for such i that (r[i, 2] = j or r[i, 2] =
j) and r[i, 2] /∈ ma and r[i, 3] /∈ ma

17: if r[i, 2] = j then

18: j ⇐ r[i, 3], ma[k] ⇐ r[i, 2]
19: else

20: j ⇐ r[i, 2], ma[k] ⇐ r[i, 3]
21: end if

22: end for

23: return ma

n(n − 1)/2 times per iterational step. We have run several

simulations with the above heuristics, but before providing the

results, we will move on to the Riemann centroid problem.

IV. THE RIEMANN CENTROID

The Riemann centroid is the solution of the following

minimization problem

argminX>0

n
∑

i=1

d(X, Xi)
2. (9)

The above has a unique solution if the sectional curvature

of the manifold corresponding to the metric induced by the

distance function d(a, b) is non-positive [13]. If we reduce this

problem to the manifold of k × k positive definite matrices,

we can define the solution of the minimization problem as

the average of the Xi matrices corresponding to the metric

induced by the distance function d(a, b). The solution of the

above defined problem can be given as the extremal points of

the cost function defined as

C(X) =

n
∑

i=1

d(X, Xi)
2. (10)

To find the these points we have to compute the gradient of

C(X) and solve the equation

gradC(X) = 0. (11)

The gradient can be written as

gradC(X) = −
n

∑

i=1

logX(Xi), (12)

where logp(q) denotes the inverse of the exponential map

given at p, see [13].

Firstly one can start examining the above problem by taking

only two points of the manifold and trying to solve (9) for this

two points

argminX>0d(X, X1)
2 + d(X, X2)

2. (13)

The solution of the above is the middle point of the dis-

tance minimizing geodesic curve γX1,X2
(t) connecting X1

and X2, so if this curve is parametrized in a way that

γX1,X2
(0) = X1 and γX1,X2

(1) = X2, then γX1,X2
(1/2) =

argminX>0d(X, X1)
2 + d(X, X2)

2. Let us suppose that the

metric d(·, ·) has such properties that if X1 < X2 then X1 <
γX1,X2

(1/2) < X2. In this case this minimization problem

corresponds with a symmetric mean function M(A, B) defined

as

M(A, B) = argminX>0d(X, A)2 + d(X, B)2 = γA,B(1/2).
(14)

One might arrive at the problem, that if d(·, ·) induces an

M(A, B) mean function in the above described way, then the

extension of the mean function to n-variables can be defined

as the solution of the minimization problem (9). The arising

question is that whether the solution of the minimization

problem, if unique, equals with the iterative extensions given

in the second section.

Let us study the case of the geometric mean. The geometric

mean for two positive definite matrices is given as

G(A, B) = A1/2
(

A−1/2BA−1/2
)1/2

A1/2. (15)

The above matrix mean has been studied extensively, see [2],

[16], [17], [10]. This mean is induced by the metric defined on

the manifold of positive definite matrices by the inner product

at p ∈ M

〈X, Y 〉p = tr
{

X∗p−1Y p−1
}

, (16)

where X and Y are elements of the tangent bundle TpM given

at p ∈ M . For this metric the exponential map and its inverse

can be written explicitly as

expp(X) =p1/2 exp(p−1/2Xp−1/2)p1/2

logp(X) =p1/2 log(p−1/2Xp−1/2)p1/2.
(17)

Note that in this case gradC(X) given in (12) can expressed

in a closed form with matrix functions exp, log and the square

root. Therefor if the initial Xi matrices commute, then (11)

can be solved in closed form as

X = X
1/n
1 · · ·X1/n

n . (18)

The above formula is the same as the geometric mean for

positive numbers, actually the above minimization problem

formulated for numbers yields the same solution, the geometric

mean of n numbers.

There is another metric where the solution of (9) can be

expressed in closed form for matrices, that is the standard

Euclidean metric for matrices with 0 curvature. The solution

will be the arithmetic mean. For these two special cases

we know that the iterative extension defined before yields
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also the solution of the minimization problem, because the

solutions can be expressed in closed form, which correspond

with the arithmetic and geometric mean of matrices. But we

know that the iterational sequences, if the initial matrices

are orderable, converge to the same extension formulas given

for the arithmetic and the geometric mean, see [18]. This

coincidence motivated the further study of the iterative ex-

tensions of mean functions. The simulations provided in the

next section will be given for the geometric mean, because

it is the only matrix mean function for which it is nontrivial

that the iterative sequences’ limit is the corresponding solution

of the minimization problem, but in certain situations, for

example when the initial matrices commute, we know this to

be true. Furthermore it is relatively easy to compute the needed

differential forms of the manifold induced by the Froebenius

inner product (16).

V. THE COMPUTATION OF THE RIEMANN CENTROID AND

SIMULATIONS

There are several methods which provide an approximate

solution of the minimization problem given in (9). Two of

them should be considered here, the first is the gradient descent

algorithm, the second is the Newton method. Both methods

have much in common, but generally the Newton method is

considered to be faster then the gradient method, but it requires

the computation of the Hessian of the cost function (10). Both

algorithms requires the computation of the gradient of the

cost function. Generally expressing the gradient in closed form

requires solutions of the Euler-Lagrange equations related to

the geodesic equations. To solve the geodesic equations in

closed form respect to the metric and the ending points of the

geodesic can be extremely difficult.

Taking into account the above mentioned problems, we

will only provide a simulation which is related to the metric

induced by the inner product (16) given on the tangent bundle

TqM . We already know that this metric induces the geometric

mean if the matrices commute. The other good properties of

this metric are that the exponential map, the logarithmic map

and the curvature endomorphism can be relatively easiy found

and expressed in closed form, see [10].

We have used the following two algorithms for computing

the centroid:

Algorithm 2 Gradient Method

set tolerance ǫ > 0, xt ⇐ x0

x ⇐ xt

repeat

g ⇐ gradC(x)
obtain αk by applying the Armijo line-search rule

xt ⇐ expx(−αkg)
until R(x, xt) > ǫ

We have been comparing these two methods with the ones

given in the second section and modified by Algorithm 1,

mostly we were interested in smaller number of starting

matrices. The simulations showed that the iterative methods

Algorithm 3 Newton Method

set tolerance ǫ > 0, xt ⇐ x0

x ⇐ xt

repeat

g ⇐ gradC(x)
Solve HessC(x) · d = −g for d
if 〈d, g〉x ≥ 0 then

d = −g
end if

obtain αk by applying the Armijo line-search rule

xt ⇐ expx(−αkg)
until R(x, xt) > ǫ

presented here tend to converge to the approximate solutions

found by the gradient and the Newton method.

If one is only interested in the number of iterations needed

for reaching a tolerance level, one might find that the Newton

method is the best choice next to the gradient. But taking into

account the computational costs, quite astonishingly the best

choice is the iterational method given in the second section

modified by Algorithm 1, although Figure 4,6 would suggest

the opposite. In Figure 4, 6 one can compare the distinct

methods convergence rate. Here Iteration 1 was defined by

Definition II.3 and Iteration 3 was given by Definition II.2

modified by Algorithm 1. Actually in the case of the Newton

method, the evaluation of the Hessian was so computationally

costly that it cancelled out the rapid convergence of the

algorithm. Due to the adaptive properties of both of the

gradient and Newton methods, there were certain distributions

of the matrices, when the algorithms did not converge at all

or the convergence was quite slow.

The iterative processes given in this article were more robust

then both methods, the computations were easier to carry

out, therefore the overall performance was better than both

methods, when there were relatively small number of matrices.

VI. CONCLUSIONS

In this article iterational algorithms were presented, which

provide an extension of a two-variable mean function. It

has been proven that the iterative methods converge to the

same limit point. These methods provide more sophisticated

extensions than the others given before, because they omit

recursivity and they use the two-variable form directly.

These methods appear to provide the solution of the Rie-

mann barycenter problem, according to the simulations given

here in this context. Furthermore these methods provide so-

lutions faster then the original gradient or Newton methods.

There are no adaptive parameters in the algorithms, so the

speed of convergence can be more precisely predicted.
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