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Abstract—All the geophysical phenomena including river 

networks and flow time series are fractal events inherently and fractal 
patterns can be investigated through their behaviors. A non-linear 
system like a river basin can well be analyzed by a non-linear 
measure such as the fractal analysis. A bilateral study is held on the 
fractal properties of the river network and the river flow time series. 
A moving window technique is utilized to scan the fractal properties 
of them. Results depict both events follow the same strategy 
regarding to the fractal properties. Both the river network and the 
time series fractal dimension tend to saturate in a distinct value.       
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I. INTRODUCTION 

RACTAL geometry is rooted in the works of late 19th and 
early 20th century mathematicians who found their fancy 

in generating complex geometrical structures from simple 
objects like a line, a triangle, a square, or a cube (the initiator) 
by applying a simple rule of transformation (the generator) in 
an infinite number of iterative steps. The complex structure 
that resulted from this iterative process proved equally rich in 
detail at every scale of observation, and when their pieces were 
compared to larger pieces or to those of the whole, they 
proved similar to each other [1].The concept of a fractal 
dimension to describe structures, which look the same at all 
length scales, was first proposed by Mandelbrot [2]. Although 
in strict terms, this is a purely mathematical concept, there are 
many examples in nature that closely approximate a fractal 
object, though only over particular ranges of scale. Such 
objects are usually referred to as self-similar to indicate their 
scale-invariant structure. In simple terms, the common 
characteristic of such fractal objects is that their length (if the 
object is a curve, otherwise it could be the area or volume) 
depends on the length scale used to measure it, and the fractal 
dimension tells us the precise nature of this dependence [3]. A 
river network consists of a main river accompanied by a 
hierarchy of side streams of decreasing lengths and flow 
capacities. Ignoring the ground absorption and evaporation, 
the network drains out the whole amount of rain water dropped 
uniformly on every small piece of land in the river basin and 
therefore necessarily spans the whole drainage area [4]. 
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A classic problem in hydrologic science is the prediction of 

river flow properties according to given knowledge of rainfall 
and drainage basin properties. Although many approaches 
have been used for flow prediction, recent significant advances 
have been made using the framework of scaling invariance. It 
is by now well known that both river networks, representing 
the primary mechanism for transport of water over the surface 
of large basins, and rainfall exhibit certain forms of scaling 
invariance[5]-[6]. Given that both rainfall and the network 
obey certain scaling laws, an important ongoing research 
problem is to understand what type of structure this induces on 
the resulting flow through the network, both spatially and in 
time [7]. 

A fractal river network is a striking example of self-
organized criticality. The physics of river network evolution 
arises from interplay of the structured landscape governing the 
water flow with the erosion effects of the water feeding back 
into further sculpting of the landscape. Extensive studies of the 
fractal characteristics of real river networks have been carried 
out [4]-[7]. Hack [8] has studied the relationship between the 
length of a river l and the area of a drainage basin s. s is a 
measure of the total area of the land covered by the principal 
stream and its tributaries that feed into the network. Hack’s 
measurements indicate that for basin areas s ranging over 
almost five decades (up to 375 square miles), s ∼ lφ with the 
exponent 1/φ ∼ 0.57. Other measurements of the distribution 
of drainage basin areas suggest a power law scaling of the 
form P(s) ∼ s−τ with τ = 1.45 ± 0.03 [9]. 

II. METHODS OF FRACTAL DIMENSION CALCULATION 

A. Box counting dimension 

The concept of capacity dimension was developed to 
estimate DSS for real, non exact, statistical fractals. Dcap is a 
generalization of DSS and is calculated as follows. It uses 
‘balls’  whose dimension equals E of the space in which the 
object is embedded. For E = 1 the ball is a line segment of 
length 2r, for E = 2 it is a circle with radius r, and for E = 3 it 
is a sphere with radius r. The object is to be covered by balls 
so that its every point is enclosed within at least one ball. It is 
important to note that overlapping balls are allowed. The 
minimum number of balls of size r needed to cover the object, 
N(r), is found, then r is decreased and N(r) is found again. Dcap 
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tells how the number of balls needed to cover the object 
changes as the size of the ball is decreased (Bassingthwaighte 
J, 1994). 
 

capDRN = Where rR /1=  (1) 
 
and the radius of the ball covering the whole object is 1. 
Equation (1) gives a precise mathematical definition of Dcap, 
but it does not allow for an effective calculation of it. Dbox is a 
practical implementation of the algorithm of Dcap. It uses an 
overlapping grid of boxes instead of overlapping balls, which 
greatly simplifies the procedure and makes the calculation of 
D applicable to traced 2D or 3D objects feasible. The essence 
of this method is to cover the image or structure by this grid of 
overlapping boxes of various edge lengths, L = 1/R, and to 
determine the number of boxes covering any part of the object 
N. N is determined for progressively smaller box sizes. Dbox is 
given as the slope of a linear regression fit to data pairs on a 
log–log plot of N as a function of R 
 

boxDRN = Which yields RNDbox log/log=                     (2) 

 
and the edge length of the box containing the whole object is 
1. The fractal dimension for a line segment, square and cube 
equals the Euclidean and` the topological dimension and are 1, 
2, and 3, respectively. For 2D and 3D fractals, D falls in 
between these landmark values and gives a good 
characterization of the space-filling properties of the structure. 
The more D differs from DT and is closer to E, the more the 
structure invades the Euclidean space. At the beginning, 
Mandelbrot emphasized the fractional value of D. He also 
noted, however, that fractals could be found with integer D 
like the Peano curve whose D = 2 [1]. 

B. Power spectral density analysis (PSD) 

A time series can be represented as a sum of cosine wave 
components of different frequencies 
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frequency. The An(fn), φ n(fn) and A2
n( fn) functions are termed 

as amplitude, phase and power spectrum of the signal, 
respectively. These spectra can be determined by an effective 
computational technique, the fast Fourier transform (FFT). 
The power spectrum (periodogram, power spectral density or 
PSD) of a fractal process is a power law relationship 
 

βω −= ndn pA2  which yields  
ndn fpA logloglog 2 β−=  (4) 

  

where β  is termed spectral index. Signals with this form of 

power spectrum are referred to as 1/f noise. The power law 

relationship expresses the idea that as one doubles the 
frequency the power changes by the same fraction (2-β ) 
regardless of the chosen frequency, i.e. the ratio is independent 
of where one is on the frequency scale. The signal has to be 
preprocessed before applying the FFT, which means 
subtracting the mean, multiplying with a parabolic window 
(windowing) and bridge de-trending (end-matching). After 
calculating the power spectrum using a FFT, the high-
frequency part of the spectrum should be excluded before 
fitting the regression line [1]. 

The value of β  can be related to Hurst coefficient using the 

following equations 
 

2

1+= β
H   when   11 +<<− β  

2

1−= β
H   when      31 << β  (5) 

C. Hurst’s rescaled range analysis (R/S) 

The first method for assessing H was invented by Hurst [10] 
when confronting the question of how high the Aswan dam 
had to be built so that it would contain the greatly varying 
levels of the Nile within a given window of observation, n. 
The logic he followed was governed by the three criteria of an 
ideal reservoir: (1) the outflow is uniform, (2) the level is the 
same at the beginning and at the end of the observation 
window, (3) the reservoir never overflows [11]. He looked at 
retrospectives  records of water levels, xi, which are 
proportional to the velocity of water inflow to the dam. Hurst 
assumed a uniform outflow, which can be calculated as the 
mean of the varying inflow. The time series of the increase in 
water volume in the container is given by the summed 

difference of inflow and outflow txxy
j

n

iii ∆−= ∑
=1

)(  The 

range of yj, R = ymax −ymin, determines how high the dam 

should be built. In addition, Hurst divided the range by the 
standard deviation of inflow fluctuations, S, and found much to 

the surprise of contemporary statisticians that R/Sn showed a 

power law scaling relationship with the length of observation n 
 

H
n pnSR −)/(  which yields nHpSR dn loglog)/log( += (6) 

 
where p is a pre-factor. This method is known as Hurst’s 

rescaled range (R/S) analysis. His work led Mandelbrot and 

Wallis (1969) to discover the widespread occurrence of self-
similar fluctuations in natural phenomena [1]. 

III. RESULTS AND DISCUSSION 

A. Ghareh-Aghaj Basin 

For the present study Ghareh-Aghaj river basin with 
available 36 years data and over 3,000 sq km area has been 
used. The basin is located in Fars province of Iran. This river 
comes from (Bon-Rood Hights) hillside village of Tabask 

where A  is the amplitude and f n is the phase of the cosine-
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Zanganeh (about 30 km north-east of Kazeroun city) in 
Doshman-Ziari rural district and then passes through a valley 
in the northwest of Shiraz, and leaves Mamasani district in the 
vicinity of the Chehel-Cheshmeh. Ghareh-Aghaj River in its 
path, along with several rivers and springs, after passing 
through farm lands of Khafr, Kavar, Jahrom, Ghir–o-Karzyn 
enters the Persian Gulf through the Boushehr province entitled 
as Mond River. The flow of this river is permanent and the 
width of it ranges from 20 meters in Mountainous regions to 
400 meters in plains. Ghareh-Aghaj River is one of the most 
important rivers of Fars Province and its water is now used for 
drinking and agriculture. Construction of Salman Farsi dam 
and the studies for construction of Kavar dam on the river is a 
sign of the importance of this river in the Fars province. 

The average annual discharge of the river is 18 cubic meters 
per second at the Tang-e-Karzin station. Minimum flow rate at 
this station is 3.5 cubic meters per second and the maximum is 
43 cubic meters per second. Also statistics show recorded 
flood discharge of 6,000 cubic meters per second. 

 

 
Fig. 1 shows the location of Ghare-Aghaj River basin. 

 

B. River Network Calculated Dimensions 

For calculation of the river network fractal dimension 
several windows with increasing dimensions were considered 
to define the desired area of study. The selection of windows 
was started from the top corner of upstream zone which is 
located at the North West of the basin area, and considering 
this point as the fixed top left corner of all the windows, the 
dimensions of successive selection windows were increased 
such that the last window covered the entire area of the 
basin.The fractal dimension of that part of river network 
located within each selection window was calculated using 
regular Box-Counting method. 

Table (I) shows the results of the calculation of fractal 
dimension for Ghareh-Aghaj River network. 
 

TABLE I 
RESULT OF THE CALCULATION OF FRACTAL DIMENSION FOR GHAREH-AGHAJ 

RIVER NETWORK 
window no. Fractal dimension C 

1 1.285 0.084 
2 1.510 0.158 
3 1.602 0.187 
4 1.593 0.172 
5 1.632 0.191 
6 1.622 0.181 
7 1.630 0.194 
8 1.618 0.189 
9 1.618 0.191 
10 1.626 0.201 
11 1.596 0.172 
12 1.592 0.178 
13 1.595 0.178 
14 1.608 0.181 
15 1.622 0.186 
16 1.619 0.182 

 
As it is shown in table (1) the fractal dimension calculated 

for each window increases with the size of window and 
eventually tends to a constant value around 1.62. 
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Fig. 2 Fractal Dimension of Ghare-Aghaj River network in different 

selection windows 

C. River Time Series Fractal Dimensions calculated using 
PSD Method 

A similar procedure was used to find the fractal dimension 
of river flow time series. The available data was sampled using 
windows starting from the latest recorded data available; the 
data with three different intervals including daily, weekly and 
monthly records were windowed such that the selection period 
increases progressively to finally include the whole available 
data series. In each selected period the fractal dimension of the 
time series was calculated using a predefined computer 
program. Tables (II) and (III) show the results of the 
calculation of fractal dimension for Ghareh-Aghaj River flow 
time series by PSD method for daily and weekly data 
respectively. Fig (3) depicts the results of the windowing 
technique scanning the fractal dimension of the time series 
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using PSD method. It is clear that the fractal dimension tends 
to saturate to 1.18 after 400 weeks and keep the same 
procedure even up to 2000 weeks.  
 

TABLE II 
RESULT OF THE CALCULATION OF FRACTAL DIMENSION FOR GHAREH-AGHAJ 

RIVER DAILY TIME SERIES BY PSD METHOD 
Data range Hurst Coefficient Fractal dimension 

1-2000 0.997 1.003 
1-4000 0.962 1.038 
1-6000 0.947 1.053 
1-8000 0.948 1.052 
1-10000 0.953 1.047 
1-12000 0.949 1.051 
1-14000 0.924 1.076 
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Fig. 3 Fractal dimension of Ghareh-Aghaj River daily time series in 

different selection windows by R/S Method 
 

TABLE III 
RESULT OF THE CALCULATION OF FRACTAL DIMENSION FOR GHAREH-AGHAJ 

RIVER WEEKLY TIME SERIES BY PSD METHOD 
Data range Hurst Coefficient Fractal dimension 

1-200 0.929 1.071 
1-400 0.856 1.144 
1-600 0.814 1.186 
1-800 0.818 1.182 
1-1000 0.811 1.189 
1-1200 0.813 1.187 
1-1400 0.822 1.178 
1-1600 0.821 1.179 
1-1800 0.817 1.183 
1-2000 0.822 1.178 
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Fig. 4 Fractal dimension of Ghareh-Aghaj River weekly time series in 

different selection windows by PSD Method 

D. River Time Series Fractal Dimensions calculated using 
R/S Method 

   As shown in Table (4) and Table (5) the fractal dimension of 
weekly and monthly time series of the river are calculated 
using R/S method. Results obviously show that the variation 
trend of the fractal dimension tends to a constant value (1.42) 
as the moving window proceed scanning the data range. Fig 
(4) and Fig (5) and (6) show how the fractal properties change 
as the window goes ahead in daily and weekly and monthly 
scale.  

For the daily data a non-flatting behavior is detected. This 
irregularity mostly come from the no compatible method of 
fractal analysis chosen regarding to the class/length of daily 
time series [12].       

 
TABLE IV 

RESULT OF THE CALCULATION OF FRACTAL DIMENSION FOR GHAREH-AGHAJ 

RIVER WEEKLY TIME SERIES BY R/S METHOD 
Data range Hurst Coefficient Fractal dimension 

1-200 0.771 1.229 
1-400 0.572 1.428 
1-600 0.515 1.485 
1-800 0.537 1.463 
1-1000 0.579 1.421 
1-1200 0.590 1.410 
1-1400 0.588 1.412 
1-1600 0.592 1.408 
1-1800 0.585 1.415 
1-2000 0.577 1.423 
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Fig. 5 Fractal dimension of Ghareh-Aghaj River weekly time series in 
different selection windows by R/S Method 

 
TABLE V 

RESULT OF THE CALCULATION OF FRACTAL DIMENSION FOR GHAREH-AGHAJ 

RIVER MONTHLY TIME SERIES BY R/S METHOD 
Data range Hurst Coefficient Fractal dimension 

1-50 0.614 1.386 
1-100 0.584 1.416 
1-150 0.539 1.461 
1-200 0.529 1.471 
1-250 0.478 1.522 
1-300 0.448 1.552 
1-350 0.446 1.554 
1-400 0.440 1.560 
1-450 0.430 1.570 
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Fig. 6 Fractal dimension of Ghareh-Aghaj River monthly time series 
in different selection windows by R/S Method 

E. River Time Series Fractal Dimensions calculated using 
Variation Method 

Table (6) and (7) are the fractal dimension calculated for 
Ghareh-Aghaj River using the Variation method in weekly and 
monthly time scale. The pre discussed trend is noticeably 
detectable and can be easily distinguished in Fig (7) and (8) 
where the saturation dimension for weekly data seems to be 
1.42 ( which depict close similarity to R/S method) and for 
monthly data 1.6. According to results obtained and the pre 
researches [12]-[14] it seems that the class of time series 
(fBm/fGn) and the length of the data series are important 
factors when working with fractal analyzing methods.Variation 
and PSD methods gave the best answers for all the time scales 
and R/S was pretty good for weekly and monthly but seems to 
miscalculate the fractal dimension of the daily time series as 
the daily time series are fGn and R/S method is an fBm 
analyzer inherently.   
 

TABLE VI 
RESULT OF THE CALCULATION OF FRACTAL DIMENSION FOR GHAREH-AGHAJ 

RIVER WEEKLY TIME SERIES BY VARIATION METHOD 
Data range Fractal dimension 

1-200 1.185 
1-400 1.413 
1-600 1.379 
1-800 1.422 
1-1000 1.422 
1-1200 1.453 
1-1400 1.452 
1-1600 1.457 
1-1800 1.462 
1-2000 1.454 
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Fig. 7 Fractal dimension of Ghareh-Aghaj River weekly time series in 

different selection windows by Variation Method 

TABLE VII 
RESULT OF THE CALCULATION OF FRACTAL DIMENSION FOR GHAREH-AGHAJ 

RIVER MONTHLY TIME SERIES BY VARIATION METHOD 
Data range Fractal dimension 

1-50 1.480 
1-100 1.550 
1-150 1.631 
1-200 1.643 
1-250 1.623 
1-300 1.659 
1-350 1.657 
1-400 1.649 
1-450 1.662 
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Fig. 8 Fractal dimension of Ghareh-Aghaj River monthly time series 
in different selection windows by Variation Method 

IV. CONCLUSION 

    Non-linear systems are complex and affected by multiple 
factors. The fractal patterns of a non-linear system is the 
resultant of various effective events working simultaneously 
on a same phenomenon. The main idea behind the present 
research was to detect whether the related non-linear systems 
obey the same rules regarding to their fractal patterns or not. 
As discussed in the results section the variation pattern of the 
fractal dimension in both the river network as the first non-
linear geophysical system and the river flow time series in 
different time scales as the second non-linear geophysical 
event depict the same trend. Both tend to saturate in a distinct 
value regarding their fractal dimension when analyze through a 
windowing technique that scan their fractal properties. 

ACKNOWLEDGMENT 

Authors would like to express their sincere gratitude to the 
research center of Marvdasht Islamic Azad University which 
supported this research.  

REFERENCES   

[1] A. Eke, P. Hermann, L. Kocsis and L.R. Kozak. Fractal characterization 
of complexity in temporal physiological signals, Physiological 
Measurement 23 (2002) 1–38. 

[2] B. B. Mandelbrot. The Fractal Geometry of Nature, W H Freeman 
publication, New York, 1982. 

[3] P. Babinec,  M. Kučera and M. Babincová.Global Characterization of 
Time Series Using Fractal Dimension of Corresponding Recurrence 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:6, No:3, 2012

135

 

 

Plots: From Dynamical Systems to Heart Physiology; Harmonic and 
Fractal Image Analysis (HarFA), 2005. - pp. 87 - 93. 

[4] S. S. Manna, B. Subramanian. A quasi-random spanning tree model for 
the early river network.  Jan 29, 1996. 

[5] Rodriguez-Iturbe, I. and A. Rinaldo. Fractal River Basins, Chance and 
Self-Organization, Cambridge: Cambridge University Press, 1997. 

[6] A. Rinaldo, R. Rigon and I. Rodriguez-Iturbe (1994): Geomorphological 
width functions and random cascade. Geop. Res. Letters 21, 2123-2126. 

[7] Troutman, B. and Karlinger, M. 1998. Spatial channel network models 
in hydrology, In: Advanced Series in Statistical Sciences and Applied 
Probability, Vol. 7: Statistical Methods in Hydrology: Rainfall, 
Landforms and Floods, ed. O. 

[8] J. T. Hack, U.S. Geological Survey, Professional Paper 294-B (1957). 
[9] A. Rinaldo, I. Rodreguez-Iturbe, R. Rigon, R. Bras, E. Ijjasz-Vasquez, 

A. Marani. Minimum energy and fractal structures of drainage 
networks. Water Resources Research. 29 (10) (1993) Pp. 10. 

[10] H. E.Hurst. Long-term storage: An experimental study. London: 
Constable (1965). 

[11] J. Bassingwaighte, L. Liebovitch and B. West. Fractal physiology. 
Oxford University press. New York. 1994. 

[12] M.H. Fattahi, N. Talebydokhti, G.R. Rakhshandehroo, A. Shamsai and 
E. Nikooee. The robust fractal analysis of time series. Fractals Vol. 18, 
(2010), 1-21.  

[13] M.H. Fattahi, N. Talebydokhti, G.R. Rakhshandehroo, A. Shamsai and 
E. Nikooee. Fractal assessment of wavelet based techniques for 
improving the artificial neural network models. Journal of Food, 
Agriculture and Environment. Vol. 10 (2010), 132-137.  

[14] M.H. Fattahi, N. Talebydokhti, G.R. Rakhshandehroo, A. Shamsai and 
E. Nikooee. Fractal assessment of wavelet based preprocessing of river 
flow time series. Water Resources Engineering. Vol. 10, (2011), 1-10.  

 


