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The Performance Analysis of Error Saturation
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Abstract—This paper introduces a new approach for the perfor-
mance analysis of adaptive filter with error saturation nonlinearity in
the presence of impulsive noise. The performance analysis of adaptive
filters includes both transient analysis which shows that how fast
a filter learns and the steady-state analysis gives how well a filter
learns. The recursive expressions for mean-square deviation(MSD)
and excess mean-square error(EMSE) are derived based on weighted
energy conservation arguments which provide the transient behavior
of the adaptive algorithm. The steady-state analysis for co-related
input regressor data is analyzed, so this approach leads to a new
performance results without restricting the input regression data to
be white.

Keywords—Error saturation nonlinearity, transient analysis, impul-
sive noise.

I. INTRODUCTION

It is known that when data is contaminated with non-
Gaussian noise, the linear systems provides poor performance.
In many physical environment the additive noise is modeled
as impulsive and is characterized by long-tailed non-Gaussian
distribution. The performance of the system is evaluated under
the assumption that the Gaussian noise is severally degraded
by the non-Gaussian or Gaussian mixture [1] noise due to
deviation from normality in the tails [2], [3]. The effects
of saturation type of non-linearity on the least-mean square
adaptation for Gaussian inputs and Gaussian noise have been
studied [4], [5]. Recent research focus is to develop adaptive
algorithm that are robust to impulsive noise or outlier present
in the training data. Number of algorithms have been proposed
[3], [6]–[8] to reduces the effects of impulsive noise. This
class of algorithms is difficult to analyze and therefore it is
not uncommon to resort to different methods and assumptions.
In recent papers [9] the author has showed that the error
saturation nonlinearities LMS provides good performance in
presence of impulsive noise. How ever he has not given any
analysis for the correlated input data.

The least-mean square(LMS) algorithm is popular adaptive
algorithm because of its simplicity [10], [11]. Many LMS type
algorithms have been suggested and analyzed in literature is
the class of least-mean square algorithm with error saturation
nonlinearity is of particular importance. The general way
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of convergence analysis of any type of adaptive algorithms
using weight-energy relation is dealt in [12]. Further in some
literature the error nonlinearity analysis [13], [14] and data
nonlinearity analysis [15] are have been made weighted-energy
conservation method. The theory dealt in [9] provides the idea
of the subsequent analysis of Gaussian mixture case. It also
suggests how it can applied to each component separately to
obtain recursive relation for the nonlinear LMS.

In this paper we use both the ideas to develop a new
generalized method to obtain the transient analysis of satura-
tion nonlinearity LMS in presence of Gaussian contaminated
impulsive noise. We have derived the performance equations
by assuming that the input data is Gaussian uncorrelated. This
idea can also extended to the case of correlated input regressor
data. Finally it shown that the theoretical performance curves
have excellent agreement with the corresponding simulation
results.

II. ADAPTIVE ALGORITHM WITH SATURATION ERROR
NONLINEARITY

The estimate of an M × 1 unknown vector w◦ by using
row regressor ui, of length M and output samples d(i) that is
given as

d(i) = uiw◦ + v(i) (1)

Where v(i) is represents the impulsive noise instead of Gaus-
sian. Out of many adaptive algorithms proposed in literature
[10], [11] the well known LMS algorithm is analyzed. Its
weight update equation is given by

wi = wi−1 + μe(i)uT
i

In this paper we focus on a slightly different class of algorithm
by introducing an error nonlinearity into the feedback error
signal so that the weight update equation can be written as

wi = wi−1 + μuT
i f [e(i)] i ≥ 0 (2)

where wi is the estimate of w at time i and μ is the step size

e(i) = d(i) − uiwi−1 = uiw◦ − uiwi−1 + v(i) (3)

and

f(y) =
∫ y

0

exp[−u2/2σ2
s ]du =

√
π

2
erf

[
y√
2σs

]
(4)

where σs is a parameter that defines the degree of saturation.
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If f(e) represents the cost function, then its gradient is
defined as

∂f

∂w
=
∂f

∂e
· ∂e
∂w

=
∂f

∂e
· (−u)

If we choose the cost function f(e) = e2 then ∂f
∂e = 2e

is linear, otherwise ∂f
∂e is a non-linear function of e. In this

approach nonlinear f(e) and is so chosen that of ∂f
∂e is also

nonlinear i. e..

f(e) =
∫ (

∂f

∂e

)
de

In this saturation non-linearity LMS case we have chosen
Gaussian nonlinearity on error.

A. Model for Impulsive Noise

The transient analysis of adaptive filters that are available
in literature is for white Gaussian noise case. But in real
environment impulsive noise is encountered. The impulsive
noise is modeled as a two component of the Gaussian mixture
[1], [3] which is given by

no(i) = ng(i) + nim(i) = ng(i) + b(i)nw(i) (5)

where ng(i) and nw(i) are independent zero mean Gaus-
sian noise with variances σ2

g and σ2
w, respectively; b(i) is

a switch sequence of ones and zeros, which is modeled as
an iid Bernoulli random process with occurrence probability
Pr(b(i) = 1) = pr and Pr(b(i) = 0) = 1 − pr. The variance
of ηw(i) is chosen to be very large than that of ng(i) so that
when b(i) = 1, a large impulse is experienced in no(i). The
corresponding pdf of no(i) in (5) is given by

fno
(x) =

1 − pr√
2πσg

exp
(−x2

2σ2
g

)
+

pr√
2πσT

exp
(−x2

2σ2
T

)
(6)

where σ2
T = σ2

g + σ2
w and E[n2

o(i)] = σ2
g + prσ

2
w. It is noted

that when pr = 0 or 1, no(i)] is a zero-mean Gaussian variate.

III. TRANSIENT ANALYSIS

We are interested in studying the time-evolution of the
variances E|e(i)|2 and E‖w̃i‖2 where

w̃ = w◦ − wi

The steady-state values of the variances known as mean-square
error and mean-square deviation performance of the filter. In
order to study the time evaluation of above variances, we
introduce [12] the weighted a priori and a posteriori error
defined as

eΣa (i) = uiΣw̃i−1 and eΣp (i) = uiΣw̃i (7)

where Σ is a symmetric positive definite weighting matrix.
It will be seen that the different choice for Σ allows us to
evaluate different performance. For Σ = I we define

ea(i) = eI
a(i) = uiw̃i−1, ep(i) = eI

p(i) = uiw̃i (8)

Subtracting w◦ from both sides of (2), we get

w̃i = w̃i−1 − μf [e(i)]ui (9)

Using the definition of a priori error in (3), we get

e(i) = ea(i) + v(i) (10)

Relation between various error terms eΣa (i), eΣp (i) and e(i) is
obtained by premultiplying both sides of (9) by uiΣ

eΣp (i) = eΣa (i) − μf [e(i)]‖ui‖2
Σ (11)

A. Weight-Energy Relation

Elimination of the nonlinearity f [e(i)] from (9) by using
(11) we obtained

w̃i = w̃i−1 +
eΣp (i) − eΣa (i)

‖ui‖2
uT

i (12)

Taking weighted energy on both sides of (12), we get

‖w̃i‖2
Σ +

|eΣa (i)|2
‖ui‖2

Σ

= ‖w̃i−1‖2
Σ +

|eΣp (i)|2
‖ui‖2

Σ

(13)

The variance relation can be obtained from the energy relation
(13) by replacing a posteriori error by its equivalent expres-
sion.

‖w̃i‖2
Σ = ‖w̃i−1‖2

Σ − 2μeΣa (i)f [e(i)] + μ2‖ui‖2
Σf

2[e(i)]

Taking expectation on both sides we get the same equation as
in [13] which is given as:

E[‖w̃i‖2
Σ] = E[‖w̃i−1‖2

Σ] − 2μE[eΣa (i)f [e(i)]]

+ μ2E[‖ui‖2
Σf

2[e(i)]] (14)

Evaluation of 2nd and 3rd terms on RHS of (14)is difficult
as it contains the nonlinearity term. To evaluate the transient
analysis we make the same assumption taken in [13].

• The noise sequence v(i) is iid and independence of ui

• For any constant matrix Σ and for all i, ea(i) and eΣa (i)
are jointly Gaussian.

• The adaptive filter is long enough such that the weighted
norm of input regressor and the square of error nonlin-
earity i.e. f2[e(i)] are uncorrelated.

Price’s theorem [16], [17]plays an important rule to analyze
the 2nd term on RHS of equation(14) which is given as

E[xf [y + z]] =
E[xy]
E[y2]

E[yf [y + z]]

where x and y be jointly Gaussian random variables that
are independent from the third random variable z. Here the
third term is given as independent of x and y which are
jointly Gaussian. In [9], [13] the noise is considered as simply
Gaussian and independent of the errors ea(i) and eΣa (i). But in
this paper we consider the noise is impulsive and also assume
that this impulsive noise also independent of errors. So by
using the the Price’s theorem and assuming that the impulsive
noise is independent of errors we get the same general equation
[17, [13]] which is given as

E[eΣa (i)f [e(i)]] = E[eΣa (i)e(i)]hG[E[e2a(i)] (15)
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where the general expression for hG is given as

hG =
σs√

E[e2a(i)] + σ2
s

E

[
exp

[
− v2(i)

2(E[e2a(i)] + σ2
s)

]]

Now we can evaluate the value of hG using the pdf pv(v) in
(6) as

hG =
(1 − pr)σs√

E[e2a(i)] + σ2
s + σ2

g ]
+

prσs√
E[e2a(i)] + σ2

s + σ2
Σ]

(16)

In similar way we can evaluate the third term of (14) by taking
long filter assumption for which the weighted norm of input
data and the squared error nonlinearity are uncorrelated as in
[13]. But here the expression for hU = E[f2[e(i)]] is evaluated
by assuming the noise is impulsive and whose pdf is given in
(6). The expression of hU is given in (17).

hU = (1 − pr)σ2
s sin−1

(
σ2

g + E[e2a(i)]
E[e2a(i)] + σ2

s + σ2
g ]

)

+ prσ
2
s sin−1

(
σ2

Σ + E[e2a(i)]
E[e2a(i)] + σ2

s + σ2
Σ

)
(17)

B. Weighted-Energy Recursion Relation

Employing the same assumption as in [13] and assuming
the sequence ui is zero-mean iid, and has covariance matrix
R, the weighted-energy recursion relation is given as

E[‖w̃i‖2
Σ] = E[‖w̃i−1‖2

Σ] − 2μhGE[‖w̃i−1‖2
ΣR]

+ μ2E[‖ui‖2
Σ]hU (18)

IV. RECURSION EQUATIONS

The learning curve of the filters refers to the time-evolution
of the variances E[e2a(i)] and E[‖w̃i‖2]. the steady-state values
are called as excess-mean square error(EMSE) and mean-
square deviation(MSD) respectivelly. Under independent as-
sumption we can write the variance E[e2(i)] as

E[e2(i)] = E[‖w̃(i−1)‖2
R]

This suggests that the learning curve can be evaluated by
computing the weight-energy relation (18) for each i and by
choosing the weight parameter Σ = R for EMSE and Σ = I
for MSD respectively. Here we develop the recursive relation
for EMSE and MSD first for white input data and then extend
to correlated input data.

A. Case of White Regressor Data

In case of white input regressor data, the covariance matrix
R = σ2

uI, so that E[e2a(i)] = σ2
uE[‖w̃(i−1)‖2]. Therefore the

(18) can be solved as

E[‖w̃i‖2
Σ] = E[‖w̃i−1‖2

Σ] − 2μhGσ
2
uE[‖w̃i−1‖2

Σ]

+ μ2E[‖ui‖2
Σ]hU (19)

Thus, setting Σ = I in the above equation for MSD recursion
equation, we get

E[‖w̃i‖2] = E[‖w̃i−1‖2] − 2μhGσ
2
uE[‖w̃i−1‖2]

+ μ2E[‖ui‖2]hU (20)

Substituting η(i) = E[‖w̃i‖2], (20) written as

η(i) = η(i− 1) − 2μhGσ
2
uη(i− 1) + μ2Mσ2

u]hU (21)

where the nonlinear parameter hG and hU are given as below:

hG =
(1 − pr)σs√

σ2
uη(i− 1) + σ2

s + σ2
g

+
prσs√

σ2
uη(i− 1) + σ2

s + σ2
T

(22)

hU = (1 − pr)σ2
s sin−1

(
σ2

g + σ2
uη(i− 1)

σ2
uη(i− 1) + σ2

s + σ2
g

)

+ prσ
2
s sin−1

(
σ2

T + σ2
uη(i− 1)

σ2
uη(i− 1) + σ2

s + σ2
T

)
(23)

Equation (21) shows recursive equation for MSD in case of
white input regressor data. This expression is similar to the
(26) of [9] except only one extra term in later. In our analysis
we have assumed that for long filter the weighted norm of
input data ‖ui‖2

Σ and the error nonlinearity square f [e2(i)]
are uncorrelated. Therefore the extra term in (26) of [9] is not
appeared in (21). In addition this extra term can be neglected
for small step size.

In the same way we can obtain the recursion equation for
EMSE by simply choosing Σ = R in (18) where the time
evolution EMSE at i can be written as ζ(i) = E[‖w̃i‖2

R].

ζ(i) = ζ(i− 1) − 2μhGσ
2
uζ(i− 1) + μ2Mσ4

uhU (24)

The nonlinearity parameters hG and hU in EMSE of (24) are
as

hG =
(1 − pr)σs√

ζ(i− 1) + σ2
s + σ2

g

+
prσs√

ζ(i− 1) + σ2
s + σ2

T

(25)

hU = (1 − pr)σ2
s sin−1

(
σ2

g + ζ(i− 1)
ζ(i− 1) + σ2

s + σ2
g

)

+ prσ
2
s sin−1

(
σ2

T + ζ(i− 1)
ζ(i− 1) + σ2

s + σ2
T

)
(26)

B. Case of Correlated Regressor Data

The results (18) allows us to evaluate the time evolution of
the variances without the whiteness assumption on the input
regression data i.e. for general matrices R. The main idea is
to take the advantage of the free choice of weighted matrix Σ.
If we choose Σ = I,R, ...RM−1, then hG and hU remain the
same, so that these parameters are independent of choice of
weighted matrix Σ. The transient behavior of this class of filter
has been analyzed above for Gaussian regressor data. Now, we
move to show how the steady-state performance behaves. By
following the analysis as in theory [13] the steady state EMSE
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TABLE I
COMPARISON OF PERFORMANCES BETWEEN THEORETICAL AND

SIMULATED RESULTS

% of
impulsive
noise

MSD
(theo) in
dB

MSD
(sim) in
dB

EMSE
(theo) in
dB

EMSE
(sim) in
dB

10% -31.6698 -30.3653 -31.6698 -30.3639
20% -29.1049 -27.5515 -29.1049 -28.2447
50% -23.8678 -22.0514 -23.8678 -21.3723

and MSD are given as

EMSE =
μ

2
Tr(R)

hU

hG
and (27)

MSD =
Mμ

2
hU

hG
(28)

For impulsive noise case the nonlinearity parameters are
defined as where it is assumed that when i → ∞ then
E[‖w̃i+1‖2

Σ] = E[‖w̃i‖2
Σ]

hG =
(1 − pr)σs√

EMSE + σ2
s + σ2

g

+
prσs√

EMSE + σ2
s + σ2

T

(29)

hU = (1 − pr)σ2
s sin−1

(
σ2

g + EMSE

EMSE + σ2
s + σ2

g

)

+ prσ
2
s sin−1

(
σ2

T + EMSE

EMSE + σ2
s + σ2

T

)
(30)

Now the problem arises to solve for MSD or EMSE. It is
because of the parameters hU and hG are function of EMSE.
TO simplify this we always assume that the algorithm is
converge to minimum value to its mean and variance. This
assumption is true because in literature peoples has been
proved for the convergence in presence of impulsive noise
by showing that the speed of convergence is influenced by
two variances of the two component of Gaussian mixture.
If the algorithm is converge to minimum value then we can
neglect this with respect to the sum of saturation variance and
noise variance. Hence these variables are now written after
neglecting the minimum variance as

hG =
(1 − pr)σs√
σ2

s + σ2
g

+
prσs√
σ2

s + σ2
T

(31)

hU = (1 − pr)σ2
s sin−1

(
σ2

g

σ2
s + σ2

g

)

+ prσ
2
s sin−1

(
σ2

T

σ2
s + σ2

T

)
(32)

The comparison between theoretical and simulated values
of steady-state performance are compared in tableI. From the
table it concludes that the simulated values are nearly equal
with theoretical.
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Fig. 1. Theoretical (black) and simulated (red) mean-square deviation (MSD)
curve for pr = 0.0 (no impulsive noise) 0.1, 0.5, and 1.0
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Fig. 2. Theoretical (black) and simulated (red) excess-mean-square error
(EMSE) curve for pr = 0.0(no impulsive noise) 0.1, 0.5, and 1.0

V. RESULTS

All simulations are carried out using regressors with shift
invariance structure to cope with realistic scenario. Therefore
the regressor are filled up as

ui = [u(i), u(i− 1), . . . , u(i−M + 1)]T (33)

The recursive equations are derived by assuming that input
data are uncorrelated, so that the Monte Carlo simulation
technique is used to get simulated value of MSE and EMSE
in presence of different percentage of impulsive noise. The
desired data are generated according to the model given in (1),
and the unknown vector w◦ is set to [1, 1, . . . , 1]T /

√
M . Here

the back ground noise is Gaussian contaminated impulsive
type which is defined in (5). The back ground noise is Gaus-
sian with variance σ2

g and the impulsive noise is also Gaussian
but it occur with some probability having high variance σ2

w.
The performance of the saturation nonlinearity algorithm

in presence of impulsive noise with different percentage is
depicted in Figs. 1 and 2. The parameters are chosen as
μ = 0.05, σ2

u = 1, σ2
sat = 0.01, σ2

g = 10−6, σ2
w = 103σ2

g

which are nearly same as taken in [9]. These figures exhibit
excellent match between theoretical and simulation results.

Further we verify that the theoretical and simulation results
when the impulsive noise whose variance is much much more
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Fig. 3. Theoretical (black) and simulated (red) mean-square deviation (MSD)
curve for pr = 0.0(no impulsive noise) 0.1, 0.5, and 1.0
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Fig. 4. Theoretical (black) and simulated (red) excess-mean-square error
(EMSE) curve for pr = 0.0(no impulsive noise) 0.1, 0.5, and 1.0

than the background noise. The parameters are taken as μ =
0.05, σ2

u = 1, σ2
sat = 0.01, σ2

g = 10−3, σ2
w = 104σ2

g . The
performance curves are depicted in Figs. 3 and 4. Both the
results also shows excellent match.

VI. CONCLUSION

In this paper we have used energy-weighted conservation
arguments to study the performance of saturation nonlinearity
LMS with impulsive noise. The recursion equations for MSD
and EMSE are derived in presence of impulsive noise for
transient analysis. The simulated results have good agreement
with theoretical counter part. We can extend this approach
to other family of error nonlinearities like LMF, Sign error
etc.. Finally this approach can also be applied to general
Gaussian mixture type of noise which is more frequently used
in RADAR signal processing.
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