The Number of Rational Points on Singular Curves $y^{2}=x(x-a)^{2}$ over Finite Fields \mathbf{F}_{p}

Ahmet Tekcan

Abstract

Let $p \geq 5$ be a prime number and let \mathbf{F}_{p} be a finite field. In this work, we determine the number of rational points on singular curves $E_{a}: y^{2}=x(x-a)^{2}$ over \mathbf{F}_{p} for some specific values of a.

Keywords-Singular curve, elliptic curve, rational points.

I. Introduction

Mordell began his famous paper [9] with the words Mathematicians have been familiar with very few questions for so long a period with so little accomplished in the way of general results, as that of finding the rational points on elliptic curves. The history of elliptic curves is a long one, and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography [4], [7], [8], for factoring large integers [6] and for primality proving [1], [3]. The mathematical theory of elliptic curves was also crucial in the proof of Fermat's Last Theorem [17].

Let q be a positive integer, \mathbf{F}_{q} be a finite field and let $\overline{\mathbf{F}}_{q}$ denote the algebraic closure of \mathbf{F}_{q} with $\operatorname{char}\left(\overline{\mathbf{F}}_{q}\right) \neq 2,3$. An elliptic curve E over \mathbf{F}_{q} is defined by an equation

$$
E: y^{2}=x^{3}+a x^{2}+b x
$$

where $a, b \in \mathbf{F}_{q}$ and $b^{2}\left(a^{2}-4 b\right) \neq 0$. The discriminant of E is

$$
\Delta=16 b^{2}\left(a^{2}-4 b\right)
$$

If $\Delta=0$, then E is not an elliptic curve is a singular curve. We can view an elliptic curve E as a curve in projective plane \mathbf{P}^{2}, with a homogeneous equation

$$
y^{2} z=x^{3}+a x^{2} z^{2}+b x z^{3}
$$

and one point at infinity, namely $(0,1,0)$. This point ∞ is the point where all vertical lines meet. We denote this point by O. Let
$E\left(\mathbf{F}_{q}\right)=\left\{(x, y) \in \mathbf{F}_{q} \times \mathbf{F}_{q}: y^{2}=x^{3}+a x^{2}+b x\right\} \cup\{O\}$
denote the set of rational points (x, y) on E. Then it is a subgroup of E. The order of $E\left(\mathbf{F}_{q}\right)$, denoted by $N_{q}=\# E\left(\mathbf{F}_{q}\right)$, is defined as the number of the rational points on E and is given by

$$
\# E\left(\mathbf{F}_{q}\right)=q+1+\sum_{x \in \mathbf{F}_{q}}\left(\frac{x^{3}+a x^{2}+b x}{\mathbf{F}_{q}}\right)
$$

where $\left(\frac{\dot{F_{q}}}{}\right)$ denotes the Legendre symbol (for further details on elliptic curves see [10], [11], [16]).

Ahmet Tekcan is with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, email: tekcan@uludag.edu.tr, http://matematik.uludag.edu.tr/AhmetTekcan.htm.

II. The Number of Rational Points on Singular
 Curves $y^{2}=x(x-a)^{2}$ Over \mathbf{F}_{p}.

In [2], [12], [14], we considered some specific elliptic curves (including the number of rational points on them) over finite fields. In this section we will determine the number of rational points on singular curves

$$
\begin{equation*}
E_{a}: y^{2}=x(x-a)^{2} \tag{1}
\end{equation*}
$$

over finite fields \mathbf{F}_{p} for primes $p \geq 5$. Let

$$
E_{a}\left(\mathbf{F}_{p}\right)=\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}: y^{2}=x(x-a)^{2}\right\} \cup O
$$

Before we consider our problem we give some notations which we need them later.

Lemma 2.1: [5] Let p be an odd prime and let $f(x) \in \mathbf{Z}[x]$ be a polynomial of degree ≥ 1. Then the number $N_{p}(f)$ of solutions $(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}$ of the congruence $y^{2} \equiv f(x)(\bmod p)$ is

$$
\begin{equation*}
N_{p}(f)=p+S_{p}(f), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{p}(f)=\sum_{x=0}^{p-1}\left(\frac{f(x)}{p}\right) \tag{3}
\end{equation*}
$$

Also it is showed in [16] that for the polynomial $f(x)=$ $(x-r)^{2}(x-s)$ of degree 3 for some $r, s \in \mathbf{F}_{p}$,

$$
\begin{equation*}
\sum_{x=0}^{p-1}\left(\frac{f(x)}{\mathbf{F}_{p}}\right)=-\left(\frac{r-s}{\mathbf{F}_{p}}\right) . \tag{4}
\end{equation*}
$$

Note that the $f(x)=x(x-a)^{2}$ is a polynomial of degree 3 . So by considering the point 0 , we can rewrite the formula (2) as

$$
\begin{align*}
\# E_{a}\left(\mathbf{F}_{p}\right) & =p+1+\sum_{x=0}^{p-1}\left(\frac{x(x-a)^{2}}{p}\right) \\
& =p+1-\left(\frac{a}{p}\right) \tag{5}
\end{align*}
$$

by (3) and (4). Therefore if $\left(\frac{a}{p}\right)=1$, then $\# E_{a}\left(\mathbf{F}_{p}\right)=p$ and if $\left(\frac{a}{p}\right)=-1$, then $\# E_{a}\left(\mathbf{F}_{p}\right)=p+2$. Therefore the order of E_{a} over \mathbf{F}_{p} is depends on whether a is a quadratic residue or not.

Now we can give the following two theorems which I proved them in [13] and [15], respectively.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:3, No:11, 2009

Theorem 2.1: Let \mathbf{F}_{p} be a finite field. Then $\left(\frac{1}{p}\right)=1$ for every primes $p \geq 5$
$\left(\frac{2}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,7(8) \\ -1 & \text { if } p \equiv 3,5(8)\end{aligned}\right.$
$\left(\frac{3}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,11(12) \\ -1 & \text { if } p \equiv 5,7(12)\end{aligned}\right.$
$\left(\frac{4}{p}\right)=1$ for every primes $p \geq 5$
$\left(\frac{5}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,9(10) \\ -1 & \text { if } p \equiv 3,7(10)\end{aligned}\right.$
$\left(\frac{6}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,5,19,23(24) \\ -1 & \text { if } p \equiv 7,11,13,17(24)\end{aligned}\right.$
$\left(\frac{7}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,3,9,19,25,27(28) \\ -1 & \text { if } p \equiv 5,11,13,15,17,23(28)\end{aligned}\right.$
$\left(\frac{8}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,7,17,23(24) \\ -1 & \text { if } p \equiv 5,11,13,19(24)\end{aligned}\right.$
$\left(\frac{9}{p}\right)=1$ for every primes $p \geq 11$
$\left(\frac{10}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,3,9,13,27,31,37,39(40) \\ -1 & \text { if } p \equiv 7,11,17,19,21,23,29,33,37(40) .\end{aligned}\right.$
Theorem 2.2: Let \mathbf{F}_{p} be a finite field. Then
$\left(\frac{-1}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1(4) \\ -1 & \text { if } p \equiv 3(4)\end{aligned}\right.$
$\left(\frac{-2}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,3(8) \\ -1 & \text { if } p \equiv 5,7(8)\end{aligned}\right.$
$\left(\frac{-3}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,7(12) \\ -1 & \text { if } p \equiv 5,11(12)\end{aligned}\right.$
$\left(\frac{-4}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,5(12) \\ -1 & \text { if } p \equiv 7,11(12)\end{aligned}\right.$
$\left(\frac{-5}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,3,7,9(20) \\ -1 & \text { if } p \equiv 11,13,17,19(20)\end{aligned}\right.$
$(\underline{-6})= \begin{cases}1 & \text { if } p \equiv 1,5,7,11,25,29,31,35(48)\end{cases}$
$\left(\frac{-7}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,9,11,15,23,25(28) \\ -1 & \text { if } p \equiv 3,5,13,17,19,27(28)\end{aligned}\right.$
$\left(\frac{-8}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,11,17,19,25,35,41,43(48) \\ -1 & \text { if } p \equiv 5,7,13,23,29,31,37,47(48)\end{aligned}\right.$
$\left(\frac{-9}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,5,13,17(24) \\ -1 & \text { if } p \equiv 7,11,19,23(24)\end{aligned}\right.$
$\left(\frac{-10}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1,7,9,11,13,19,23,37(40) \\ -1 & \text { if } p \equiv 3,17,21,27,29,31,33,39(40)\end{aligned}\right.$

Now we can consider our main problem.

Theorem 2.3: Let E_{a} be the singular curve defined in (1).

Then

$$
\left.\begin{array}{l}
\# E_{1}\left(\mathbf{F}_{p}\right)=p \text { for every primes } p \geq 5 \\
\# E_{2}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,7(8) \\
p+2 & \text { if } p \equiv 3,5(8)
\end{array}\right. \\
\# E_{3}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,11(12) \\
p+2 & \text { if } p \equiv 5,7(12)
\end{array}\right. \\
\# E_{4}\left(\mathbf{F}_{p}\right)=p \text { for every primes } p \geq 5
\end{array}\right] \begin{array}{ll}
\# E_{5}\left(\mathbf{F}_{p}\right) & =\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,9(10) \\
p+2 & \text { if } p \equiv 3,7(10)
\end{array}\right. \\
\# E_{6}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,5,19,23(24) \\
p+2 & \text { if } p \equiv 7,11,13,17(24)
\end{array}\right. \\
\# E_{7}\left(\mathbf{F}_{p}\right) & =\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,3,9,19,25,27(28) \\
p+2 & \text { if } p \equiv 5,11,13,15,17,23(28
\end{array}\right. \\
\# E_{8}\left(\mathbf{F}_{p}\right) & =\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,7,17,23(24) \\
p+2 & \text { if } p \equiv 5,11,13,19(24)
\end{array}\right. \\
\# E_{9}\left(\mathbf{F}_{p}\right) & =p \text { for every primes } p \geq 11
\end{array}
$$

$$
\# E_{10}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,3,9,13,27,31,37,39(40) \\
p+2 & \text { if } p \equiv 7,11,17,19,21,23,29,33,37(40)
\end{array}\right.
$$

$$
\# E_{-1}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1(4) \\
p+2 & \text { if } p \equiv 3(4)
\end{array}\right.
$$

$$
\# E_{-2}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,3(8) \\
p+2 & \text { if } p \equiv 5,7(8)
\end{array}\right.
$$

$$
\# E_{-3}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,7(12) \\
p+2 & \text { if } p \equiv 5,11(12)
\end{array}\right.
$$

$$
\# E_{-4}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,5(12) \\
p+2 & \text { if } p \equiv 7,11(12)
\end{array}\right.
$$

$$
\# E_{-5}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cc}
p & \text { if } p \equiv 1,3,7,9(20) \\
p+2 & \text { if } p \equiv 11.13 .17 .19
\end{array}\right.
$$

$$
\# E_{-5}\left(\mathbf{F}_{p}\right)= \begin{cases}p+2 & \text { if } p \equiv 11,13,17,19(20)\end{cases}
$$

$$
\# E_{-6}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,5,7,11,25,29,31,35(48) \\
p+2 & \text { if } p \equiv 13,17,19,23,37,41,43,47(48)
\end{array}\right.
$$

$$
\# E_{-7}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,9,11,15,23,25(28) \\
p+2 & \text { if } p \equiv 3,5,13,17,19,27(28)
\end{array}\right.
$$

$$
\# E_{-8}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,11,17,19,25,35,41,43(48) \\
p+2 & \text { if } p \equiv 5,7,13,23,29,31,37,47(48)
\end{array}\right.
$$

$$
\# E_{-9}\left(\mathbf{F}_{p}\right)=\left\{\begin{array}{cl}
p & \text { if } p \equiv 1,5,13,17(24) \\
p+2 & \text { if } p \equiv 7,11,19,23(24)
\end{array}\right.
$$

$$
\text { if } p \equiv 1,7,9,11,13,19,23,37(40)
$$

$$
\text { if } p \equiv 3,17,21,27,29,31,33,39(40) \text {. }
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:3, No:11, 2009

Proof: Applying Theorems 2.1 and 2.2 the result is clear.

Now we consider the sum of $x-$ and y-coordinates of all rational points (x, y) on E_{a} over F_{p}. Let $[x]$ and $[y]$ denote the x-and y-coordinates of the points (x, y) on E_{a}, respectively. Then we have the following the results.

Theorem 2.4: The sum of $[x]$ on E_{a} is

$$
\sum_{[x]} E_{a}\left(\mathbf{F}_{p}\right)= \begin{cases}\frac{p^{3}-p-12 a}{12} & \text { if }\left(\frac{a}{p}\right)=1 \\ \frac{p^{3}-p+12 a}{12} & \text { if }\left(\frac{a}{p}\right)=-1 .\end{cases}
$$

Proof: Let $U_{p}=\{1,2, \cdots, p-1\}$ be the set of units in \mathbf{F}_{p}. Then then taking squares of elements in U_{p}, we would obtain the set of quadratic residues $Q_{p}=\left\{1^{2}, 2^{2}, \cdots,\left(\frac{p-1}{2}\right)^{2}\right\}$. Then the sum of all elements in Q_{p} hence

$$
\sum_{x \in Q_{p}} x=\frac{p^{3}-p}{24} .
$$

Now let $\left(\frac{a}{p}\right)=1$. Then a is a quadratic residue. But for this values of a, there is one rational point $(a, 0)$ on E_{a}. Let $H=Q_{p}-\{a\}$. Then

$$
\begin{aligned}
\sum_{x \in H} x & =\left(\sum_{x \in Q_{p}} x\right)-a \\
& =\frac{p^{3}-p}{24}-a \\
& =\frac{p^{3}-p-24 a}{24}
\end{aligned}
$$

We know that every element x of H makes $x(x-a)^{2}$ is a square. Let $x(x-a)^{2} \equiv t^{2}(\bmod p)$. Then $y^{2} \equiv t^{2}(\bmod p)$. So there are two rational points (x, t) and $(x, p-t)$ on E_{a}. The sum of x-coordinates of these two points is $2 x$, that is, for every $x \in H$, the sum of x-coordinates of (x, t) and $(x, p-t)$ is $2 x$. So the sum of x-coordinates of all points on E_{a} is

$$
2 \sum_{x \in H} x .
$$

Further we said above that the point $(a, 0)$ is also on E_{a}. Consequently

$$
\sum_{[x]} E_{a}\left(\mathbf{F}_{p}\right)=2\left(\sum_{x \in H} x\right)+a=\frac{p^{3}-p-12 a}{12}
$$

Let $\left(\frac{a}{p}\right)=-1$. Then a is not a quadratic residue. But every element x of Q_{p} makes $x(x-a)^{2}$ a square. So there are two rational points on E_{a} and hence the sum of x-coordinates of these two points is $2 x$. Further $(a, 0)$ is also a rational point on E_{a}. Consequently

$$
\sum_{[x]} E_{a}\left(\mathbf{F}_{p}\right)=2\left(\sum_{x \in Q_{p}} x\right)+a=\frac{p^{3}-p+12 a}{12} .
$$

Theorem 2.5: The sum of $[y]$ on E_{a} is

$$
\sum_{[y]} E_{a}\left(\mathbf{F}_{p}\right)= \begin{cases}\frac{p^{2}-3 p}{2} & \text { if }\left(\frac{a}{p}\right)=1 \\ \frac{p^{2}-p}{2} & \text { if }\left(\frac{a}{p}\right)=-1 .\end{cases}
$$

Proof: Let $\left(\frac{a}{p}\right)=1$. Then a is a quadratic residue but again for this value of a, there is one rational point $(a, 0)$ on E_{a}. Also every element x of Q_{p} makes $x(x-a)^{2}$ a square. Let $x(x-a)^{2} \equiv t^{2}(\bmod p)$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p)
$$

So there are two points (x, t) and $(x, p-t)$ on E_{a}. The sum of y-coordinates of these two points is p. We know that there are $\frac{p-1}{2}-1=\frac{p-3}{2}$ points x such that $x(x-a)^{2}$ is a square. So the sum of y-coordinates of all points (x, y) on E_{a} is

$$
p\left(\frac{p-3}{2}\right)=\frac{p^{2}-3 p}{2} .
$$

Now let $\left(\frac{a}{p}\right)=-1$. Then a is not a quadratic residue. But every element x of Q_{p} makes $x(x-a)^{2}$ a square. Let $x(x-$ $a)^{2} \equiv t^{2}(\bmod p)$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p)
$$

So there are two points (x, t) and $(x, p-t)$ on E_{a}. The sum of y-coordinates of these two points is p. We know that there are $\frac{p-1}{2}$ points x in Q_{p} such that $x(x-a)^{2}$ is a square. So the sum of y-coordinates of all points (x, y) on E_{a} is

$$
p\left(\frac{p-1}{2}\right)=\frac{p^{2}-p}{2} .
$$

REFERENCES

[1] A.O.L. Atkin and F. Moralin. Eliptic Curves and Primality Proving. Math. Comp. 61 (1993), 29-68.
[2] B. Gezer, H. Özden, A. Tekcan and O. Bizim. The Number of Rational Points on Elliptic Curves $y^{2}=x^{3}+b^{2}$ over Finite Fields. International Journal of Computational and Mathematics Sciences 1(3)(2007), 178184.
[3] S. Goldwasser and J. Kilian. Almost all Primes can be Quickly Certified. In Proc. 18th STOC, Berkeley, May 28-30, 1986, ACM, New York (1986), 316-329.
[4] N. Koblitz. A Course in Number Theory and Cryptography. SpringerVerlag, 1994.
[5] F. Lemmermeyer. Reciprocity Laws. From Euler to Eisenstein. SpringerVerlag Heidelberg, 2000.
[6] H.W.Jr. Lenstra. Factoring Integers with Elliptic Curves. Annals of Maths. 126(3) (1987), 649-673.
[7] V.S. Miller. Use of Elliptic Curves in Cryptography, in Advances in Cryptology-CRYPTO'85. Lect. Notes in Comp. Sci. 218, SpringerVerlag, Berlin (1986), 417-426.
[8] R.A. Mollin. An Introduction to Cryptography. Chapman\&Hall/CRC, 2001.
[9] L.J. Mordell. On the Rational Solutions of the Indeterminate Eqnarrays of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21(1922), 179-192.
[10] R. Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Theorie des Nombres de Bordeaux 7(1995), 219-254.
[11] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
[12] A. Tekcan. Elliptic Curves $y^{2}=x^{3}-t^{2} x$ over \mathbf{F}_{p}. Int. Jour. of Comp. and Math. Sci. 1(3) (2007), 165-171.
[13] A. Tekcan. The Cubic Congruence $x^{2}+a x^{2}+b x+c \equiv 0(\bmod p)$ and Binary Quadratic Forms $F(x, y)=a x^{2}+b x y+c y^{2}$. Ars Combinatoria 85(2007), 257-269.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:3, No:11, 2009
[14] A. Tekcan. The Elliptic Curves $y^{2}=x(x-1)(x-\lambda)$. Accepted for publication to Ars Combinatoria.
[15] A. Tekcan. The Cubic Congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ and Binary Quadratic Forms $F(x, y)=a x^{2}+b x y+c y^{2} I I$. To appear in Bulletin of Malesian Math. Soc.
[16] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman\&Hall /CRC, Boca London, New York, Washington DC, 2003.
[17] A. Wiles. Modular Elliptic Curves and Fermat's Last Theorem. Annals of Maths. 141(3) (1995), 443-551.

