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The Number of Rational Points on Elliptic Curves
y2 = x3 + a3 on Finite Fields

Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül

Abstract—In this work, we consider the rational points on elliptic
curves over finite fields Fp. We give results concerning the number
of points Np,a on the elliptic curve y2 ≡ x3 + a3(mod p) according
to whether a and x are quadratic residues or non-residues. We use
two lemmas to prove the main results first of which gives the list of
primes for which -1 is a quadratic residue, and the second is a result
from [1]. We get the results in the case where p is a prime congruent
to 5 modulo 6, while when p is a prime congruent to 1 modulo 6,
there seems to be no regularity for Np,a.

Keywords—Elliptic curves over finite fields, rational points,
quadratic residue.

I. INTRODUCTION

Let F be a field of characteristic greater than 3. The study
of rational points on elliptic curves

y2 = x3 + Ax + B (1)

over Fp is very interesting and many mathematicians starting
with Gauss have studied them, see ([9],p.68,[12],p.2). In this
paper, a special class of these curves, called Bachet elliptic
curves, is studied. These are given with the equation

y2 = x3 + a3, (2)

where a is an element in the field. We fix the number a and let
x vary on Qp or Q

′
p, where these denote the sets of quadratic

residues and non-residues, respectively.

In [6], starting with a conjecture from 1952 of Dénes
which is a variant of Fermat-Wiles theorem, Merel illustrates
the way in which Frey elliptic curves have been used by
Taylor, Ribet, Wiles and the others in the proof of Fermat-
Wiles theorem. Serre, in [7], gave a lower bound for the
Galois representations on elliptic curves over the field Q of
rational points. In the case of a Frey curve, the conductor
N of the curve is given by the help of the constants in the
abc conjecture. In [5], Ono recalls a result of Euler, known
as Euler’s concordant forms problem, about the classification
of those pairs of distinct non-zero integers M and N for
which there are integer solutions (x, y, t, z) with xy �= 0 to
x2 + My2 = t2 and x2 + Ny2 = z2. When M = −N , this
becomes the congruent number problem, and when M = 2N ,
by replacing x by x − N in E(2N, N), a special form of
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the Frey elliptic curves is obtained as y2 = x3 − N2x.
Using Tunnell’s conditional solution to the congruent number
problem using elliptic curves and modular forms, Ono studied
the elliptic curve y2 = x3 + (M + N)x2 + MNx denoted
by EQ(M,N) over Q. He classified all the cases and hence
reduced Euler’s problem to a question of ranks. In [3], Parshin
obtaines an inequality to give an effective bound for the
height of rational points on a curve. In [4], the problem of
boundedness of torsion for elliptic curves over quadratic fields
is settled.

If F is a field, then an elliptic curve over F has, after a
change of variables, a form

y2 = x3 + Ax + B

where A and B ∈ F with 4A3 + 27B2 �= 0 in F. Here D =
−16

(
4A3 + 27B2

)
is called the discriminant of the curve.

Elliptic curves are studied over finite and infinite fields. Here
we take F to be a finite prime field Fp with characteristic
p > 3. Then A,B ∈ Fp and the set of points (x, y) ∈ Fp×Fp,
together with a point o at infinity is called the set of Fp−
rational points of E on Fp and is denoted by E (Fp) . Np

denotes the number of rational points on this curve. It must
be finite.

In fact one expects to have at most 2p + 1 points (together
with o)(for every x, there exist a maximum of 2 y

′
s). But

not all elements of Fp have square roots. In fact only half of
the elements of Fp have a square root. Therefore the expected
number is about p + 1.

Here we shall deal with Bachet elliptic curves y2 = x3 +a3

modulo p. Some results on these curves have been given in
[8], and [11].

A historical problem leading to Bachet elliptic curves is that
how one can write an integer as a difference of a square and a
cube. In another words, for a given fixed integer c, search for
the solutions of the Diophantine equation y2 − x3 = c. This
equation is widely called as Bachet or Mordell equation. This
is because L. J. Mordell, in twentieth century, made a lot of
advances regarding this and some other similar equations. The
existance of duplication formula makes this curve interesting.
This formula was found in 1621 by Bachet. When (x, y)
is a solution to this equation where x, y ∈ Q, it is easy
to show that

(
x4−8cx

4y2 , −x6−20cx3+8c2

8y3

)
is also a solution for

the same equation. Furthermore, if (x, y) is a solution such
that xy �= 0 and c �= 1, − 432, then this leads to infinitely
many solutions, which could not proven by Bachet. Hence if an
integer can be stated as the difference of a cube and a square,
this could be done in infinitely many ways. For example if
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we start by a solution (3, 5) to y2 − x3 = −2, by applying
duplication formula, we get a series of rational solutions
(3, 5),

(
129
102 , −383

103

)
,

(
2340922881

76602 , 113259286337292
76603

)
, ....Let

Np,a denote the number of rational points on (2) modulo p.
When p ≡ 1 (mod 6), there is no rule for Np,a. In this paper,
we calculate Np,a when p ≡ 5 (mod 6). First we have

Lemma 1.1: If p ≡ 5 (mod 12), then −1 ∈ Qp, and if
p ≡ 11 (mod 12), then −1 ∈ Q

′
p.

II. CALCULATING Np,a WHEN p ≡ 5(mod 6) IS PRIME.

Theorem 2.1: Let p ≡ 5 (mod 6) be prime and a ∈ Qp be
fixed. Then for x ∈ Qp

Np,a =
p − 3

2
.

Proof: When x ∈ Qp, it is well-known that

Np,a =
∑

x∈Qp

(1 + χ(x3 + a3))

=
∑

x∈Qp

1 +
∑

x∈Qp

χ(x3 + a3)

=
p − 1

2
+

∑
x∈Qp

χ(x3 + a3)

=
p − 1

2
+

∑
x∈Qp

χ(a3x3 + a3),

as the set of a3x3’s is the same as the set of x3’s when p ≡ 2
(mod 3). Hence using the multiplicativity of χ, we have

Np,a =
p − 1

2
+ χ(a3).

∑
x∈Qp

χ(x3 + 1)

=
p − 1

2
+

∑
x∈Qp

χ(x3 + 1)

as χ(a3) = χ(a) = 1 for a ∈ Qp. Then we only need to show
that ∑

x∈Qp

χ(x3 + 1) = −1. (3)

Note that, as x ∈ Qp, x takes p−1
2 values between 1 and p−1.

Therefore we can write (3) as∑p−1

x∈Qp

χ(x3 + 1) = −1.

For x = p − 1, χ((p − 1)3 + 1) = 0. Then (3) becomes
∑p−2

x∈Qp

χ(x3 + 1) = −1.

First, let p ≡ 5 (mod 12). Then as we can think of p as p ≡ 2
(mod 3), all elemets of Fp are cubic residues. Therefore the
set consisting of the values of x3 is the same with the set of
values of x. Therefore the last eqnarray becomes

∑p−2

x∈Qp

χ(x + 1) = −1. (4)

Recall that the number of consecutive pairs of quadratic
residues in Fp is given by the formula

np =
1
4
(p − 4 − (−1)

p−1
2 ),

see ([1], p.128).
There are two cases to consider.
A) Let p ≡ 1 (mod 4). Then by the Chinese reminder

theorem we know that p ≡ 5 (mod 12). Here, −1 ∈ Qp by
lemma 1. Hence

np =
p − 5

4
. (5)

By lemma 1, there are p−1
2 − 1 = p−3

2 values of x between
1 and p − 2 lying in Qp. By (5), p−5

4 of the values of x + 1
are also in Qp. Finally, in (4), there are p−5

4 times +1 and
p−3
2 − p−5

4 = p−1
4 times −1, implying the result.

B) Let p ≡ 3 (mod 4). Then −1 ∈ Q
′
p and by the Chinese

reminder theorem we have p ≡ 11 (mod 12). Similarly to A),
we deduce

np =
p − 3

4
.

By lemma 1, there are p−1
2 − 0 = p−1

2 values of x between
1 and p − 2 lying in Qp, as p − 1 ∈ Q

′
p. For such values

of x, there are p−3
4 values of x + 1 also in Qp. Therefore in

(4), there are p−3
4 times +1 and p−1

2 − p−3
4 = p+1

4 times −1,
implying the result.

We already have shown that the number Np,a is p−3
2 when

a and x belong to Qp. Authors, in [11], showed that, excluding
the point at infinity, the total number of rational points on (2)
is p. Therefore we can easily deduce the following:

Theorem 2.2: Let p ≡ 5 (mod 6) be prime and a ∈ Qp be
fixed. Then for x ∈ Q

′
p

Np,a =
p + 3

2
.

Proof: Immediately follows from Theorem 2 and the
remark above.

This concludes the calculation of Np,a when a ∈ Qp. Now
we consider the other possibility.

Theorem 2.3: Let p ≡ 5 (mod 6) be prime and a ∈ Q
′
p be

fixed. Then for x ∈ Qp

Np,a =
p − 1

2
.

Recall that

Np,a =
p − 1

2
+

∑
x∈Qp

χ(x3 + a3).

We first need
Lemma 2.1: a) Let p ≡ 5 (mod 12) be prime. Then a ∈

Qp ⇐⇒ p − a ∈ Qp.
b) Let p ≡ 11 (mod 12) be prime. Then a ∈ Qp ⇐⇒

p − a ∈ Q
′
p.

Proof: a) Let p ≡ 5 (mod 12) be prime. Then

(
p − a

p
) = (

−a

p
) = (

−1
p

)(
a

p
),

where ( .
p ) denotes the Legendre symbol modulo p. By lemma

1, we have −1 ∈ Qp and hence (−1
p ) = +1. Therefore if

a ∈ Qp, we have (p−a
p ) = +1; i.e. p − a ∈ Qp.

b) Similarly follows.
Lemma 2.2: For x = p − a, χ(x3 + a3) = (x3+a3

p ) = 0.
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Now we have two cases to consider because of the lemma
6.

(i) Let p ≡ 5 (mod 12) be prime. Then |ϕp| = p−1
2 is even.

Then for exactly half of the values of x ∈ Qp, χ(x3 + a3) is
+1 and for the other half, χ(x3 + a3) = −1. Then∑

x∈Qp

χ(x3 + a3) = 0.

(ii) Let p ≡ 11 (mod 12). Then p−1
2 is odd. By lemma 6

only for x = p − a, χ(x3 + a3) = 0, and the rest is divided
into two as in (i) that is there are p−3

4 quadratic and p−3
4

non-quadratic residues together with 0, implying∑
x∈Qp

χ(x3 + a3) = 0.

Connecting (i) and (ii), we get
Let p ≡ 5 (mod 6) be prime. Then∑

x∈Qp

χ(x3 + a3) = 0.

This theorem completes the proof of Theorem 4.
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