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The Number of Rational Points on Conics
Cp,k : x2 − ky2 = 1 over Finite Fields Fp

Ahmet Tekcan

Abstract— Let p be a prime number, Fp be a finite field, and let
k ∈ F∗

p. In this paper, we consider the number of rational points on
conics Cp,k : x2 − ky2 = 1 over Fp. We proved that the order of
Cp,k over Fp is p− 1 if k is a quadratic residue mod p and is p +1
if k is not a quadratic residue mod p. Later we derive some results
concerning the sums

∑
C

[x]
p,k(Fp) and

∑
C

[y]
p,k(Fp), the sum of x−

and y−coordinates of all points (x, y) on Cp,k, respectively.
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I. INTRODUCTION

Mordell began his famous paper [7] with the words Math-
ematicians have been familiar with very few questions for so
long a period with so little accomplished in the way of general
results, as that of finding the rational points on elliptic curves.

The history of elliptic curves is a long one, and exciting
applications for elliptic curves continue to be discovered.
Recently, important and useful applications of elliptic curves
have been found for cryptography [3,5,6], for factoring large
integers [4], and for primality proving [1,2]. The mathematical
theory of elliptic curves was also crucial in the proof of
Fermat’s Last Theorem [11].

Let p be any prime number and let Fp be a finite field.
An elliptic curve E over Fp is defined by an equation in the
Weierstrass form

E : y2 = x3 + ax + b,

where a, b ∈ Fp and 4a3 + 27b2 �= 0. We can view an elliptic
curve E as a curve in projective plane P2, with a homogeneous
equation y2z = x3 + axz2 + bz3, and one point at infinity,
namely (0, 1, 0). This point ∞ is the point where all vertical
lines meet. We denote this point by O. The set of rational
points (x, y) on E

E(Fp) = {(x, y) ∈ Fp × Fp : y2 = x3 + ax + b} ∪ {O}
is a subgroup of E. The order of E(Fp), denoted by #E(Fp),
is defined as the number of the points on E (for the arithmetic
of elliptic curves and rational points on them see [8,9,10]).

A conic C is a quadratic curve of genus 0 defined by

C : x2 − ky2 = 1

for k ∈ F∗
p = Fp − {0}. Similarly the set of rational points

(x, y) on C

C(Fp) = {(x, y) ∈ Fp × Fp : x2 − ky2 = 1}
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is a subgroup of C. The connection between elliptic curves
and conics is that elliptic curves are non-singular cubic curves
with a rational point of genus 1, conics are quadratic curves of
genus 0. We can study plane algebraic curves over the affine
plane and over the projective plane. If we want to give to
elliptic curves a group law, we have to use the projective plane.
Similarly, we can give conics a group law as long as we stick
to the affine plane. In particular, by the Chinese Remainder
Theorem we get

C(Z/NZ) ∼=
∏

i
C(Z/paiZ)

whenever N =
∏

ip
ai , that is, if

Z/NZ ∼=
∏

i
Z/paiZ.

The group structure of C(Fp) is given by

C(Fp) ∼=
{

Z/(p − 1)Z if(k
p ) = 1

Z/(p + 1)Z if(k
p ) = −1,

where ( .
p ) denotes the Legendre symbol.

II. THE NUMBER OF RATIONAL POINTS ON CONICS

Cp,k : x2 − ky2 = 1 OVER Fp.

Let Fp be a finite field, k ∈ F∗
p and let Qp denote the set

of quadratic residues mod p. In this paper, we will determine
the number of rational points on conics

Cp,k : x2 − ky2 = 1

over Fp. Later we derive some results concerning the sums∑
C

[x]
p,k(Fp) and

∑
C

[y]
p,k(Fp),

the sum of x− and y−coordinates of all points (x, y) on Cp,k,
respectively. Then we have the following theorem.

Theorem 2.1: The order of Cp,k : x2 − ky2 = 1 over Fp is

#Cp,k(Fp) =

⎧⎨
⎩

p − 1 if (k
p ) = 1

p + 1 if (k
p ) = −1.

Proof: We consider the proof in two cases according to
p ≡ 1, 3(mod 4).

Case 1: Let p ≡ 1(mod 4). Then we have two cases:
(i) Let (k

p ) = 1. If x = 0, then

ky2 ≡ −1 (mod p) ⇔ y2 ≡ −1
k

(mod p)

⇔ y ≡ ±
√

−1
k

(mod p).
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Then we get (−1
k ) = 1 since (k

p ) = 1. Therefore
√

−1
k ∈ Fp.

So there are two points (0,±
√

−1
k ) on Cp,k. If y = 0, then

x2 ≡ 1 (mod p) ⇔ x ≡ ±1 (mod p).

Therefore there are two points (±1, 0) on Cp,k. So we have
four points on Cp,k.

Let Lp = {2, 3, . . . , p−2} ⊂ Fp. Then there are p−5
2 points

x in Lp such that x2−1
k is a square. Let x2−1

k = t2 for some
t ∈ F∗

p. Then

y2 ≡ t2 (mod p) ⇔ y ≡ ±t (mod p).

If (x, t) is a point on Cp,k, then (x,−t) is also a point on Cp,k.
Therefore, when x2−1

k is a square for x ∈ Lp, then there are
two points (x,±t) on Cp,k. So there are

2
(

p − 5
2

)
= p − 5

points on Cp,k for x ∈ Lp. We know that there are four points

(0,±
√

−1
k ) and (±1, 0) on Cp,k. Hence there are total p −

5 + 4 = p − 1 rational points on Cp,k.
(ii) Let (k

p ) = −1. If x = 0, then

ky2 ≡ −1 (mod p) ⇔ y2 ≡ −1
k

(mod p)

⇔ y ≡ ±
√

−1
k

(mod p).

Then we get (−1
k ) = −1. Therefore

√
−1
k /∈ Fp. So there are

no points on Cp,k. If y = 0, then

x2 ≡ 1 (mod p) ⇔ x ≡ ±1 (mod p).

Therefore there are two points (±1, 0) on Cp,k. So we have
two points on Cp,k. It is easily seen that there are p−1

2 points
x in Lp such that x2−1

k is a square. Let x2−1
k = t2 for some

t ∈ F∗
p. Then

y2 ≡ t2 (mod p) ⇔ y ≡ ±t (mod p).

If (x, t) is a point on Cp,k, then so is (x,−t). Therefore, when
x2−1

k is a square for x ∈ Lp, then there are two points (x,±t)
on Cp,k. So there are

2
(

p − 1
2

)
= p − 1

points on Cp,k. We know that there are two points (±1, 0) on
Cp,k. Hence there are total p − 1 + 2 = p + 1 rational points
on Cp,k.

Case 2: Let p ≡ 3(mod 4). Then we have two cases:
(i) Let (k

p ) = 1. If x = 0, then

ky2 ≡ −1 (mod p) ⇔ y2 ≡ −1
k

(mod p)

⇔ y ≡ ±
√

−1
k

(mod p).

Then we get (−1
k ) = −1 since −1 is not a quadratic residue

mod p. Therefore
√

−1
k /∈ Fq . So there are no points on Cp,k.

If y = 0, then

x2 ≡ 1 (mod p) ⇔ x ≡ ±1 (mod p).

Therefore there are two points (±1, 0) on Cp,k. Note that there
are p−3

2 points x in Lp such that x2−1
k is a square. Let x2−1

k =
t2 for some t ∈ F∗

p. Then

y2 ≡ t2 (mod p) ⇔ y ≡ ±t (mod p).

If (x, t) is a point on Cp,k, then so is (x,−t). Therefore, when
x2−1

k is a square for x ∈ Lp, then there are two points (x,±t)
on Cp,k. So there are

2
(

p − 3
2

)
= p − 3

points on Cp,k for x ∈ Lp. We know that there are two points
(±1, 0) on Cp,k. Hence there are total p − 3 + 2 = p − 1
rational points on Cp,k.

(ii) Let (k
q ) = −1. If x = 0, then

ky2 ≡ −1 (mod p) ⇔ y2 ≡ −1
k

(mod p)

⇔ y ≡ ±
√

−1
k

(mod p).

Then we get (−1
k ) = 1 since k is not a quadratic residue mod

p. Therefore
√

−1
k ∈ Fq . So there are two points (0,±

√
−1
k )

on Cp,k. If y = 0, then

x2 ≡ 1 (mod p) ⇔ x ≡ ±1 (mod p).

Therefore there are two points (±1, 0) on Cp,k. Similarly it
can be shown that there are p−3

2 points x in Lp such that x2−1
k

is a square. Let x2−1
k = t2 for some t ∈ F∗

p. Then

y2 ≡ t2 (mod p) ⇔ y ≡ ±t (mod p).

If (x, t) is a point on Cp,k, then so is (x,−t). Therefore, when
x2−1

k is a square for x ∈ Lp, then there are two points (x,±t)
on Cp,k. So there are

2
(

p − 3
2

)
= p − 3

points on Cp,k for x ∈ Lp. We know that there are four points

(0,±
√

−1
k ) and (±1, 0) on Cp,k. Hence there are total p −

3 + 4 = p + 1 rational points on Cp,k.
Example 2.1: Let p = 7. Then Q7 = {1, 2, 4}. The rational

points on conics C7,k : x2 − ky2 = 1 over F7 are

C7,1(F7) =
{

(1, 0), (3, 1), (3, 6), (4, 1),
(4, 6), (6, 0)

}

C7,2(F7) =
{

(1, 0), (3, 2), (3, 5), (4, 2),
(4, 5), (6, 0)

}

C7,3(F7) =
{

(0, 3), (0, 4), (1, 0), (2, 1),
(2, 6), (5, 1), (5, 6), (6, 0)

}

C7,4(F7) =
{

(1, 0), (3, 3), (3, 4), (4, 3),
(4, 4), (6, 0)

}

C7,5(F7) =
{

(0, 2), (0, 5), (1, 0), (2, 3),
(2, 4), (5, 3), (5, 4), (6, 0)

}

C7,6(F7) =
{

(0, 1), (0, 6), (1, 0), (2, 2),
(2, 5), (5, 2), (5, 5), (6, 0)

}
.
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Example 2.2: Let p = 13. Then Q13 = {1, 3, 4, 9, 10, 12}.
The rational points on conics C13,k : x2 − ky2 = 1 over F13

are

C13,1(F13) =

⎧⎨
⎩

(0, 5), (0, 8), (1, 0), (2, 4),
(2, 9), (6, 3), (6, 10), (7, 3),

(7, 10), (11, 4), (11, 9), (12, 0)

⎫⎬
⎭

C13,2(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0), (3, 2), (3, 11), (4, 1),
(4, 12), (5, 5), (5, 8), (8, 5),
(8, 8), (9, 1), (9, 12), (10, 2),

(10, 11), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,3(F13) =

⎧⎨
⎩

(0, 2), (0, 11), (1, 0), (2, 1),
(2, 12), (6, 4), (6, 9), (7, 4),

(7, 9), (11, 1), (11, 12), (12, 0)

⎫⎬
⎭

C13,4(F13) =

⎧⎨
⎩

(0, 4), (0, 9), (1, 0), (2, 2),
(2, 11), (6, 5), (6, 8), (7, 5),

(7, 8), (11, 2), (11, 11), (12, 0)

⎫⎬
⎭

C13,5(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0), (3, 5), (3, 8), (4, 4),
(4, 9), (5, 6), (5, 7), (8, 6),
(8, 7), (9, 4), (9, 9), (10, 5),

(10, 8), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,6(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0), (3, 6), (3, 7), (4, 3),
(4, 10), (5, 2), (5, 11), (8, 2),

(8, 11), (9, 3), (9, 10),
(10, 6), (10, 7), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,7(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0), (3, 4), (3, 9), (4, 2),
(4, 11), (5, 3), (5, 10), (8, 3),

(8, 10), (9, 2), (9, 11),
(10, 4), (10, 9), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,8(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0), (3, 1), (3, 12), (4, 6),
(4, 7), (5, 4), (5, 9), (8, 4),
(8, 9), (9, 6), (9, 7), (10, 1),

(10, 12), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,9(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 6), (0, 7), (1, 0), (2, 3),
(2, 10), (6, 1), (6, 12), (7, 1),

(7, 12), (11, 3), (11, 10),
(12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,10(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 3), (0, 10), (1, 0), (2, 5),
(2, 8), (6, 6), (6, 7),
(7, 6), (7, 7), (11, 5),

(11, 8), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,11(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0), (3, 3), (3, 10), (4, 5),
(4, 8), (5, 1), (5, 12), (8, 1),

(8, 12), (9, 5), (9, 8),
(10, 3), (10, 10), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

C13,12(F13) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 1), (0, 12), (1, 0), (2, 6),
(2, 7), (6, 2), (6, 11),
(7, 2), (7, 11), (11, 6),

(11, 7), (12, 0)

⎫⎪⎪⎬
⎪⎪⎭

.

Let [x] and [y] denote the x− and y− coordinates of (x, y)
on Cp,k, respectively, and let

∑
C

[x]
p,k(Fp) and

∑
C

[y]
p,k(Fp)

denote the sum of x−and y−coordinates of all rational points
(x, y) on Cp,k, respectively. Then we have the following two
results.

Theorem 2.2: The sum of [x] on Cp,k is

∑
C

[x]
p,k(Fp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2−3p
2 if

{
p ≡ 1 (mod 4)
and (k

p ) = 1

p2+p
2 if

{
p ≡ 1 (mod 4)
and (k

p ) = −1

p2−p
2 ifp ≡ 3 (mod 4).

Proof: Let p ≡ 1 (mod 4) and let (k
p ) = 1. We proved

in Theorem 2.1 that there are p−5
2 points x in Lp such that

x2−1
k is a square. If x is a point such that x2−1

k is a square,
then −x = p − x is also a point such that x2−1

k is a square.
Therefore, the total of x−coordinates of these points is p.
There are p−5

2 points in Lp such that x2−1
k is a square. So the

sum of x−coordinates of all points (x, y) on Cp,k is p(p−5
2 ) =

p2−5p
2 . When y = 0, we have two points (1, 0) and (p− 1, 0)

on Cp,k, and the sum of x−coordinates of these two points
is p. Hence the sum of x−coordinates of all points (x, y) on
Cp,k is

p2 − 5p

2
+ p =

p2 − 3p

2
.

Let p ≡ 1 (mod 4) and (k
p ) = −1. Then there are p−1

2

points x such that x2−1
k is a square. If x is a point such that

x2−1
k is a square, then −x = p − x is also a point such that

x2−1
k is a square. Therefore, the total of x−coordinates of

these points is p. There are p−1
2 points in Lp such that x2−1

k
is a square. So the sum of x−coordinates of all points (x, y)
on Cp,k is p(p−1

2 ) = p2−p
2 . When y = 0, we have two points

(1, 0) and (p − 1, 0) on Cp,k, and the sum of x−coordinates
of these two points is p. Hence the sum of x−coordinates of
all points (x, y) on Cp,k is

p2 − p

2
+ p =

p2 + p

2
.

Let p ≡ 3 (mod 4) and (k
p ) = 1. Then there are p−3

2 points

x in Lp such that x2−1
k is a square. If x is a point such that

x2−1
k is a square, then −x = p − x is also a point such that

x2−1
k is a square. Therefore, the total of x−coordinates of

these points is p. There are p−3
2 points in Lp such that x2−1

k
is a square. So the sum of x−coordinates of all points (x, y)
on Cp,k is p(p−3

2 ) = p2−3p
2 . When y = 0, we have two points

(1, 0) and (p − 1, 0) on Cp,k, and the sum of x−coordinates
of these two points is p. Hence the sum of x−coordinates of
all points (x, y) on Cp,k is

p2 − 3p

2
+ p =

p2 − p

2
.

Let p ≡ 3 (mod 4) and (k
p ) = −1. Then there are p−3

2 points

x such that x2−1
k is a square. If x is a point such that x2−1

k is
a square, then −x = p− x is also a point such that x2−1

k is a
square. Therefore, the total of x−coordinates of these points
is p. So the sum of x−coordinates of all points (x, y) on Cp,k

is p(p−3
2 ) = p2−3p

2 . When y = 0, we have two points (1, 0)
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and (p−1, 0) on Cp,k, and the sum of x−coordinates of them
is p. Hence the sum of [x] of all (x, y)on Cp,k is

p2 − 3p

2
+ p =

p2 − p

2
as we claimed.

Theorem 2.3: The sum of [y] on Cp,k is

∑
C

[y]
p,k(Fp) =

⎧⎪⎨
⎪⎩

p2−3p
2 if(k

p ) = 1

p2−p
2 if(k

p ) = −1.

Proof: Let p ≡ 1 (mod 4) and (k
p ) = 1. Then there are

p−5
2 points x in Lp such that x2−1

k is a square. Let x2−1
k = t2

for some t ∈ F∗
p. Then

y2 ≡ t2 (mod p) ⇔ y2 ≡ ±t (mod p).

Therefore, when x2−1
k is a square, we have two points (x, t)

and (x, p − t). Therefore, the total of y−coordinates of these
points is p. There are p−5

2 points in Lp such that x2−1
k is a

square. So the sum of y−coordinates of all points (x, y) on
Cp,k is p(p−5

2 ) = p2−5p
2 . When x = 0, we have two points

(0,±
√

−1
k ) on Cp,k, and the sum of y−coordinates of these

two points is p. So the sum of y−coordinates of all points
(x, y) on Cp,k is

p2 − 5p

2
+ p =

p2 − 3p

2
.

Let p ≡ 1 (mod 4) and (k
p ) = −1. Then there are p−1

2

points x in Lp such that x2−1
k is a square. Let x2−1

k = t2 for
some t ∈ F∗

p. Then

y2 ≡ t2 (mod q) ⇔ y2 ≡ ±t (mod p).

Therefore, when x2−1
k is a square, we have two points (x, t)

and (x, p − t). Therefore, the total of y−coordinates of these
points is p. There are p−1

2 points in Lp such that x2−1
k is a

square. So the sum of y−coordinates of all points (x, y) on
Cp,k is p(p−1

2 ) = p2−p
2 . When x = 0, we have no points on

Cp,k. So the sum of y−coordinates of all points (x, y) on Cp,k

is
p2 − p

2
.

Let p ≡ 3 (mod 4) and (k
p ) = 1. Then there are p−3

2 points

x in Lp such that x2−1
k is a square. Let x2−1

k = t2 for some
t ∈ F∗

p. Then

y2 ≡ t2 (mod q) ⇔ y2 ≡ ±t (mod p).

Therefore, when x2−1
k is a square, we have two points (x, t)

and (x, p − t). Therefore, the total of y−coordinates of these
points is p. There are p−3

2 points in Lp such that x2−1
k is a

square. So the sum of y−coordinates of all points (x, y) on
Cp,k is p(p−3

2 ) = p2−3p
2 . When x = 0, we have no points

on Cp,k. So the sum of y−coordinates of all points (x, y) on
Cp,k is

p2 − 3p

2
.

Let p ≡ 3 (mod 4) and (k
p ) = −1. Then there are p−3

2

points x in Lp such that x2−1
k is a square. Let x2−1

k = t2 for
some t ∈ F∗

p. Then

y2 ≡ t2 (mod q) ⇔ y2 ≡ ±t (mod p).

Therefore, when x2−1
k is a square, we have two points (x, t)

and (x, p − t). Therefore, the total of y−coordinates of these
points is p. There are p−3

2 points in Lp such that x2−1
k is a

square. So the sum of y−coordinates of all points (x, y) on
Cp,k is p(p−3

2 ) = p2−3p
2 . When x = 0, we have two points

(0,±
√

−1
k ) on Cp,k, and the sum of y−coordinates of these

two points is p. So the sum of y−coordinates of all points
(x, y) on Cp,k is

p2 − 3p

2
+ p =

p2 − p

2
as we predicted.

Theorem 2.4: Let Cp,k denote the set of the family of all
conics Cp,k over Fp. Then∑

#Cp,k(Fp) = p2 − p.
Proof: We know from Theorem 2.1 that the order of

Cp,k over Fp is p−1 if (k
p ) = 1 and is p+1 if (k

p ) = −1. On
the other hand there are p − 1 conics Cp,k since k ∈ F∗

p, and
half of them of order p − 1 and half of them of order p + 1
since the order of Qp is p−1

2 . Therefore the total number of
rational points on all conics in Cp,k is(

p − 1
2

)
(p + 1) +

(
p − 1

2

)
(p − 1) = p2 − p.
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