The Number of Rational Points on Conics $C_{p, k}: x^{2}-k y^{2}=1$ over Finite Fields \mathbf{F}_{p}

Ahmet Tekcan

Abstract

Let p be a prime number, \mathbf{F}_{p} be a finite field, and let $k \in \mathbf{F}_{p}^{*}$. In this paper, we consider the number of rational points on conics $C_{p, k}: x^{2}-k y^{2}=1$ over \mathbf{F}_{p}. We proved that the order of $C_{p, k}$ over \mathbf{F}_{p} is $p-1$ if k is a quadratic residue $\bmod p$ and is $p+1$ if k is not a quadratic residue $\bmod p$. Later we derive some results concerning the sums $\sum C_{p, k}^{[x]}\left(\mathbf{F}_{p}\right)$ and $\sum C_{p, k}^{[y]}\left(\mathbf{F}_{p}\right)$, the sum of $x-$ and y-coordinates of all points (x, y) on $C_{p, k}$, respectively.

Keywords-elliptic curve, conic, rational points.

I. Introduction

Mordell began his famous paper [7] with the words Mathematicians have been familiar with very few questions for so long a period with so little accomplished in the way of general results, as that of finding the rational points on elliptic curves.

The history of elliptic curves is a long one, and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography [3,5,6], for factoring large integers [4], and for primality proving [1,2]. The mathematical theory of elliptic curves was also crucial in the proof of Fermat's Last Theorem [11].

Let p be any prime number and let \mathbf{F}_{p} be a finite field. An elliptic curve E over \mathbf{F}_{p} is defined by an equation in the Weierstrass form

$$
E: y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbf{F}_{p}$ and $4 a^{3}+27 b^{2} \neq 0$. We can view an elliptic curve E as a curve in projective plane \mathbf{P}^{2}, with a homogeneous equation $y^{2} z=x^{3}+a x z^{2}+b z^{3}$, and one point at infinity, namely $(0,1,0)$. This point ∞ is the point where all vertical lines meet. We denote this point by O. The set of rational points (x, y) on E

$$
E\left(\mathbf{F}_{p}\right)=\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}: y^{2}=x^{3}+a x+b\right\} \cup\{O\}
$$

is a subgroup of E. The order of $E\left(\mathbf{F}_{p}\right)$, denoted by $\# E\left(\mathbf{F}_{p}\right)$, is defined as the number of the points on E (for the arithmetic of elliptic curves and rational points on them see $[8,9,10]$).

A conic C is a quadratic curve of genus 0 defined by

$$
C: x^{2}-k y^{2}=1
$$

for $k \in \mathbf{F}_{p}^{*}=\mathbf{F}_{p}-\{0\}$. Similarly the set of rational points (x, y) on $\stackrel{p}{C}$

$$
C\left(\mathbf{F}_{p}\right)=\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}: x^{2}-k y^{2}=1\right\}
$$

[^0]is a subgroup of C. The connection between elliptic curves and conics is that elliptic curves are non-singular cubic curves with a rational point of genus 1 , conics are quadratic curves of genus 0 . We can study plane algebraic curves over the affine plane and over the projective plane. If we want to give to elliptic curves a group law, we have to use the projective plane. Similarly, we can give conics a group law as long as we stick to the affine plane. In particular, by the Chinese Remainder Theorem we get
$$
C(\mathbf{Z} / N \mathbf{Z}) \cong \prod_{i} C\left(\mathbf{Z} / p^{a_{i}} \mathbf{Z}\right)
$$
whenever $N=\prod_{i} p^{a_{i}}$, that is, if
$$
\mathbf{Z} / N \mathbf{Z} \cong \prod_{i} \mathbf{Z} / p^{a_{i}} \mathbf{Z}
$$

The group structure of $C\left(\mathbf{F}_{p}\right)$ is given by

$$
C\left(\mathbf{F}_{p}\right) \cong \begin{cases}\mathbf{Z} /(p-1) \mathbf{Z} & \text { if }\left(\frac{k}{p}\right)=1 \\ \mathbf{Z} /(p+1) \mathbf{Z} & \text { if }\left(\frac{k}{p}\right)=-1\end{cases}
$$

where $(\dot{\bar{p}})$ denotes the Legendre symbol.

II. The Number Of Rational Points on Conics $C_{p, k}: x^{2}-k y^{2}=1$ OVER \mathbf{F}_{p}.

Let \mathbf{F}_{p} be a finite field, $k \in \mathbf{F}_{p}^{*}$ and let Q_{p} denote the set of quadratic residues $\bmod p$. In this paper, we will determine the number of rational points on conics

$$
C_{p, k}: x^{2}-k y^{2}=1
$$

over \mathbf{F}_{p}. Later we derive some results concerning the sums

$$
\sum C_{p, k}^{[x]}\left(\mathbf{F}_{p}\right) \text { and } \sum C_{p, k}^{[y]}\left(\mathbf{F}_{p}\right)
$$

the sum of x - and y-coordinates of all points (x, y) on $C_{p, k}$, respectively. Then we have the following theorem.

Theorem 2.1: The order of $C_{p, k}: x^{2}-k y^{2}=1$ over \mathbf{F}_{p} is

$$
\# C_{p, k}\left(\mathbf{F}_{p}\right)= \begin{cases}p-1 & \text { if }\left(\frac{k}{p}\right)=1 \\ p+1 & \text { if }\left(\frac{k}{p}\right)=-1\end{cases}
$$

Proof: We consider the proof in two cases according to $p \equiv 1,3(\bmod 4)$.

Case 1: Let $p \equiv 1(\bmod 4)$. Then we have two cases:
(i) Let $\left(\frac{k}{p}\right)=1$. If $x=0$, then

$$
\begin{aligned}
k y^{2} \equiv-1(\bmod p) & \Leftrightarrow y^{2} \equiv \frac{-1}{k}(\bmod p) \\
& \Leftrightarrow y \equiv \pm \sqrt{\frac{-1}{k}}(\bmod p)
\end{aligned}
$$

Then we get $\left(\frac{-1}{k}\right)=1$ since $\left(\frac{k}{p}\right)=1$. Therefore $\sqrt{\frac{-1}{k}} \in \mathbf{F}_{p}$. So there are two points $\left(0, \pm \sqrt{\frac{-1}{k}}\right)$ on $C_{p, k}$. If $y=0$, then

$$
x^{2} \equiv 1(\bmod p) \Leftrightarrow x \equiv \pm 1(\bmod p)
$$

Therefore there are two points $(\pm 1,0)$ on $C_{p, k}$. So we have four points on $C_{p, k}$.

Let $L_{p}=\{2,3, \ldots, p-2\} \subset \mathbf{F}_{p}$. Then there are $\frac{p-5}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p)
$$

If (x, t) is a point on $C_{p, k}$, then $(x,-t)$ is also a point on $C_{p, k}$. Therefore, when $\frac{x^{2}-1}{k}$ is a square for $x \in L_{p}$, then there are two points $(x, \pm t)$ on $C_{p, k}$. So there are

$$
2\left(\frac{p-5}{2}\right)=p-5
$$

points on $C_{p, k}$ for $x \in L_{p}$. We know that there are four points $\left(0, \pm \sqrt{\frac{-1}{k}}\right)$ and $(\pm 1,0)$ on $C_{p, k}$. Hence there are total $p-$ $5+4=p-1$ rational points on $C_{p, k}$.
(ii) Let $\left(\frac{k}{p}\right)=-1$. If $x=0$, then

$$
\begin{aligned}
k y^{2} \equiv-1(\bmod p) & \Leftrightarrow y^{2} \equiv \frac{-1}{k}(\bmod p) \\
& \Leftrightarrow y \equiv \pm \sqrt{\frac{-1}{k}}(\bmod p)
\end{aligned}
$$

Then we get $\left(\frac{-1}{k}\right)=-1$. Therefore $\sqrt{\frac{-1}{k}} \notin \mathbf{F}_{p}$. So there are no points on $C_{p, k}$. If $y=0$, then

$$
x^{2} \equiv 1(\bmod p) \Leftrightarrow x \equiv \pm 1(\bmod p)
$$

Therefore there are two points $(\pm 1,0)$ on $C_{p, k}$. So we have two points on $C_{p, k}$. It is easily seen that there are $\frac{p-1}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p)
$$

If (x, t) is a point on $C_{p, k}$, then so is $(x,-t)$. Therefore, when $\frac{x^{2}-1}{k}$ is a square for $x \in L_{p}$, then there are two points $(x, \pm t)$ on $C_{p, k}$. So there are

$$
2\left(\frac{p-1}{2}\right)=p-1
$$

points on $C_{p, k}$. We know that there are two points $(\pm 1,0)$ on $C_{p, k}$. Hence there are total $p-1+2=p+1$ rational points on $C_{p, k}$.

Case 2: Let $p \equiv 3(\bmod 4)$. Then we have two cases:
(i) Let $\left(\frac{k}{p}\right)=1$. If $x=0$, then

$$
\begin{aligned}
k y^{2} \equiv-1(\bmod p) & \Leftrightarrow y^{2} \equiv \frac{-1}{k}(\bmod p) \\
& \Leftrightarrow y \equiv \pm \sqrt{\frac{-1}{k}}(\bmod p)
\end{aligned}
$$

Then we get $\left(\frac{-1}{k}\right)=-1$ since -1 is not a quadratic residue $\bmod p$. Therefore $\sqrt{\frac{-1}{k}} \notin \mathbf{F}_{q}$. So there are no points on $C_{p, k}$. If $y=0$, then

$$
x^{2} \equiv 1(\bmod p) \Leftrightarrow x \equiv \pm 1(\bmod p)
$$

Therefore there are two points $(\pm 1,0)$ on $C_{p, k}$. Note that there are $\frac{p-3}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=$ t^{2} for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p)
$$

If (x, t) is a point on $C_{p, k}$, then so is $(x,-t)$. Therefore, when $\frac{x^{2}-1}{k}$ is a square for $x \in L_{p}$, then there are two points $(x, \pm t)$ on $C_{p, k}$. So there are

$$
2\left(\frac{p-3}{2}\right)=p-3
$$

points on $C_{p, k}$ for $x \in L_{p}$. We know that there are two points $(\pm 1,0)$ on $C_{p, k}$. Hence there are total $p-3+2=p-1$ rational points on $C_{p, k}$.
(ii) Let $\left(\frac{k}{q}\right)=-1$. If $x=0$, then

$$
\begin{aligned}
k y^{2} \equiv-1(\bmod p) & \Leftrightarrow y^{2} \equiv \frac{-1}{k}(\bmod p) \\
& \Leftrightarrow y \equiv \pm \sqrt{\frac{-1}{k}}(\bmod p)
\end{aligned}
$$

Then we get $\left(\frac{-1}{k}\right)=1$ since k is not a quadratic residue \bmod p. Therefore $\sqrt{\frac{-1}{k}} \in \mathbf{F}_{q}$. So there are two points $\left(0, \pm \sqrt{\frac{-1}{k}}\right)$ on $C_{p, k}$. If $y=0$, then

$$
x^{2} \equiv 1(\bmod p) \Leftrightarrow x \equiv \pm 1(\bmod p)
$$

Therefore there are two points $(\pm 1,0)$ on $C_{p, k}$. Similarly it can be shown that there are $\frac{p-3}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p)
$$

If (x, t) is a point on $C_{p, k}$, then so is $(x,-t)$. Therefore, when $\frac{x^{2}-1}{k}$ is a square for $x \in L_{p}$, then there are two points $(x, \pm t)$ on $C_{p, k}$. So there are

$$
2\left(\frac{p-3}{2}\right)=p-3
$$

points on $C_{p, k}$ for $x \in L_{p}$. We know that there are four points $\left(0, \pm \sqrt{\frac{-1}{k}}\right)$ and $(\pm 1,0)$ on $C_{p, k}$. Hence there are total $p-$ $3+4=p+1$ rational points on $C_{p, k}$.

Example 2.1: Let $p=7$. Then $Q_{7}=\{1,2,4\}$. The rational points on conics $C_{7, k}: x^{2}-k y^{2}=1$ over \mathbf{F}_{7} are

$$
\begin{aligned}
& C_{7,1}\left(\mathbf{F}_{7}\right)=\left\{\begin{array}{c}
(1,0),(3,1),(3,6),(4,1), \\
(4,6),(6,0)
\end{array}\right\} \\
& C_{7,2}\left(\mathbf{F}_{7}\right)=\left\{\begin{array}{c}
(1,0),(3,2),(3,5),(4,2), \\
(4,5),(6,0)
\end{array}\right\} \\
& C_{7,3}\left(\mathbf{F}_{7}\right)=\left\{\begin{array}{c}
(0,3),(0,4),(1,0),(2,1), \\
(2,6),(5,1),(5,6),(6,0)
\end{array}\right\} \\
& C_{7,4}\left(\mathbf{F}_{7}\right)=\left\{\begin{array}{c}
(1,0),(3,3),(3,4),(4,3), \\
(4,4),(6,0)
\end{array}\right\} \\
& C_{7,5}\left(\mathbf{F}_{7}\right)=\left\{\begin{array}{c}
(0,2),(0,5),(1,0),(2,3), \\
(2,4),(5,3),(5,4),(6,0)
\end{array}\right\} \\
& C_{7,6}\left(\mathbf{F}_{7}\right)=\left\{\begin{array}{c}
(0,1),(0,6),(1,0),(2,2), \\
(2,5),(5,2),(5,5),(6,0)
\end{array}\right\} .
\end{aligned}
$$

Example 2.2: Let $p=13$. Then $Q_{13}=\{1,3,4,9,10,12\}$. The rational points on conics $C_{13, k}: x^{2}-k y^{2}=1$ over \mathbf{F}_{13} are

$$
\begin{aligned}
& C_{13,1}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(0,5),(0,8),(1,0),(2,4), \\
(2,9),(6,3),(6,10),(7,3), \\
(7,10),(11,4),(11,9),(12,0)
\end{array}\right\} \\
& C_{13,2}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(1,0),(3,2),(3,11),(4,1), \\
(4,12),(5,5),(5,8),(8,5), \\
(8,8),(9,1),(9,12),(10,2), \\
(10,11),(12,0)
\end{array}\right\} \\
& C_{13,3}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(0,2),(0,11),(1,0),(2,1), \\
(2,12),(6,4),(6,9),(7,4), \\
(7,9),(11,1),(11,12),(12,0)
\end{array}\right\} \\
& C_{13,4}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(0,4),(0,9),(1,0),(2,2), \\
(2,11),(6,5),(6,8),(7,5), \\
(7,8),(11,2),(11,11),(12,0)
\end{array}\right\} \\
& C_{13,5}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(1,0),(3,5),(3,8),(4,4), \\
(4,9),(5,6),(5,7),(8,6), \\
(8,7),(9,4),(9,9),(10,5), \\
(10,8),(12,0)
\end{array}\right\} \\
& C_{13,6}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(1,0),(3,6),(3,7),(4,3), \\
(4,10),(5,2),(5,11),(8,2), \\
(8,11),(9,3),(9,10), \\
(10,6),(10,7),(12,0)
\end{array}\right\} \\
& C_{13,7}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(1,0),(3,4),(3,9),(4,2), \\
(4,11),(5,3),(5,10),(8,3), \\
(8,10),(9,2),(9,11), \\
(10,4),(10,9),(12,0)
\end{array}\right\} \\
& C_{13,8}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(1,0),(3,1),(3,12),(4,6), \\
(4,7),(5,4),(5,9),(8,4), \\
(8,9),(9,6),(9,7),(10,1), \\
(10,12),(12,0)
\end{array}\right\} \\
& C_{13,9}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(0,6),(0,7),(1,0),(2,3), \\
(2,10),(6,1),(6,12),(7,1), \\
(7,12),(11,3),(11,10), \\
(12,0)
\end{array}\right\} \\
& C_{13,10}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(0,3),(0,10),(1,0),(2,5), \\
(2,8),(6,6),(6,7), \\
(7,6),(7,7),(11,5), \\
(11,8),(12,0)
\end{array}\right\} \\
& C_{13,11}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(1,0),(3,3),(3,10),(4,5), \\
(4,8),(5,1),(5,12),(8,1), \\
(8,12),(9,5),(9,8), \\
(10,3),(10,10),(12,0)
\end{array}\right\} \\
& C_{13,12}\left(\mathbf{F}_{13}\right)=\left\{\begin{array}{c}
(0,1),(0,12),(1,0),(2,6), \\
(2,7),(6,2),(6,11), \\
(7,2),(7,11),(11,6), \\
(11,7),(12,0)
\end{array}\right\} .
\end{aligned}
$$

Let $[x]$ and $[y]$ denote the x - and y - coordinates of (x, y) on $C_{p, k}$, respectively, and let $\sum C_{p, k}^{[x]}\left(\mathbf{F}_{p}\right)$ and $\sum C_{p, k}^{[y]}\left(\mathbf{F}_{p}\right)$ denote the sum of x-and y-coordinates of all rational points (x, y) on $C_{p, k}$, respectively. Then we have the following two results.

Theorem 2.2: The sum of $[x]$ on $C_{p, k}$ is

$$
\sum C_{p, k}^{[x]}\left(\mathbf{F}_{p}\right)= \begin{cases}\frac{p^{2}-3 p}{2} & \text { if }\left\{\begin{array}{l}
p \equiv 1(\bmod 4) \\
\operatorname{and}\left(\frac{k}{p}\right)=1
\end{array}\right. \\
\frac{p^{2}+p}{2} & \text { if }\left\{\begin{array}{l}
p \equiv 1(\bmod 4) \\
\operatorname{and}\left(\frac{k}{p}\right)=-1
\end{array}\right. \\
\frac{p^{2}-p}{2} & \text { ifp } \equiv 3(\bmod 4) .\end{cases}
$$

Proof: Let $p \equiv 1(\bmod 4)$ and let $\left(\frac{k}{p}\right)=1$. We proved in Theorem 2.1 that there are $\frac{p-5}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. If x is a point such that $\frac{x^{2}-1}{k}$ is a square, then $-x=p-x$ is also a point such that $\frac{x^{2}-1}{k}$ is a square. Therefore, the total of x-coordinates of these points is p. There are $\frac{p-5}{2}$ points in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. So the sum of x-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-5}{2}\right)=$ $\frac{p^{2}-5 p}{2}$. When $y=0$, we have two points $(1,0)$ and $(p-1,0)$ on $C_{p, k}$, and the sum of x-coordinates of these two points is p. Hence the sum of x-coordinates of all points (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-5 p}{2}+p=\frac{p^{2}-3 p}{2}
$$

Let $p \equiv 1(\bmod 4)$ and $\left(\frac{k}{p}\right)=-1$. Then there are $\frac{p-1}{2}$ points x such that $\frac{x^{2}-1}{k}$ is a square. If x is a point such that $\frac{x^{2}-1}{x^{k}-1}$ is a square, then $-x=p-x$ is also a point such that $\frac{x^{2}-1}{k}$ is a square. Therefore, the total of x-coordinates of these points is p. There are $\frac{p-1}{2}$ points in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. So the sum of x-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-1}{2}\right)=\frac{p^{2}-p}{2}$. When $y=0$, we have two points $(1,0)$ and $(p-1,0)$ on $C_{p, k}$, and the sum of $x-$ coordinates of these two points is p. Hence the sum of x-coordinates of all points (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-p}{2}+p=\frac{p^{2}+p}{2} .
$$

Let $p \equiv 3(\bmod 4)$ and $\left(\frac{k}{p}\right)=1$. Then there are $\frac{p-3}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. If x is a point such that $\frac{x^{2}-1}{k}$ is a square, then $-x=p-x$ is also a point such that
$\frac{x^{2}-1}{k}$ is a square. Therefore, the total of x-coordinates of these points is p. There are $\frac{p-3}{2}$ points in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. So the sum of x-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-3}{2}\right)=\frac{p^{2}-3 p}{2}$. When $y=0$, we have two points $(1,0)$ and $(p-1,0)$ on $C_{p, k}$, and the sum of x-coordinates of these two points is p. Hence the sum of x-coordinates of all points (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-3 p}{2}+p=\frac{p^{2}-p}{2} .
$$

Let $p \equiv 3(\bmod 4)$ and $\left(\frac{k}{p}\right)=-1$. Then there are $\frac{p-3}{2}$ points x such that $\frac{x^{2}-1}{k}$ is a square. If x is a point such that $\frac{x^{2}-1}{k}$ is a square, then $-x=p-x$ is also a point such that $\frac{x^{2}-1}{k}$ is a square. Therefore, the total of x-coordinates of these points is p. So the sum of x-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-3}{2}\right)=\frac{p^{2}-3 p}{2}$. When $y=0$, we have two points $(1,0)$
and $(p-1,0)$ on $C_{p, k}$, and the sum of x-coordinates of them is p. Hence the sum of $[x]$ of all (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-3 p}{2}+p=\frac{p^{2}-p}{2}
$$

as we claimed.
Theorem 2.3: The sum of [y] on $C_{p, k}$ is

$$
\sum C_{p, k}^{[y]}\left(\mathbf{F}_{p}\right)= \begin{cases}\frac{p^{2}-3 p}{2} & i f\left(\frac{k}{p}\right)=1 \\ \frac{p^{2}-p}{2} & i f\left(\frac{k}{p}\right)=-1\end{cases}
$$

Proof: Let $p \equiv 1(\bmod 4)$ and $\left(\frac{k}{p}\right)=1$. Then there are $\frac{p-5}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y^{2} \equiv \pm t(\bmod p)
$$

Therefore, when $\frac{x^{2}-1}{k}$ is a square, we have two points (x, t) and $(x, p-t)$. Therefore, the total of y-coordinates of these points is p. There are $\frac{p-5}{2}$ points in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-5}{2}\right)=\frac{p^{2}-5 p}{2}$. When $x=0$, we have two points $\left(0, \pm \sqrt{\frac{-1}{k}}\right)$ on $C_{p, k}$, and the sum of y-coordinates of these two points is p. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-5 p}{2}+p=\frac{p^{2}-3 p}{2}
$$

Let $p \equiv 1(\bmod 4)$ and $\left(\frac{k}{p}\right)=-1$. Then there are $\frac{p-1}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod q) \Leftrightarrow y^{2} \equiv \pm t(\bmod p)
$$

Therefore, when $\frac{x^{2}-1}{k}$ is a square, we have two points (x, t) and $(x, p-t)$. Therefore, the total of y-coordinates of these points is p. There are $\frac{p-1}{2}$ points in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-1}{2}\right)=\frac{p^{2}-p}{2}$. When $x=0$, we have no points on $C_{p, k}$. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-p}{2} .
$$

Let $p \equiv 3(\bmod 4)$ and $\left(\frac{k}{p}\right)=1$. Then there are $\frac{p-3}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod q) \Leftrightarrow y^{2} \equiv \pm t(\bmod p) .
$$

Therefore, when $\frac{x^{2}-1}{k}$ is a square, we have two points (x, t) and $(x, p-t)$. Therefore, the total of y-coordinates of these points is p. There are $\frac{p-3}{2}$ points in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-3}{2}\right)=\frac{p^{2}-3 p}{2}$. When $x=0$, we have no points on $C_{p, k}$. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-3 p}{2}
$$

Let $p \equiv 3(\bmod 4)$ and $\left(\frac{k}{p}\right)=-1$. Then there are $\frac{p-3}{2}$ points x in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. Let $\frac{x^{2}-1}{k}=t^{2}$ for some $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod q) \Leftrightarrow y^{2} \equiv \pm t(\bmod p)
$$

Therefore, when $\frac{x^{2}-1}{k}$ is a square, we have two points (x, t) and $(x, p-t)$. Therefore, the total of y-coordinates of these points is p. There are $\frac{p-3}{2}$ points in L_{p} such that $\frac{x^{2}-1}{k}$ is a square. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is $p\left(\frac{p-3}{2}\right)=\frac{p^{2}-3 p}{2}$. When $x=0$, we have two points $\left(0, \pm \sqrt{\frac{-1}{k}}\right)$ on $C_{p, k}$, and the sum of y-coordinates of these two points is p. So the sum of y-coordinates of all points (x, y) on $C_{p, k}$ is

$$
\frac{p^{2}-3 p}{2}+p=\frac{p^{2}-p}{2}
$$

as we predicted.
Theorem 2.4: Let $\mathbf{C}_{p, k}$ denote the set of the family of all conics $C_{p, k}$ over \mathbf{F}_{p}. Then

$$
\sum_{p, k} \# \mathbf{C}_{p}\left(\mathbf{F}_{p}\right)=p^{2}-p
$$

Proof: We know from Theorem 2.1 that the order of $C_{p, k}$ over \mathbf{F}_{p} is $p-1$ if $\left(\frac{k}{p}\right)=1$ and is $p+1$ if $\left(\frac{k}{p}\right)=-1$. On the other hand there are $p-1$ conics $C_{p, k}$ since $k \in \mathbf{F}_{p}^{*}$, and half of them of order $p-1$ and half of them of order $p+1$ since the order of Q_{p} is $\frac{p-1}{2}$. Therefore the total number of rational points on all conics in $\mathbf{C}_{p, k}$ is

$$
\left(\frac{p-1}{2}\right)(p+1)+\left(\frac{p-1}{2}\right)(p-1)=p^{2}-p .
$$

References

[1] A.O.L. Atkin and F. Moralin. Elliptic Curves and Primality Proving. Math. Comp. 61(203)(1993), 29-68.
[2] S. Goldwasser and J. Kilian. Almost all Primes Can be Quickly Certified, In Proc. 18th STOC (Berkeley, May 28-30, 1986). ACM, New York, (1986), 316-329.
[3] N. Koblitz. Elliptic Curve Cryptosystems. Math. Comp. 48(177)(1987), 203-209.
[4] H.W.Jr. Lenstra. Factoring Integers with Elliptic Curves. Annals of Maths. 126(3)(1987), 649-673.
[5] V.S. Miller. Use of Elliptic Curves in Cryptography, in Advances in Cryptology-CRYPTO'85. Lect. Notes in Comp. Sci. 218, Springer-Verlag, Berlin (1986), 417-426.
[6] R.A. Mollin. An Introduction to Cryptography. Chapman\&Hall/CRC, 2001.
[7] L.J. Mordell. On the Rational Solutions of the Indeterminate Equations of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21(1922), 179-192.
[8] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
[9] J.H. Silverman and J. Tate. Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics, Springer, 1992.
[10] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman \& Hall/CRC, Boca London, New York, Washington DC, 2003.
[11] A. Wiles. Modular Elliptic Curves and Fermat's Last Theorem. Annals of Maths. 141(3)(1995), 443-551.

[^0]: Ahmet Tekcan is with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, email: tekcan@uludag.edu.tr, http://matematik.uludag.edu.tr/AhmetTekcan.htm

