
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2306

Abstract—A new algorithm called Character-Comparison to

Character-Access (CCCA) is developed to test the effect of both: 1)
converting character-comparison and number-comparison into
character-access and 2) the starting point of checking on the
performance of the checking operation in string searching. An
experiment is performed using both English text and DNA text with
different sizes. The results are compared with five algorithms,
namely, Naive, BM, Inf_Suf_Pref, Raita, and Cycle. With the
CCCA algorithm, the results suggest that the evaluation criteria of
the average number of total comparisons are improved up to 35%.
Furthermore, the results suggest that the clock time required by the
other algorithms is improved in range from 22.13% to 42.33% by the
new CCCA algorithm.

Keywords—Pattern matching, string searching, character-
comparison, character-access, text type, and checking

I. INTRODUCTION
HE problem of of exact-match string searching is
addressed. The problem is to search all occurrences of the

pattern P[0…m-1] from the text T[0…n-1], where m is the
pattern length and n is the text length. The pattern and the text
are both strings built on the same alphabet.

The problem of exact-match string searching is addressed.
The problem is to search all occurrences of the pattern
P[0…m-1] from the text T[0…n-1], where m is the pattern
length and n is the text length. The pattern and the text are
both strings built on the same alphabet.

 The checking step consists of two phases:
1) A search along the text for a reasonable candidate string,

and
2) A detailed comparison of the candidate against the pattern

to verify the potential match.
Some characters of the candidate string must be selected

carefully in order to avoid the problem of repeated
examination of each character of text when patterns are
partially matched. Intuitively, the fewer the number of
character comparisons in the checking step the better the
algorithm is. After the checking step, whether there is a
mismatch or a complete match of the whole pattern, the
algorithm shifts to the next position. There are different
algorithms that check in different ways if the characters in

Manuscript received December 12, 2005. This work was supported in part

by Mu'tah University, Jordan.
Mahmoud Moh'd Mhashi is with the Information Technology Department,

Mu'tah University, Mu'tah, 61710 Jordan (e-mail: mhashi@mutah.edu.jo).

Text match with the corresponding characters in Pat. Some of
these algorithms scan the characters of the text:
1) From left to right [1-2]
2) From right to left [3-4] and by using, the smallest suffix

automation of the reverse pattern [5]
3) From the two directions [6-7]
4) By using a static and dynamic statistics to get a good

comparison order [8-9]
 5) By using a good comparison order without using any

 statistics [10]
 Most previous work focused on the improvement of

jumping distance in the skipping step [11-16]. In this paper,
the focus is on increasing the performance of the checking
step. This can be done by reducing the number of character-
comparison and by converting the character-comparison and
number-comparison into character-access.

II. CHECKING COMPONENT IN STRING SEARCHING
ALGORITHMS

A. Forward Checking
 Let’s say the target sequence is an array Text[n] of n

characters (i.e., n is the text length) and the pattern sequence is
the array Pat[m] of m characters (i.e., m is the pattern length).
A naive approach to the problem would be:

void Naive((char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int TextIx, PatIx;
 for (TextIx = 0; TextIx <= TextLen – PatLen + 1; TextIx++) {

 PatIx = 0;
 while (Text[TextIx + PatIx] == Pat[PatIx++]) {
 if (PatIx == PatLen - 1) {

cout <<"\n Occurence at location "<<TextIx<<"to
location "<< TextIx + PatLen - 1 << endl;

 break;
 }
 }
 }
 return;
}

In the outer loop, Text is searched for occurrences of the
first character in Pat. In the inner loop, a detailed comparison
of the candidate string is made against Pat to verify the
potential match. The algorithm has a worst case time of
O(nm), because in the worst case we may get a match on each
of the n Text characters and at each position we may proceed
to completion m comparisons. Assume that the next following

The Negative Effect of Traditional Loops
Style on the Performance of Algorithms

Mahmoud Moh’d Mhashi

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2307

Text and Pat are given. Then, the Comparison (loop 0) starts
from left to right (Pat[j] = ‘C’) ≠ (Text[i] = ‘A’). Skipping
right one position produces Loop 1. Each character in Pat
matches the corresponding character in Text. There is an
occurrence at location 1 to 3. Executing loop 2, we get (Pat[j]
= ‘C’) ≠ (Text[i] = ‘F’). Moving one position ends the
searching process. Thus, to find all the occurrences of Pat in
Text, 5 character-comparisons are needed, in addition to 4
number-comparisons.

 0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

B. Reverse Checking: Boyer-Moore Algorithm
 The Boyer-Moore algorithm is one example of the

reverse string-searching algorithm. The algorithm scans the
characters of the pattern from right to left beginning with the
most right character. Searching phase needs O(mn) time
complexity; 3n text character comparisons in the worst case
when searching for a non-periodic pattern; O(n/m) best
performance.

void BM(char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int TextIx, PatIx;
 for (TextIx = 0; TextIx <=TextLen – PatLen +1; TextIx++)
{
 PatIx = PatLen - 1;
 while (Text[TextIx + PatIx] == Pat[PatIx--]) {
 if (PatIx < 0) {
cout << "\nOccurence at location "<<TextIx<< " to location "
<<TextIx+PatLen – 1 << endl;
 break;
 }
 }
 }
 return;
}

Example:

 0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process: Loop 0:
Comparison starts from right to left (Pat[j] = ‘X’) ≠ (Text[i]

= ‘F’). Skipping right one position performs Loop 1. Each
character in Pat matches the corresponding character in Text.
There is an occurrence at location 1 to 3. Executing loop 2,
we get (Pat[j] = ‘X’) ≠ (Text[i] = ‘G’). Moving one position
ends the searching process. Therefore, to find all the
occurrences of Pat in Text, 5 character-comparisons are
needed, in addition to 4 number-comparisons.

C. Infix-Suffix-Prefix Checking
Many words have the same prefix, such as “computer”,

“computation”, and “computerized”. Also, many words have
the same suffix, such as “absorbability”, “acceptability”, and
“possibility”. Additionally, sentences might have the same
prefix, such as “Computer systems support collaborative
work”, and “Computer systems support discussion systems”.
Also, sentences might have the same suffix, such as “Case
studies for string searching algorithms”, and “fast string
searching algorithms”.

 It can be noticed from the above examples that there is a
strong dependency between the prefixes and suffixes of the
words or sentences. Such a dependency is the weakest at the
middle. This suggests that it is not profitable to compare the
pattern symbols strictly from left to right or from right to left.
Thus it might be profitable to compare the pattern symbols
from the middle to the boundaries of the pattern. This is
because the probability of finding the mismatch at the middle
is higher than it is at the boundaries. Thus, in the Infix-
Suffix-Prefix algorithm, the comparison will start at the
middle part, then the suffix part followed by the prefix part.

void Inf_Suf_Pref(char *Pat, long int PatLen, char *Text, long
int TextLen) {
 long int TextIx, PatIx, Pref, Pref = PatLen /3;
for (TextIx = 0; TextIx <= TextLen – PatLen+1; TextIx++) {
 for(PatIx = Pref; PatIx <PatLen; PatIx++)
 if(Text[TextIx + PatIx] != Pat[PatIx]) goto next;
 if (PatIx == PatLen) {
 for(PatIx = 0; PatIx < Pref; PatIx++)
 if (Text[TextIx + PatIx] != Pat[PatIx]) goto next;
 cout<<"Occurence at"<<TextIx<<"to"<<TextIx + PatLen -
1 << endl;
 }
 next: continue;
 }
 return;
}

Example:

0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Comparison (Loop 0) starts from the middle (infix part) to
the boundaries (suffix followed by prefix) (Pat[j] = ‘F’) ≠
(Text[i] = ‘C’). Skipping right one position executes Loop 1.
Each character in Pat matches the corresponding character in
Text. There is an occurrence at location 1 to 3. When loop 2
is executed, we get (Pat[j] = ‘F’) ≠ (Text[i] = ‘X’). Moving
one position ends the searching process. So, to find all the
occurrences of Pat in Text, 5 character-comparisons are
needed, in addition to 4 number-comparisons.

D. Selected Characters: Raita’s Algorithm
 Raita designed an algorithm so that at each attempt it first
compares the last character of the pattern Pat with the
rightmost character in Text: if they match, then it compares
the first character of Pat with the leftmost character of Text; if
they match, then it compares the middle character of Pat with
the middle character in Text. Finally if they match, it

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2308

compares the other characters from left to right excluding the
first and the last characters in the pattern. It possibly
compares again the middle character.

void Raita(char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int TextIx, PatIx, mid, mid = PatLen/2;
 for (TextIx = 0;TextIx<TextLen - PatLen+1;TextIx++) {
 if(Text[TextIx + PatLen-1] == Pat[PatLen-1])
// Check last character first
 if(Text[TextIx] == Pat[0]) // Check the first character

if(Text[TextIx + mid] == Pat[mid]) {
// Check the middle character next

 for(PatIx = 1; PatIx<PatLen-1; PatIx++)
 if(Text[TextIx + PatIx] != Pat[PatIx]) goto next;
 cout<<"\nAn occurrence at location "<<TextIx <<" to
"<<TextIx+PatLen-1<<endl;
 }
 next: continue;
 }
 return;
}
Example:

 0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process (Loop 0) starts with the last character in
Pat at (Pat[j] = ‘X’) ≠ (Text[i] = ‘F’). Skipping right one
position produces Loop 1. Each character in Pat matches the
corresponding character in Text. There is an occurrence at
location 1 to 3. Four character comparisons are required to
find this occurrence. Going to loop 2, we get (Pat[j] = ‘X’) ≠
(Text[i] = ‘G’). Moving one position ends the searching
process. Thus, to find all the occurrences of Pat in Text, 6
character comparisons are needed, in addition to 4 number-
comparisons.

E. No Statistics Checking: Cycle Algorithm
 The Cycle algorithm is based on the idea that mismatched

characters should be given a high priority in the next checking
operation. In the checking step, there is no fixed comparison
order. The Cycle algorithm treats the pattern as a cycle
logically. At the beginning of search process, the algorithm
applies the Naive principle. In each checking step, it always
starts comparing the mismatched character in the last step.
When the comparison successfully turns around in one
checking step, a complete match is found. The following C
code represents the checking step (More details in [10]).

void Cycle((char *Pat, long int PatLen, char *Text, long int
TextLen) {
 long int joffset, TextI =joffset=PatLen, PatIx=0, i, k = 0;
while(TextIx<TextLen+1) {
 i = TextIx – joffset ;
 if(Pat[PatIx] == Text[i])
 for(k=2; k<=PatLen; k++) {
 if(++i==TextIx) {
 i=TextIx – PatLen ; PatIx=0;
 }
 else PatIx++;
 if(Pat[PatIx] != Text[i]) break;
 }

 if (k > PatLen) {
 cout << "\n Occurence at location " <<TextIx – PatLen <<"
to "<<TextIx – 1 <<; k = 0;
 }
 joffset=TextIx – i ; TextIx++;
 } // End while
 return;
}

The variable joffset is used to compute the distance between
TextIx from i before entering the checking step. The variable i
is used to indicate the current substring. After the pattern is
shifted to the next position and by using the joffset, the TextIx
should be adjusted to align the PatIx since the pair of
characters pointed by the PatIx and TextIx will be first
compared (i.e., the mismatched character in the previous step).
Example:

0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process: Loop0:
The naïve algorithm is applied first. Comparison starts with

the first character in Pat at (Pat[j] = ‘C’) ≠ (Text[i] = ‘A’).
Skipping right one position executes Loop1. Each character
in Pat matches the corresponding character in Text. There is
an occurrence at location 1 to 3. For this loop only, three
character-comparisons and three number-comparisons are
needed. Going to loop 2, Pat[0] is checked first because the
previous mismatched occurred at that location. We get (Pat[j]
= ‘C’) ≠ (Text[i] = ‘F’). Moving one position ends the
searching process. Therefore, to find all the occurrences of
Pat in Text, 5 character-comparisons are needed, in addition to
6 number comparisons.

III. CHARACTER-COMPARISON TO CHARACTER-ACCESS
(CCCA)

Let Text[0...n-1] and Pat[0...m-1] be arrays of characters.
The array Text is the text and the array Pat is the pattern. The
problem is to find all the exact occurrences of Pat in Text.
The text and the pattern are both words built on the same
characters. A string-matching algorithm is a succession of
checking and skipping. The aim of a good algorithm is to
minimize the work done during each checking and to
maximize the length distance during the skipping.

 Most of the strings matching algorithms preprocess the
pattern before the search phase. The work that is done during
the preprocessing phase helps the algorithm to maximize the
length of the skips. The preprocessing phase in this new
CCCA algorithm helps in increasing the performance of the
checking step by converting some of the character-comparison
into character-access. The performance of this algorithm
comes from two directions:
1) By detecting mismatch quickly, and
2) By converting a number-comparison and a character-

comparison into a character-access (such as converting
condition of type if(index < n) into a condition of type

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2309

if(index)).
Regarding the first direction, at the beginning of the search,

the first character will be compared first. If any mismatch is
found, then that location will be stored in a variable called
last_mismatch (see line 13 in CCCA algorithm). After the
pattern is shifted to align a new substring, the comparison will
start at location last_mismatch (see line 9 in CCCA
algorithm). If there is a match, then the comparison process
goes from left to right, including the compared character at the
last_mismatch. The idea here is that the mismatched character
must be given a high priority in the next checking operation.
After a number of checking steps, this leads to start the
comparison at the rare character or at least frequency character
without counting the frequency of each character in the text.

Regarding the second direction, the following
improvements are made:
1) Programmers, normally, write the for-statement at line (8)

in CCCA with the following style:
 for(TextIx=0;TextIx<TextLen–PatLen+1; TextIx++) {
 This for-statement is changed into the following style:
 for (TextIx = TextLen - PatLen; TextIx; TextIx--) {
 In other words, the number comparison of condition type “

if(TextIx < TextLen – PatLen + 1)” is changed into a
character access of condition type “if(TextIx)”.

2) Again, the programmers write the for-statement at line (11)
in CCCA with the following style:

 for(PatIx = 0; PatIx < PatLen ; PatIx++)
 This for-statement is changed into the following style:
 for(PatIx = PatLen – 1; PatIx; PatIx--)
 In the same way at line 8, the number comparison “if(

TextIx < TextLen)” is changed into a character access “if(
TextIx)”.

3) Looking at lines (14) and (18) in CCCA algorithm, the
statements “goto next” and “next: continue” are found.
Programmers, normally, use the following style:

(13) last_mismatch = PatIx;
(14) break;
(15) }
(16) if(PatIx == PatLen) cout<<"\nAn occurrence at location
"<<TextIx <<" to "<<TextIx+PatLen–1;
(17) }

In other words, programmers use break instead of “goto

next”, but they have to add a condition to test whether there is
an occurrence or not (see line 16 above). Thus, using the new
style reduces the number of conditions.

Converting the character-comparison into character-access:
This conversion can be explained by the following example.
Assume that we have the following Pat and Text.

 0 1 2 3 4
Text[i] A C F X G
Pat[j] C F X

To compare the character ‘C’ in Pat with the character ‘A’

in Text at location zero, programmers normally write the
statement if(Text[i] == Pat[j]), where i = j = 0. To convert
this character-comparison into a character-access, a new array

must be declared with alphabet size and initialized by zero,
such as line 4 in CCCA:

 int infix[ALPHABET_SIZE] = {0};
Performing line 6 in CCCA infix[Pat[0]] = infix[‘C’] = 1

sets the location ‘C’ in the array infix by one. Executing the
character-access at line 10, if(infix[Text[TextIx]]), where
TextIx = 0 and Text[0] = ‘A’. This condition is equivalent to
the condition if(infix[‘A’]) = 0, that produces false result (i.e.,
there is a mismatch). Assuming that the character at location
zero in Text is the character ‘C’, then line 10

if(infix[Text[TextIx]])=if(infix[Text[0]])= if(infix[‘C’]) =
1, produces true result (i.e., there is a match between the
corresponding characters). So, the condition if(Text[i] ==
Pat[j]) of type character-comparison is replaced by the
condition if(infix[Text[TextIx]]) of type character-access.
The condition at line 10 serves two things: 1) converting the
character-comparison to character-access at Pat[0], and 2)
Checking the character at location Pat[0] in advance before
entering the for-statement at line 11. This occurs because the
value of index PatIx becomes zero at the end of the loop at
line 11 and the control will exit the loop without checking the
character at location Pat[0].

(1) void CCCA(char *Pat, long int PatLen, char *Text, long int
TextLen)
(2) {
(3) long int TextIx, PatIx, last_mismatch;
(4) long int infix[ALPHABET_SIZE] = {0};
(5) /* Update infix table according to the first character in Pat */
(6) infix[Pat[0]] = 1;
(7) last_mismatch =0;
(8) for (TextIx = TextLen - PatLen; TextIx; TextIx--) {
(9) if(Text[TextIx+last_mismatch]== Pat[last_mismatch])
(10) if(infix[Text[TextIx]]) {
(11) for(PatIx = PatLen – 1; PatIx; PatIx--)
(12) if(Text[TextIx + PatIx] != Pat[PatIx]) {
(13) last_mismatch = PatIx;
(14) goto next;
(15) }
(16) cout<<"\nAn occurrence at location "<<TextIx <<" to
"<<TextIx+PatLen–1<<endl;
(17) }
(18) next: continue;
(19) }
(20) return;
(21) }
 Example:

0 1 2 3 4
Text[i] A C F X G Loop
Pat[j] C F X 0

 C F X 1
 C F X 2

Searching process: Loop 0:
The Naïve algorithm is applied first. Comparison starts

with the first character in Pat at (Pat[j] = ‘C’) ≠ (Text[i] =
‘A’). Skipping right one position produces Loop 1. Because
the mismatch occurred at location zero in the previous check,
comparison starts with the first character in Pat at (Pat[j] =
‘C’) == (Text[i] = ‘C’). There is a match between the two
corresponding characters. The character ‘C’ in Text will be
compared again with the corresponding character ‘C’ in Pat
through the character-access test if(infix[Text[TextIx]]) =

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2310

if(infix[Text[1]]) = if(infix[‘C’]) = 1, produces true result (i.e.,
there is a match). The character at location zero in Pat will be
checked only twice, if the mismatch occurred at Pat[0] in the
previous check and there is a match at the current check.
Otherwise it will be checked once. Each character in Pat
matches the corresponding character in Text. There is an
occurrence at location 1 to 3. For this loop only, three
character-comparisons, one character-access, and one number-
comparison are needed. Going to loop 2, Pat[0] is checked
first because the previous mismatched occurred at that
location. We get (Pat[j] = ‘C’) ≠ (Text[i] = ‘F’). Moving one
position ends the searching process. Thus, to find all the
occurrences of Pat in Text, 5 character-comparisons are
needed, in addition to one character-access and 4 number
comparisons.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this experiment, the six algorithms Naive, BM,

Inf_suf_Pref, Raita, Cycle, and the new algorithm CCCA were
implemented in C++ and compared through searching English
text with a size more than two mega characters (exactly
2,006,655 characters). This text contains 76 different
characters. The tests ran on Intel(R) Pentium(R) 4 PC with
CPU speed 2.40GHz, 246MB RAM, and running Windows
XP professional operating system. A C++ program was
designed to select randomly 3000 patterns. The pattern length
ranges from 3 to 93 characters. The average number of
occurrences ranges from 1 to 1158. The cost of the searching
process to find all the occurrences of the different patterns in
each group in Text is measured by finding:

1) The average number of first checking,
2) The average number of second checking,
3) The average number of total checks, and
4) The search clock time.
 The results of the experiment are presented in Table I

and in Table II. The average number of checks is presented in
Table I. The average number of 1st checks ranges from
1,866,502 (algorithm no. 3) to 1,964,341 (algorithm no. 5).
Intuitively, the higher the average number of checks in the
first check at the checking step, the better the algorithm is.
One can notice that the average number of checks by using the
new CCCA algorithm is higher than that when using each one of
the other algorithms, except the Cycle algorithm (number 5).
Furthermore, the average number of second checks by the
Cycle algorithm is smaller than that when using CCCA. On
the other hand, the average number of total checks required by
CCCA is much smaller than the average number of total
checks required by Cycle (4,119,005 vs. 6,130,189).
Furthermore, Table II shows that the time required to find all
the occurrences of Pat in Text by using Cycle and CCCA is
47.985 sec and 30.531 sec, respectively. In other words, by
using CCCA, the time required by Cycle is reduced by
57.17%. This result is expected because the Cycle algorithm
needs more character comparisons than CCCA to find all the
occurrences of Pat in Text. At each check, the Cycle

algorithm needs one number-comparison at each time the
index TextIx and PatIx adjusted to point to the next pair of
characters to examine whether the PatIx reaches the end of the
pattern. If the check is true, the PatIx will be turned back to
the first character in the pattern.

Table I also presents the average number of the second
checks. It ranges from (36,067) to (127,680). One can notice
that the average number of checks by using CCCA is smaller
than the average number of checks using other algorithms,
except the Cycle algorithm (see the previous clarification).
Intuitively, the smaller the average number of the second
checks, the better the algorithm is. In other words, the number
of comparisons required by an algorithm to find all the
occurrences of Pat in Text in the second check equals the
average number of second checks multiplied by two. Thus
increasing the average number of first checks leads to
decreasing the average number of second checks. Of course,
this leads to decreasing the average number of comparisons
and consequently reduces the time required to find the
occurrences of Pat in Text.

Table I presents the average number of total checks
required by each algorithms to find all the occurrences of the
3000 patterns in text. It ranges from 4,119,005 (algorithm
CCCA) to 6,340,080 (algorithm Inf_Suf_Pref). The average
numbers of total checks required by other algorithms are
reduced from 1.4% (algorithm Raita) to 35% (algorithm
Inf_Suf_Pref).

 Table II presents the clock time required to find all the
occurrences of all patterns in Text. The clock time includes
the time required for reading and pre-processing the patterns.
The time ranges from 30.531 seconds (CCCA algorithm 6) to
51.187 seconds (BM algorithm 2). By using the new
algorithm CCCA, the clock times required by the other
algorithms are reduced by 22.0% (Raita’s algorithm) to
40.35% (algorithm BM).

 In order to test the effect of text size and text type on
algorithms performance, the same experiment was repeated,
but with different text sizes and different text type. The
English text size was increased from two mega characters to
three mega characters. Another file was created and filled
randomly with three mega characters of type DNA text. This
file contains four different characters, including the letters A,
C, G, and T. Table III presents the results of this experiment.

 Regarding the English text, the clock time (in seconds)
ranges from 15.38 (CCCA) to 26.75 (Inf_Suf_Pref), 30.69 to
53.47, and from 46.02 to 79.8 with text size 1M, 2M, and 3M
characters respectively. With English text size 3M and by
using the new algorithm CCCA, the clock times required by
the other algorithms are reduced by 22.13% to 42.33%.

 For the DNA text, the clock time (in seconds) ranges
from 32.39 (CCCA) to 47.03 (Cycle), 45.48 to 75.53, and
from 58.49 to 97.53 seconds with DNA text size 1M, 2M, and
3M characters respectively. With DNA text size 3M and by
using the new algorithm, the clock times required by the other
algorithms are reduced by 17.18% to 40.03%.

 From Table III, one can notice that the time required to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2311

find all the occurrences of patterns in text by using DNA text
(58.49 sec to 97.53 sec) needs more time than the time needed
by using English text (46.02 sec to 79.8 sec). One can
conclude from these results that reducing the pattern length
and/or decreasing the alphabet size decrease the string
searching algorithms performance. Figure 1 presents the
results of the clock time required by the different algorithms
using English text. Figure 2 presents the results of the clock
time required by the different algorithms using DNA text

 From these results, one can notice that the CCCA
algorithm gains its performance from more than one direction,
including:
1) Converting character-comparison into character-access:

The CCCA converts the first condition of Pat from
character-comparison (Text[TextIx] == Pat[PatIx]) into
character access (if(infix[Text[TextIx]]) with a reasonable
overhead cost (see section 3).

2) Character-access vs. number-comparison: The CCCA uses
the condition type character-access (if(i)) (needs 40% less
time to be executed than the time needed by any other type
of conditions) in the main loops rather than using the
number-comparison (if (TextIx < TextLen)).

 3) The starting point of checking: The CCCA algorithm starts
the comparison at the latest mismatch in the previous
checking. This increases the probability of finding the
mismatch faster if there is a mismatch. Finding the
mismatch faster decreases the number of comparisons
required to find the Pat in Text.
 In order to test the significant of the obtained results, a

GLM analysis of variance was performed. From this analysis,
the exisitence of variability of the different factors levels
(algorithm name, text type, text size, …etc) is concluded. By
using LSD method of multiple comparisons (Table IV), one
can notice that CCCA has the minimum Mean value (38.075).
So, CCCA has the highest performance among the other
algorithms.

TABLE IV
MEAN AND STANDARD DEVIATION

Algorithm name

Mean

Std. Deviation

Naïve 52.2233 20.993
BM 57.8117 23.2015

Inf_suf_Pref 60.31 24.0978
Raita 46.5833 18.6491
Cycle 60.4517 26.1155
CCCA 38.075 15.0775

V. CONCLUSIONS
 A new algorithm Character-Comparison to Character-

Access (CCCA) is developed and compared with five
algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and
Cycle. The CCCA algorithm uses both the character-access
and the character-comparison tests at the checking step while
the rest of algorithms use only the character-comparison. An
experiment was performed to evaluate the new algorithm
CCCA.

TABLE I

A COMPARISON IS PRESENTED BETWEEN CCCA AND THE OTHER FIVE ALGORITHMS INCLUDING, NAÏVE, BM, INF_SUF_PREF, RAITA, AND CYCLE, IN TERMS OF
THE AVERAGE NUMBER OF FIRST AND SECOND CHECKING (NUMBER OF PATTERNS = 3000) AND THE PERCENTAGE OF IMPROVEMENTS

Algo-
rithm
No.

Algor-ithm
name

Average number

of 1st check

Average
number
of 2nd
checks

Average

number of
Total of
checks

Improvement
of CCCA vs.

other
algorithms in

1st check

Improvement
of CCCA vs.

other
algorithms in

2nd check

Improv. of
CCCA vs. other
algor. In Ave.

Total of checks

1 Naive 1,868,933 123,337 4,328,382 2.75% 56.06% 4.8 %
2 BM 1,868,463 123819 4,329,272 2.77% 56.67% 4.9%
3 Inf_suf_Pref 1,866,502 125891 6,340,080 2.87% 59.29% 35 %
4 Raita 1,868464 127680 4,175,895 2.77% 61.56% 1.4 %
5 Cycle 1,964,341 36067 6,130,189 - 2.22% - 54.36% 32.8 %
6 CCCA 1,921,740 79032 4,119,005 0.00% 0.00% 0.0%

TABLE II

A COMPARISON BETWEEN CCCA AND THE OTHER FIVE ALGORITHMS: NAÏVE, BM, INF_SUF_PREF, RAITA, AND CYCLE IN TERMS OF THE CLOCK TIME REQUIRED
TO FIND THE OCCURRENCES OF 3000 PATTERNS IN TWO MEGA BYTES OF TEXT AND THE PERCENTAGE OF IMPROVEMENTS

Algorithm

No.

Algorithm name
Clock time in Seconds (Sec):

Single Run
Improvement of CCCA vs. other

algorithms
1 Naïve 43.984 Sec. 30.59%
2 BM 51.187 Sec. 40.35%
3 Inf_suf_Pref 49.860 Sec. 38.77%
4 Raita 39.110 Sec. 22.0%
5 Cycle 47.985 Sec. 36.37%
6 CCCA 30.531 Sec. 0.00%

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2312

TABLE III

A COMPARISON BETWEEN CCCA AND THE OTHER FIVE ALGORITHMS: NAÏVE, BM, INF_SUF_PREF, RAITA, AND CYCLE IN TERMS OF THE CLOCK TIME REQUIRED
TO FIND THE OCCURRENCES OF 3000 PATTERNS IN TWO MEGA BYTES OF TEXT AND THE PERCENTAGE OF IMPROVEMENTS

Clock time in Seconds (Single Run) using

English text with different sizes
Clock time in Seconds (Single Run) using

DNA text with different sizes
Algorithm

No.

Algorithm
name 1 Mega

characters
2 Mega

characters
3 Mega

characters
1 Mega

characters
2 Mega

characters
3 Mega

characters
1 Naïve 22.54 Sec 44.64 Sec. 68.77 Sec 37.75 Sec 60.81 Sec 78.83 Sec
2 BM 25.41 Sec 50.72 Sec. 75.92 Sec 40.58 Sec 66.61 Sec 87.63 Sec
3 Inf_suf_Pref 26.75 Sec 53.47 Sec 79.8 Sec 41.81 Sec 69.25 Sec 90.78 Sec
4 Raita 19.98 Sec 39.53 Sec 59.1 Sec 34.5 Sec 55.23 Sec 71.16 Sec
5 Cycle 23.84 Sec 47.45 Sec 71.33 Sec 47.03 Sec. 75.53 Sec. 97.53 Sec
6 CCCA 15.38 Sec 30.69 Sec 46.02 Sec 32.39 Sec 45.48 Sec 58.49 Sec

0
10
20
30
40
50
60
70
80
90

1 Mega 2 Mega 3 Mega
characters

Ti
m

e
in

 s
ec

on
ds Naïve

BM
Inf_Suf_Pref
Raita
Cycle
CCCA

 Fig. 1 The clock time (in seconds) required to find all the occurrences of 3000 English patterns in English Text, by
using the six different algorithms, is plotted against text sizes (1M, 2M, and 3M characters)

0

20

40

60

80

100

120

1 Mega 2 Mega 3 Mega
characters

Ti
m

e
in

 S
ec

on
ds

Naïve
BM
Inf_Suf_Pref
Raita
Cycle
CCCA

 Fig. 2 The clock time (in seconds) required to find all the occurrences of 3000 DNA patterns in DNA Text, using

the six different algorithms, is plotted against text sizes (1M, 2M, and 3M DNA characters)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2313

There are many different criteria used to compare between the
different algorithms, including, the number of comparisons,
and the search clock time.

In comparison between CCCA and the rest of algorithms
and according to the experiment, we have the following
results:

1) The average number of first check and the average
number of second check required by Naive, BM,
Inf_Suf_Pref, Raita, and Cycle are improved by CCCA
in the following ranges from –2.22% (Cycle algorithm)
to 2.87% (Inf_suf_Pref) and from –54.36% to 61.56%
(see Table I).

2) The average number of total checks required by other
algorithms is improved by CCCA in the range from
1.4% (Raita) to 35% (Inf_Suf_Pref) (Table I).

3) Decreasing the pattern length and/or the alphabet size
(such as DNA) decreases the system performance (see
Table III, Figure 1, and Figure 2)

4) The clock time required by the other algorithms is
improved by CCCA in the range of percentage from
22% (Raita) to 40.35% (BM) (see Table II).

As a result, during the checking operation, converting the
conditions of type character-comparison and number-
comparison into character-access effects on the time required
to find the occurrences of Pat in Text. Furthermore, starting
the checking at the latest mismatch in the previous step
reduces the number of comparisons.

The algorithm CCCA in this paper concentrates on the
performance of the checking operation. The Algorithm
Multiple Reference Characters Algorithm (MRCA)[16]
concentrates on the performance of the skipping operation.
One might look for an algorithm that concentrates on the
performance of both operations checking and skipping (i.e.,
all in one). Such work needs to be investigated in further
studies.

ACKNOWLEDGMENT
The author would like to thank the anonymous reviewers

for many helpful comments. Many thanks for Dr. Suleiman
Tashtoush, from Mutah University, for his help in doing the
statistical test.

REFERENCES
[1] M.S. Ager, O. Danvy, and H.K. Rohde. Fast partial evaluation of pattern

matching in strings. ACM/SIGPLAN Workshop Partial Evaluation and
Semantic-Based Program Manipulation, San Diego, California, USA,
pp. 3 – 9, 2003.W.-K. Chen, Linear Networks and Systems (Book style).
 Belmont, CA: Wadsworth, 1993, pp. 123–135.

[2] K. Fredriksson and S. Grabowski: Practical and Optimal String
Matching. Proceedings of SPIRE'2005, Lecture Notes in Computer
Science 3772, pp. 374-385, Springer Verlag, 2005.

[3] M. Hernandez, and D. Rosenblueth. Disjunctive partial deduction of a
right-to-left string-matching algorithm. Information Processing Letters,
Vol 87, pp. 235–241, 2003.

[4] A. Apostolico, and R. R.Giancarlo, “The Boyer-Moore-Galil string
searching strategies revisited”, SIAM J. Comput. Vol. 15, no. 1, pp. 98-
105, 1986.

[5] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci.,
Vol. 45, pp. 63-86, 1986.

[6] M. Crochemore, D. Perrin, Two-way string-matching, J. ACM, Vol. 38,
pp. 651-675, 1991.

[7] Z. Galil, R. Giancarlo, On the exact complexity of string matching:
upper bounds, SIAM J. Comput. Vol. 21, pp. 407-437, 1992.

[8] P. D. Smith, Experiments with a very fast substring search algorithm,
SP&E Vol. 21, no. 10, pp. 1065-1074, 1991.

[9] D. M. Sunday, A very fast substring search algorithm, Communications
of the ACM Vol. 33, no. 8, pp. 132-142, 1990.

[10] Z. Liu, X. Du, N. Ishii, An improved adaptive string searching
algorithm, Software–Practice and Experience Vol. 28, no. 2, pp. 191-
198, 1998.

[11] P. Fenwick, Fast string matching for multiple searches, Software–
Practice and Experience Vol. 31, no. 9, pp. 815-833, 2001.

[12] M. Mhashi, A Fast String Matching Algorithm using Double-Length
Skip Distances. Dirasat Journal, University of Jordan, Jordan Vol. 30,
no. 1, pp. 84-92, 2003.

[13] P. Fenwick, Some perils of performance prediction: a case study on
pattern matching. Software–Practice and Experience Vol. 31, no. 9, pp.
835-843, 2001.

[14] A. Al-jaber, M. Mhashi, A modified double skip algorithm in string
searching, AMSE(Association for the advancement of modelling &
Simulation Techniques in Enterprises) Periodicals Vol.8, no. 4, pp. 1-16,
2003.

[15] [15] F. Franek, C. Jennings, W.F. Smyth: A Simple Fast Hybrid Pattern-
Matching Algorithm. In A. Apostolico, M. Crochemore, K. Park (Eds.):
Combinatorial Pattern Matching, Lecture Notes in Computer Science
3537. Springer, pp. 288-297, 2005.

[16] [16] M. Mhashi, The effect of multiple reference characters on detecting
matches in string searching algorithms, Software Practice & Experience
Vol. 35, no. 13, pp. 1299-1315, 2005.M. Young, The Techincal Writers
Handbook. Mill Valley, CA: University Science, 1989.

Mahmoud Moh’d Mhashi was born in Halawah-Ajloun, Jordan on August,
20, 1956. He received the B.S in Computer Science from Yarmouk University
in Irbid, Jordan in 1984. He received the M.S in computer science from
University of Colorado at Boulder, USA, in 1988. He received the Ph.D in
Computer science from University of Liverpool, U.K in 1991. He is
Associate Profwssor at Mu’tah University, Jordan since 1992. His research
interests include Hypermedia, Computer Support Collaborative Work
(CSCW), Computer Support Decision Making (CSDM), String Matching
(Exact and Approximate), Text Indexing, and Parallel Algorithms.

