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Abstract—A new algorithm called Character-Comparison to 

Character-Access (CCCA) is developed to test the effect of both: 1) 
converting character-comparison and number-comparison into 
character-access and 2) the starting point of checking on the 
performance of the checking operation in string searching.  An 
experiment is performed using both English text and DNA text with 
different sizes.  The results are compared with five algorithms, 
namely, Naive, BM, Inf_Suf_Pref, Raita, and Cycle.  With the 
CCCA algorithm, the results suggest that the evaluation criteria of 
the average number of total comparisons are improved up to 35%.  
Furthermore, the results suggest that the clock time required by the 
other algorithms is improved in range from 22.13% to 42.33% by the 
new CCCA algorithm. 
 

Keywords—Pattern matching, string searching, character-
comparison, character-access, text type, and checking 

I. INTRODUCTION 
HE problem of of exact-match string searching is 
addressed.  The problem is to search all occurrences of the 

pattern P[0…m-1] from the text T[0…n-1], where m is the 
pattern length and n is the text length.  The pattern and the text 
are both strings built on the same alphabet.  

The problem of exact-match string searching is addressed.  
The problem is to search all occurrences of the pattern 
P[0…m-1] from the text T[0…n-1], where m is the pattern 
length and n is the text length.  The pattern and the text are 
both strings built on the same alphabet.   

     The checking step consists of two phases: 
1) A search along the text for a reasonable candidate string, 

and 
2) A detailed comparison of the candidate against the pattern 

to verify the potential match. 
Some characters of the candidate string must be selected 

carefully in order to avoid the problem of repeated 
examination of each character of text when patterns are 
partially matched.  Intuitively, the fewer the number of 
character comparisons in the checking step the better the 
algorithm is.  After the checking step, whether there is a 
mismatch or a complete match of the whole pattern, the 
algorithm shifts to the next position.  There are different 
algorithms that check in different ways if the characters in 
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Text match with the corresponding characters in Pat.  Some of 
these algorithms scan the characters of the text: 
1) From left to right [1-2] 
2) From right to left [3-4] and by using, the smallest suffix 

automation of the reverse pattern [5] 
3) From the two directions [6-7] 
4)  By using a static and dynamic statistics to get a good 

comparison order [8-9] 
 5) By using a good comparison order without using any 

 statistics [10] 
     Most previous work focused on the improvement of 

jumping distance in the skipping step [11-16].  In this paper, 
the focus is on increasing the performance of the checking 
step.  This can be done by reducing the number of character-
comparison and by converting the character-comparison and 
number-comparison into character-access.   

II. CHECKING COMPONENT IN STRING SEARCHING 
ALGORITHMS 

A. Forward Checking 
    Let’s say the target sequence is an array Text[n] of n 

characters (i.e., n is the text length) and the pattern sequence is 
the array Pat[m] of m characters (i.e., m is the pattern length).  
A naive approach to the problem would be:  
 
void Naive((char *Pat, long int PatLen, char *Text, long int 
TextLen) { 
 long int TextIx, PatIx; 
    for (TextIx = 0; TextIx <= TextLen – PatLen + 1; TextIx++) { 

   PatIx = 0; 
  while (Text[TextIx + PatIx] == Pat[PatIx++]) { 
          if (PatIx == PatLen - 1) {  

cout <<"\n Occurence at location "<<TextIx<<"to  
location "<< TextIx + PatLen - 1 << endl; 

     break; 
           }      
     } 
    } 
 return; 
} 
    

In the outer loop, Text is searched for occurrences of the 
first character in Pat.  In the inner loop, a detailed comparison 
of the candidate string is made against Pat to verify the 
potential match.  The algorithm has a worst case time of 
O(nm), because in the worst case we may get a match on each 
of the n Text characters and at each position we may proceed 
to completion m comparisons.  Assume that the next following 
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Text and Pat are given.  Then, the Comparison (loop 0) starts 
from left to right (Pat[j] = ‘C’) ≠ (Text[i] = ‘A’).  Skipping 
right one position produces Loop 1.  Each character in Pat 
matches the corresponding character in Text.  There is an 
occurrence at location 1 to 3.  Executing loop 2, we get (Pat[j] 
= ‘C’) ≠ (Text[i] = ‘F’).  Moving one position ends the 
searching process.  Thus, to find all the occurrences of Pat in 
Text, 5 character-comparisons are needed, in addition to 4 
number-comparisons. 

 0 1 2 3 4 
Text[i] A C F X G Loop 
Pat[j] C F X   0 

  C F X  1 
   C F X 2 

 

B. Reverse Checking: Boyer-Moore Algorithm 
    The Boyer-Moore algorithm is one example of the 

reverse string-searching algorithm.  The algorithm scans the 
characters of the pattern from right to left beginning with the 
most right character.  Searching phase needs O(mn) time 
complexity; 3n text character comparisons in the worst case 
when searching for a non-periodic pattern; O(n/m) best 
performance.  
 
void  BM(char *Pat, long int PatLen, char *Text, long int 
TextLen) { 
 long int TextIx, PatIx; 
 for (TextIx = 0; TextIx <=TextLen – PatLen +1; TextIx++) 
{ 
       PatIx = PatLen - 1; 
       while (Text[TextIx + PatIx] == Pat[PatIx--]) { 
        if (PatIx < 0) {   
cout << "\nOccurence at location "<<TextIx<< " to   location " 
<<TextIx+PatLen – 1  << endl; 
       break; 
         }        
          } 
 } 
 return; 
} 
 
Example: 

 0 1 2 3 4 
Text[i] A C F X G Loop 
Pat[j] C F X   0 

  C F X  1 
   C F X 2 

Searching process: Loop 0: 
Comparison starts from right to left (Pat[j] = ‘X’) ≠ (Text[i] 

= ‘F’).  Skipping right one position performs Loop 1.  Each 
character in Pat matches the corresponding character in Text.  
There is an occurrence at location 1 to 3.  Executing loop 2, 
we get (Pat[j] = ‘X’) ≠ (Text[i] = ‘G’).  Moving one position 
ends the searching process.  Therefore, to find all the 
occurrences of Pat in Text, 5 character-comparisons are 
needed, in addition to 4 number-comparisons. 
 

C. Infix-Suffix-Prefix Checking 
Many words have the same prefix, such as “computer”, 

“computation”, and “computerized”.  Also, many words have 
the same suffix, such as “absorbability”, “acceptability”, and 
“possibility”.  Additionally, sentences might have the same 
prefix, such as “Computer systems support collaborative 
work”, and “Computer systems support discussion systems”.  
Also, sentences might have the same suffix, such as “Case 
studies for string searching algorithms”, and  “fast string 
searching algorithms”. 

     It can be noticed from the above examples that there is a 
strong dependency between the prefixes and suffixes of the 
words or sentences.  Such a dependency is the weakest at the 
middle.  This suggests that it is not profitable to compare the 
pattern symbols strictly from left to right or from right to left.  
Thus it might be profitable to compare the pattern symbols 
from the middle to the boundaries of the pattern.  This is 
because the probability of finding the mismatch at the middle 
is higher than it is at the boundaries.  Thus, in the Infix-
Suffix-Prefix algorithm, the comparison will start at the 
middle part, then the suffix part followed by the prefix part. 
 
void Inf_Suf_Pref(char *Pat, long int PatLen, char *Text, long 
int TextLen) { 
 long int TextIx, PatIx, Pref,  Pref = PatLen /3;  
for (TextIx = 0; TextIx <= TextLen – PatLen+1; TextIx++) { 
  for( PatIx = Pref; PatIx <PatLen; PatIx++) 
   if(Text[TextIx + PatIx] != Pat[PatIx])  goto next; 
  if (PatIx == PatLen ) { 
   for(PatIx = 0; PatIx < Pref; PatIx++) 
    if (Text[TextIx + PatIx] != Pat[PatIx])  goto next; 
 cout<<"Occurence at"<<TextIx<<"to"<<TextIx + PatLen - 
1 << endl; 
  } 
  next: continue; 
 } 
 return; 
} 
 
Example: 

0 1 2 3 4 
Text[i] A C F X G Loop 
Pat[j] C F X   0 

  C F X  1 
   C F X 2 

Comparison ( Loop 0) starts from the middle (infix part) to 
the boundaries (suffix followed by prefix) (Pat[j] = ‘F’) ≠ 
(Text[i] = ‘C’).  Skipping right one position executes Loop 1.  
Each character in Pat matches the corresponding character in 
Text.  There is an occurrence at location 1 to 3.  When loop 2 
is executed, we get (Pat[j] = ‘F’) ≠ (Text[i] = ‘X’).  Moving 
one position ends the searching process.  So, to find all the 
occurrences of Pat in Text, 5 character-comparisons are 
needed, in addition to 4 number-comparisons. 

 

D. Selected Characters: Raita’s Algorithm 
    Raita designed an algorithm so that at each attempt it first 
compares the last character of the pattern Pat with the 
rightmost character in Text: if they match, then it compares 
the first character of Pat with the leftmost character of Text; if 
they match, then it compares the middle character of Pat with 
the middle character in Text.  Finally if they match, it 
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compares the other characters from left to right excluding the 
first and the last characters in the pattern.  It possibly 
compares again the middle character. 
 
void Raita(char *Pat, long int PatLen, char *Text, long int 
TextLen) { 
 long int TextIx, PatIx, mid, mid = PatLen/2;   
 for (TextIx = 0;TextIx<TextLen - PatLen+1;TextIx++ ) { 
   if(Text[TextIx + PatLen-1] == Pat[PatLen-1])  
// Check last character first 
   if(Text[TextIx] == Pat[0]) // Check the first character 

if(Text[TextIx + mid] == Pat[mid]) {   
// Check the middle character next  

          for(PatIx = 1; PatIx<PatLen-1;  PatIx++  ) 
       if(Text[TextIx + PatIx] != Pat[PatIx])  goto next; 
   cout<<"\nAn occurrence at location "<<TextIx <<"    to 
"<<TextIx+PatLen-1<<endl; 
             } 
    next: continue; 
 } 
 return; 
} 
Example: 

 0 1 2 3 4 
Text[i] A C F X G Loop 
Pat[j] C F X   0 

  C F X  1 
   C F X 2 

Searching process (Loop 0) starts with the last character in 
Pat at (Pat[j] = ‘X’) ≠ (Text[i] = ‘F’).  Skipping right one 
position produces Loop 1.  Each character in Pat matches the 
corresponding character in Text.  There is an occurrence at 
location 1 to 3.  Four character comparisons are required to 
find this occurrence.  Going to loop 2, we get (Pat[j] = ‘X’) ≠ 
(Text[i] = ‘G’).  Moving one position ends the searching 
process.  Thus, to find all the occurrences of Pat in Text, 6 
character comparisons are needed, in addition to 4 number-
comparisons.  

E. No Statistics Checking: Cycle Algorithm 
    The Cycle algorithm is based on the idea that mismatched 

characters should be given a high priority in the next checking 
operation.  In the checking step, there is no fixed comparison 
order.  The Cycle algorithm treats the pattern as a cycle 
logically.  At the beginning of search process, the algorithm 
applies the Naive principle.  In each checking step, it always 
starts comparing the mismatched character in the last step.  
When the comparison successfully turns around in one 
checking step, a complete match is found.  The following C 
code represents the checking step (More details in [10]). 
 
void Cycle((char *Pat, long int PatLen, char *Text, long int 
TextLen) { 
 long int  joffset, TextI =joffset=PatLen,  PatIx=0, i, k = 0; 
while(TextIx<TextLen+1) { 
  i = TextIx – joffset ; 
  if( Pat[PatIx] == Text[i] ) 
   for(k=2; k<=PatLen; k++) { 
    if(++i==TextIx) { 
     i=TextIx – PatLen ;     PatIx=0; 
    } 
    else PatIx++; 
     if(Pat[PatIx] != Text[i])  break;  
   }  

  if (k > PatLen ) { 
 cout << "\n Occurence at location " <<TextIx – PatLen  <<" 
to "<<TextIx – 1 <<;   k = 0; 
     } 
  joffset=TextIx – i ;       TextIx++;  
  }  // End while 
 return; 
} 

The variable joffset is used to compute the distance between 
TextIx from i before entering the checking step.  The variable i 
is used to indicate the current substring.  After the pattern is 
shifted to the next position and by using the joffset, the TextIx 
should be adjusted to align the PatIx since the pair of 
characters pointed by the PatIx and TextIx will be first 
compared (i.e., the mismatched character in the previous step). 
Example: 

0 1 2 3 4 
Text[i] A C F X G Loop 
Pat[j] C F X   0 

  C F X  1 
   C F X 2 

Searching process: Loop0: 
The naïve algorithm is applied first.  Comparison starts with 

the first character in Pat at (Pat[j] = ‘C’) ≠  (Text[i] = ‘A’).  
Skipping right one position executes Loop1.  Each character 
in Pat matches the corresponding character in Text.  There is 
an occurrence at location 1 to 3.  For this loop only, three 
character-comparisons and three number-comparisons are 
needed.  Going to loop 2, Pat[0] is checked first because the 
previous mismatched occurred at that location.  We get (Pat[j] 
= ‘C’) ≠ (Text[i] = ‘F’).  Moving one position ends the 
searching process.  Therefore, to find all the occurrences of 
Pat in Text, 5 character-comparisons are needed, in addition to 
6 number comparisons. 

 

III. CHARACTER-COMPARISON TO CHARACTER-ACCESS 
(CCCA) 

Let Text[0...n-1] and Pat[0...m-1] be arrays of characters.  
The array Text is the text and the array Pat is the pattern.  The 
problem is to find all the exact occurrences of Pat in Text.  
The text and the pattern are both words built on the same 
characters.  A string-matching algorithm is a succession of 
checking and skipping.  The aim of a good algorithm is to 
minimize the work done during each checking and to 
maximize the length distance during the skipping. 

     Most of the strings matching algorithms preprocess the 
pattern before the search phase.  The work that is done during 
the preprocessing phase helps the algorithm to maximize the 
length of the skips.  The preprocessing phase in this new 
CCCA algorithm helps in increasing the performance of the 
checking step by converting some of the character-comparison 
into character-access.  The performance of this algorithm 
comes from two directions: 
1)  By detecting mismatch quickly, and 
2) By converting a number-comparison and a character-

comparison into a character-access (such as converting 
condition of type if(index < n) into a condition of type 
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if(index)). 
Regarding the first direction, at the beginning of the search, 

the first character will be compared first.  If any mismatch is 
found, then that location will be stored in a variable called 
last_mismatch (see line 13 in CCCA algorithm).  After the 
pattern is shifted to align a new substring, the comparison will 
start at location last_mismatch (see line 9 in CCCA 
algorithm).  If there is a match, then the comparison process 
goes from left to right, including the compared character at the 
last_mismatch.  The idea here is that the mismatched character 
must be given a high priority in the next checking operation.  
After a number of checking steps, this leads to start the 
comparison at the rare character or at least frequency character 
without counting the frequency of each character in the text.   

Regarding the second direction, the following 
improvements are made: 
1) Programmers, normally, write the for-statement at line (8) 

in CCCA with the following style:  
    for(TextIx=0;TextIx<TextLen–PatLen+1;    TextIx++ ) { 
    This for-statement is changed into the following style: 
 for (TextIx = TextLen - PatLen;     TextIx;     TextIx-- ) { 
     In other words, the number comparison of condition type “ 

if( TextIx < TextLen – PatLen + 1)” is changed into a 
character access of condition type “if( TextIx)”. 

2) Again, the programmers write the for-statement at line (11) 
in CCCA with the following style: 

      for(PatIx = 0;  PatIx < PatLen ;   PatIx++  ) 
     This for-statement is changed into the following style: 
      for(PatIx = PatLen – 1;  PatIx;  PatIx--  ) 
      In the same way at line 8, the number comparison “if( 

TextIx < TextLen)” is changed into a character access “if( 
TextIx)”. 

3) Looking at lines (14) and (18) in CCCA algorithm, the 
statements “goto next” and “next: continue” are found.  
Programmers, normally, use the following style: 

 
(13)         last_mismatch = PatIx; 
(14)         break; 
(15)        } 
(16) if(PatIx == PatLen) cout<<"\nAn occurrence at location 
"<<TextIx <<" to "<<TextIx+PatLen–1; 
(17)                             } 

  
In other words, programmers use break instead of “goto 

next”, but they have to add a condition to test whether there is 
an occurrence or not (see line 16 above).  Thus, using the new 
style reduces the number of conditions. 

Converting the character-comparison into character-access:  
This conversion can be explained by the following example.  
Assume that we have the following Pat and Text. 

 0 1 2 3 4 
Text[i] A C F X G 
Pat[j] C F X   

 
To compare the character ‘C’ in Pat with the character ‘A’ 

in Text at location zero, programmers normally write the 
statement if(Text[i] == Pat[j]), where i = j = 0.  To convert 
this character-comparison into a character-access, a new array 

must be declared with alphabet size and initialized by zero, 
such as line 4 in CCCA: 

   int infix[ALPHABET_SIZE] = {0}; 
Performing line 6 in CCCA  infix[Pat[0]] = infix[‘C’] = 1 

sets the location ‘C’ in the array infix by one.  Executing the 
character-access at line 10,  if(infix[Text[TextIx]]), where 
TextIx = 0 and Text[0] = ‘A’.  This condition is equivalent to 
the condition if(infix[‘A’]) = 0, that produces false result (i.e., 
there is a mismatch).  Assuming that the character at location 
zero in Text is the character ‘C’, then line 10 

if(infix[Text[TextIx]])=if(infix[Text[0]])= if(infix[‘C’]) = 
1, produces true result (i.e., there is a match between the 
corresponding characters).  So, the condition if(Text[i] == 
Pat[j]) of type character-comparison is replaced by the 
condition if(infix[Text[TextIx]]) of type character-access.  
The condition at line 10 serves two things: 1) converting the 
character-comparison to character-access at Pat[0], and 2) 
Checking the character at location Pat[0] in advance before 
entering the for-statement at line 11.  This occurs because the 
value of index PatIx becomes zero at the end of the loop at 
line 11 and the control will exit the loop without checking the 
character at location Pat[0]. 
 
(1)  void  CCCA(char *Pat, long int PatLen, char *Text, long int 
TextLen)  
(2)  {  
(3)   long int TextIx, PatIx, last_mismatch; 
(4)   long int infix[ALPHABET_SIZE] = {0};  
(5)    /* Update infix table according to the first character in Pat */ 
(6)   infix[Pat[0]] = 1;  
(7)   last_mismatch =0; 
(8)   for (TextIx = TextLen - PatLen;  TextIx;  TextIx-- ) { 
(9)    if(Text[TextIx+last_mismatch]== Pat[last_mismatch]) 
(10)      if(infix[Text[TextIx]]) { 
(11)      for(PatIx = PatLen – 1;  PatIx;  PatIx--  ) 
(12)        if(Text[TextIx + PatIx] != Pat[PatIx]) { 
(13)          last_mismatch = PatIx; 
(14)          goto next; 
(15)        } 
(16) cout<<"\nAn occurrence at location "<<TextIx <<" to 
"<<TextIx+PatLen–1<<endl; 
(17)      } 
(18)      next: continue; 
(19)   } 
(20)   return; 
(21)  } 
 Example:  

0 1 2 3 4 
Text[i] A C F X G Loop 
Pat[j] C F X   0 

  C F X  1 
  C F X 2 

Searching process: Loop 0: 
The Naïve algorithm is applied first.  Comparison starts 

with the first character in Pat at (Pat[j] = ‘C’) ≠ (Text[i] = 
‘A’).  Skipping right one position produces Loop 1.  Because 
the mismatch occurred at location zero in the previous check, 
comparison starts with the first character in Pat at (Pat[j] = 
‘C’) == (Text[i] = ‘C’).  There is a match between the two 
corresponding characters.  The character ‘C’ in Text will be 
compared again with the corresponding character ‘C’ in Pat 
through the character-access test if(infix[Text[TextIx]]) = 
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if(infix[Text[1]]) = if(infix[‘C’]) = 1, produces true result (i.e., 
there is a match).   The character at location zero in Pat will be 
checked only twice, if the mismatch occurred at Pat[0] in the 
previous check and there is a match at the current check. 
Otherwise it will be checked once.  Each character in Pat 
matches the corresponding character in Text.  There is an 
occurrence at location 1 to 3.  For this loop only, three 
character-comparisons, one character-access, and one number-
comparison are needed.  Going to loop 2, Pat[0] is checked 
first because the previous mismatched occurred at that 
location.  We get (Pat[j] = ‘C’) ≠ (Text[i] = ‘F’).  Moving one 
position ends the searching process.  Thus, to find all the 
occurrences of Pat in Text, 5 character-comparisons are 
needed, in addition to one character-access and 4 number 
comparisons. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
In this experiment, the six algorithms Naive, BM, 

Inf_suf_Pref, Raita, Cycle, and the new algorithm CCCA were 
implemented in C++ and compared through searching English 
text with a size more than two mega characters (exactly 
2,006,655 characters).  This text contains 76 different 
characters.  The tests ran on Intel(R) Pentium(R) 4 PC with 
CPU speed 2.40GHz, 246MB RAM, and running Windows 
XP professional operating system.  A C++ program was 
designed to select randomly 3000 patterns.  The pattern length 
ranges from 3 to 93 characters.  The average number of 
occurrences ranges from 1 to 1158.  The cost of the searching 
process to find all the occurrences of the different patterns in 
each group in Text is measured by finding: 

1) The average number of first checking, 
2) The average number of second checking, 
3) The average number of total checks, and 
4) The search clock time. 
     The results of the experiment are presented in Table I 

and in Table II.  The average number of checks is presented in 
Table I.  The average number of 1st checks ranges from 
1,866,502 (algorithm no. 3) to 1,964,341 (algorithm no. 5).  
Intuitively, the higher the average number of checks in the 
first check at the checking step, the better the algorithm is.  
One can notice that the average number of checks by using the 
new CCCA algorithm is higher than that when using each one of 
the other algorithms, except the Cycle algorithm (number 5).  
Furthermore, the average number of second checks by the 
Cycle algorithm is smaller than that when using CCCA.  On 
the other hand, the average number of total checks required by 
CCCA is much smaller than the average number of total 
checks required by Cycle (4,119,005 vs. 6,130,189).  
Furthermore, Table II shows that the time required to find all 
the occurrences of Pat in Text by using Cycle and CCCA is 
47.985 sec and 30.531 sec, respectively.  In other words, by 
using CCCA, the time required by Cycle is reduced by 
57.17%.  This result is expected because the Cycle algorithm 
needs more character comparisons than CCCA to find all the 
occurrences of Pat in Text.  At each check, the Cycle 

algorithm needs one number-comparison at each time the 
index TextIx and PatIx adjusted to point to the next pair of 
characters to examine whether the PatIx reaches the end of the 
pattern.  If the check is true, the PatIx will be turned back to 
the first character in the pattern. 

Table I also presents the average number of the second 
checks.  It ranges from (36,067) to (127,680).  One can notice 
that the average number of checks by using CCCA is smaller 
than the average number of checks using other algorithms, 
except the Cycle algorithm (see the previous clarification).  
Intuitively, the smaller the average number of the second 
checks, the better the algorithm is.  In other words, the number 
of comparisons required by an algorithm to find all the 
occurrences of Pat in Text in the second check equals the 
average number of second checks multiplied by two.  Thus 
increasing the average number of first checks leads to 
decreasing the average number of second checks.  Of course, 
this leads to decreasing the average number of comparisons 
and consequently reduces the time required to find the 
occurrences of Pat in Text. 

Table I presents the average number of total checks 
required by each algorithms to find all the occurrences of the 
3000 patterns in text.  It ranges from 4,119,005 (algorithm 
CCCA) to 6,340,080 (algorithm Inf_Suf_Pref).  The average 
numbers of total checks required by other algorithms are 
reduced from 1.4% (algorithm Raita) to 35% (algorithm 
Inf_Suf_Pref).   

    Table II presents the clock time required to find all the 
occurrences of all patterns in Text.  The clock time includes 
the time required for reading and pre-processing the patterns.  
The time ranges from 30.531 seconds (CCCA algorithm 6) to 
51.187 seconds (BM algorithm 2).  By using the new 
algorithm CCCA, the clock times required by the other 
algorithms are reduced by 22.0% (Raita’s algorithm) to 
40.35% (algorithm BM). 

     In order to test the effect of text size and text type on 
algorithms performance, the same experiment was repeated, 
but with different text sizes and different text type.  The 
English text size was increased from two mega characters to 
three mega characters.  Another file was created and filled 
randomly with three mega characters of type DNA text.  This 
file contains four different characters, including the letters A, 
C, G, and T.  Table III presents the results of this experiment. 

     Regarding the English text, the clock time (in seconds) 
ranges from 15.38 (CCCA) to 26.75 (Inf_Suf_Pref), 30.69 to 
53.47, and from 46.02 to 79.8 with text size 1M, 2M, and 3M 
characters respectively.  With English text size 3M and by 
using the new algorithm CCCA, the clock times required by 
the other algorithms are reduced by 22.13% to 42.33%. 

     For the DNA text, the clock time (in seconds) ranges 
from 32.39 (CCCA) to 47.03 (Cycle), 45.48 to 75.53, and 
from 58.49 to 97.53 seconds with DNA text size 1M, 2M, and 
3M characters respectively.  With DNA text size 3M and by 
using the new algorithm, the clock times required by the other 
algorithms are reduced by 17.18% to 40.03%. 

     From Table III, one can notice that the time required to 
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find all the occurrences of patterns in text by using DNA text 
(58.49 sec to 97.53 sec) needs more time than the time needed 
by using English text (46.02 sec to 79.8 sec).  One can 
conclude from these results that reducing the pattern length 
and/or decreasing the alphabet size decrease the string 
searching algorithms performance.  Figure 1 presents the 
results of the clock time required by the different algorithms 
using English text.  Figure 2 presents the results of the clock 
time required by the different algorithms using DNA text 

  From these results, one can notice that the CCCA 
algorithm gains its performance from more than one direction, 
including: 
1) Converting character-comparison into character-access:  

The CCCA converts the first condition of Pat from 
character-comparison (Text[TextIx] == Pat[PatIx]) into 
character access (if(infix[Text[TextIx]]) with a reasonable 
overhead cost (see section 3). 

2) Character-access vs. number-comparison:  The CCCA uses 
the condition type character-access (if(i)) (needs 40% less 
time to be executed than the time needed by any other type 
of conditions) in the main loops rather than using the 
number-comparison (if (TextIx < TextLen)). 

 3) The starting point of checking: The CCCA algorithm starts 
the comparison at the latest mismatch in the previous 
checking.  This increases the probability of finding the 
mismatch faster if there is a mismatch.  Finding the 
mismatch faster decreases the number of comparisons 
required to find the Pat in Text.  
     In order to test the significant of the obtained results, a 

GLM analysis of variance was performed.  From this analysis, 
the exisitence of variability of the different factors levels 
(algorithm name, text type, text size, …etc ) is concluded.  By 
using LSD method of multiple comparisons (Table IV), one 
can notice that CCCA has the minimum Mean value (38.075).  
So, CCCA has the highest performance among the other 
algorithms. 

TABLE  IV 
MEAN AND STANDARD DEVIATION 

 
Algorithm name 

 
Mean 

 
Std. Deviation 

Naïve 52.2233 20.993 
BM 57.8117 23.2015 

Inf_suf_Pref 60.31 24.0978 
Raita 46.5833 18.6491 
Cycle 60.4517 26.1155 
CCCA 38.075 15.0775 

V. CONCLUSIONS 
     A new algorithm Character-Comparison to Character-

Access (CCCA) is developed and compared with five 
algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and 
Cycle.  The CCCA algorithm uses both the character-access 
and the character-comparison tests at the checking step while 
the rest of algorithms use only the character-comparison.  An 
experiment was performed to evaluate the new algorithm 
CCCA. 

 
TABLE I 

A COMPARISON IS PRESENTED BETWEEN CCCA AND THE OTHER FIVE  ALGORITHMS   INCLUDING, NAÏVE, BM, INF_SUF_PREF, RAITA, AND CYCLE, IN TERMS OF 
THE AVERAGE NUMBER OF FIRST AND SECOND CHECKING (NUMBER  OF  PATTERNS = 3000) AND THE  PERCENTAGE OF IMPROVEMENTS 

 
 
 

Algo-
rithm 
No. 

 
 
Algor-ithm 
name 

 
Average number 

of 1st check  

 
Average 
number 
of 2nd 
checks 

 
Average 

number of 
Total of 
checks 

Improvement 
of  CCCA vs. 

other 
algorithms in 

1st check 

Improvement 
of  CCCA vs. 

other 
algorithms in 

2nd  check 

Improv. of  
CCCA vs. other 
algor. In Ave. 

Total of   checks 

1 Naive 1,868,933 123,337 4,328,382 2.75%     56.06%    4.8 % 
2 BM 1,868,463 123819 4,329,272 2.77%     56.67%     4.9% 
3 Inf_suf_Pref 1,866,502 125891 6,340,080 2.87%     59.29%    35 % 
4 Raita 1,868464 127680 4,175,895 2.77%     61.56%    1.4 % 
5 Cycle 1,964,341 36067 6,130,189 - 2.22%   - 54.36%   32.8  % 
6 CCCA 1,921,740 79032 4,119,005 0.00%     0.00%     0.0% 

 
TABLE II 

A COMPARISON  BETWEEN CCCA AND THE OTHER FIVE  ALGORITHMS:  NAÏVE, BM, INF_SUF_PREF, RAITA, AND CYCLE IN TERMS OF THE CLOCK TIME REQUIRED 
TO FIND THE  OCCURRENCES OF 3000 PATTERNS IN TWO MEGA BYTES OF TEXT AND THE PERCENTAGE OF IMPROVEMENTS 

 
Algorithm 

No. 
 

Algorithm name 
Clock time in Seconds (Sec): 

Single Run 
Improvement of  CCCA vs. other 

algorithms 
1 Naïve 43.984 Sec. 30.59% 
2 BM 51.187 Sec. 40.35% 
3 Inf_suf_Pref 49.860 Sec. 38.77% 
4 Raita 39.110 Sec. 22.0% 
5 Cycle 47.985 Sec. 36.37% 
6 CCCA 30.531 Sec. 0.00% 
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TABLE III 

A COMPARISON  BETWEEN CCCA AND THE OTHER FIVE  ALGORITHMS: NAÏVE, BM, INF_SUF_PREF, RAITA, AND CYCLE IN TERMS OF THE CLOCK TIME REQUIRED 
TO FIND THE  OCCURRENCES OF 3000 PATTERNS IN TWO MEGA BYTES OF TEXT AND THE PERCENTAGE OF IMPROVEMENTS 

 
Clock time in Seconds (Single Run) using 

English text with different sizes 
Clock time in Seconds (Single Run) using 

DNA text with different sizes 
Algorithm 

No. 
 

Algorithm 
name 1 Mega 

characters 
2 Mega 

characters 
3 Mega 

characters 
1 Mega 

characters 
2 Mega 

characters 
3 Mega 

characters 
1 Naïve 22.54   Sec 44.64   Sec. 68.77   Sec 37.75   Sec 60.81   Sec 78.83   Sec 
2 BM 25.41   Sec 50.72   Sec. 75.92   Sec 40.58   Sec 66.61   Sec 87.63   Sec 
3 Inf_suf_Pref 26.75   Sec 53.47   Sec 79.8    Sec 41.81   Sec 69.25   Sec 90.78   Sec 
4 Raita 19.98   Sec 39.53   Sec 59.1    Sec 34.5    Sec 55.23   Sec 71.16   Sec 
5 Cycle 23.84   Sec 47.45   Sec 71.33   Sec 47.03   Sec. 75.53   Sec. 97.53   Sec 
6 CCCA 15.38   Sec 30.69   Sec 46.02   Sec 32.39   Sec 45.48   Sec 58.49   Sec 
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 Fig. 1 The clock time (in seconds) required to find all the occurrences of 3000 English patterns in English Text,  by 
using the six different algorithms, is plotted against text sizes (1M, 2M, and 3M characters) 
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 Fig. 2 The clock time (in seconds) required to find all the occurrences of 3000 DNA patterns in DNA Text, using 

the six different algorithms, is plotted against text sizes (1M, 2M, and 3M DNA characters)
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There are many different criteria used to compare between the 
different algorithms, including, the number of comparisons, 
and the search clock time. 

In comparison between CCCA and the rest of algorithms 
and according to the experiment, we have the following 
results: 

1) The average number of first check and the average 
number of second check required by Naive, BM, 
Inf_Suf_Pref, Raita, and Cycle are improved by CCCA 
in the following ranges from –2.22% (Cycle algorithm) 
to 2.87%   (Inf_suf_Pref) and from –54.36% to 61.56% 
(see Table I). 

2) The average number of total checks required by other 
algorithms is improved by CCCA in the range from 
1.4% (Raita) to 35% (Inf_Suf_Pref) (Table I). 

3) Decreasing the pattern length and/or the alphabet size 
(such as DNA) decreases the system performance (see 
Table III, Figure 1, and Figure 2) 

4) The clock time required by the other algorithms is 
improved by CCCA in the range of percentage from 
22% (Raita) to 40.35% (BM) (see Table II). 

As a result, during the checking operation, converting the 
conditions of type character-comparison and number-
comparison into character-access effects on the time required 
to find the occurrences of Pat in Text.  Furthermore, starting 
the checking at the latest mismatch in the previous step 
reduces the number of comparisons. 

The algorithm CCCA in this paper concentrates on the 
performance of the checking operation.  The Algorithm 
Multiple Reference Characters Algorithm (MRCA)[16] 
concentrates on the performance of the skipping operation.  
One might look for an algorithm that concentrates on the 
performance of both operations checking and skipping (i.e., 
all in one).  Such work needs to be investigated in further 
studies. 
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