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Abstract—Fabric textures are very common in our daily life. 

However, the representation of fabric textures has never been explored 
from neuroscience view. Theoretical studies suggest that primary 
visual cortex (V1) uses a sparse code to efficiently represent natural 
images. However, how the simple cells in V1 encode the artificial 
textures is still a mystery. So, here we will take fabric texture as 
stimulus to study the response of independent component analysis that 
is established to model the receptive field of simple cells in V1. We 
choose 140 types of fabrics to get the classical fabric textures as 
materials. Experiment results indicate that the receptive fields of 
simple cells have obvious selectivity in orientation, frequency and 
phase when drifting gratings are used to determine their tuning 
properties. Additionally, the distribution of optimal orientation and 
frequency shows that the patch size selected from each original fabric 
image has a significant effect on the frequency selectivity. 
 

Keywords—Fabric Texture, Receptive Filed, Simple Cell, Spare 
Coding.  

I. INTRODUCTION 

INCE the Nobel Prize winning work of Hubel and Wiesel it 
has been known that the selectivity of orientation, 

frequency and phase are the most important features of simple 
cells in the primary visual cortex (V1), which is also one of the 
most long standing hypothesis of neural representation for 
natural image [1]. At the level of primary visual cortex there is 
a large increase in the number of neurons. Hence, at this stage 
the idea of redundancy reduction cannot be motivated by a need 
for compression. However, the redundancy reduction principle 
is not limited to be useful compression only. More generally, it 
can be interpreted as a special form of density estimation where 
the goal is to model the statistics of the input by finding a 
mapping which transforms the data into a representation with 
statistically independent coefficients. In an influential paper, 
Olshausen and Field showed how the classical receptive fields 
of simple cells in V1 can be understood in a sparse coding 
framework [2]–[4], [5]. Yet numerous studies, many taking 
advantages of the fact that simple cells are the earliest in the 
visual pathway to encode input from both eyes, have 
demonstrated that receptive field properties are modified by 
visual experience during development [6]. In the research of 
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MacEvoy et al, they found that patterns of three shrew V1 
activity evoked by superimposed equal-contrast gratings were 
predicted by the averages of patterns evoked by individual 
component gratings [7]. The success of the approach proposed 
to use multielectrode recording techniques to record neuronal 
activity at multiple sites in V1 and then use support vector 
machines to decode attended stimuli as stimulus contrast 
suggested that visual attention and stimulus contrast were 
represented by largely separable codes [8]. By analyzing the 
simultaneous responses of many cells in monkey visual cortex, 
Shriki et al pointed out that information about the orientation of 
visual stimuli can be extracted reliably from spike latencies on 
very short time scales [9]. The latest research suggested that 
information processing in primary sensory cortices could rely 
on different coding strategies across different layers [10].  

Despite widespread research that natural images and scenes 
can be represented well by sparse coding that is coming from 
the response characteristics of simple cells in V1, there is no 
study that takes artificial fabric texture as stimuli to explore the 
features of simple cells. The purpose of this research is to 
investigate the mechanism of texture perception and explore 
the characteristics of receptive field of simple visual cell when 
various fabrics are used as visual stimuli. Textile fabrics are 
selected for research targets, because they can be systematically 
prepared through weaving machine by adjusting fiber 
materials, yarn thickness, yarn density, fabric structure and 
surface color. Moreover, everyone has a variety of memories 
about fabrics derived from experiences of viewing, touching, 
and wearing them[11]. 

II. MODEL OF RECEPTIVE FIELD OF PRIMARY VISUAL CORTEX 

A. Model of Receptive Field 

In this paper, we use independent component analysis to 
stimulate the receptive field of primary visual cortex. The 
generative model in ICA is defined by a linear transformation 
of the latent independent components [12]. If I(x,y) denotes the 
pixel grey-scale values in an image, or in practice, a small 
image patch. In ICA, an image patch is generated as a linear 
superposition of some features Ai, 
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The Si are coefficients that are statistically independent and 

non-gaussian when considered as random variables, which are 
the fundamental assumptions to define ICA model. These 
assumptions are enough to enable estimation of the Si, if given a 
large enough sample of image patches. 
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As typical in linear models, estimation of the Ai is equivalent 
to determine the values of the Wi which give the Si as outputs of 
linear feature detectors with some weights Wi, 
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for each image patch. An important point to note is the relation 

between the feature vectors iA  and the feature detector weights 

Wi. The coefficients Wi are obtained by inverting the matrix of 
the Ai, which means that the Ai can be obtained by multiplying 
the Wi by the covariance matrix of the data. Thus, Ai and Wi 
have essentially the same orientation, location and frequency 
tuning properties. However, it is often the Wi that are more 
interesting, since they are the weights that are applied to the 
image to actually compute the Si, and in neurophysiological 
modeling, they are more closely connected the receptive fields 
of simple vision cells [13], [14].  

There are many different ICA algorithms which differ in the 
assumptions made and also in the optimization technique 
employed. The choice of the particular ICA algorithms used 
here was guided by a set of requirements that arise from the 
specific problem setting. We would like to use an ICA 
algorithm, which gives the ICA image basis the best chance for 
the comparison with other image representations. Therefore, 
we will use a pre-whitened ICA algorithm called FastICA [15], 
[12]. For the initialization with FastICA, we use the Gaussian 
non-linearity, the symmetric approach and a tolerance level of 
10-5. 

B. Stimuli 

In experiment, we resort to the dataset that includes 140 
classical fabric images. This color image dataset is based on the 
collection of 70 samples that contain woven, knitted and 
jacquard fabrics provided by four different textile factories. For 
each fabric sample, we select two regions by a scanner called 
Epson GT20000. The scanning resolution and save format of 
each image is 300dpi and JPEP. Some of the 140 fabric images 
are demonstrated in Fig. 1.  

During subsequent processing all images were transformed 
to gray ones. All images come at a resolution of 512×512 
pixels. If each image circa 357 patches of size n × n pixels are 
drawn at random locations, circa 50000 patches are gotten in 
total. For colorful images each is reshaped as an n × n 
dimensional vector. In experiment, we respectively set the size 
of each selected patch as 16 × 16 pixels and 32 × 32 pixels for 
comparison. However, in the ICA program, the dimensionality 
of a data sample is thus reduced to 160 dimensions. To discuss 
the effect of patch size on the characteristics of primary visual 
receptive field extracted with ICA model, we will repeat the 
same analysis on a whole range of different patch sizes that 
cover 2 × 2 pixels, 4 × 4 pixels, 8 × 8 pixels, 16 × 16 pixels, and 
32 × 32pixels. 

The statistics of the average illumination in the image 
patches, the DC component, differs significantly from image to 
image. Therefore, the DC component was firstly separated 
from the patches before further transformation. 

 

 

Fig. 1 Some fabric images 
 

III. RESULTS AND DISCUSSION 

A. Full Set of Receptive Fields Learned from Fabric Textures 

 In experiment, we randomly sampled 50000 image patches 

of 32 × 32 pixels, and applied canonical preprocessing to 
reduce the dimension to 160, which meant retaining 15.63% of 
the dimensions. To model the receptive fields of simple vision 
cells in primary visual cortex with fabric textures as stimuli, the 
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FastICA algorithm was implanted to calculate the receptive 
fields Wi shown in (2). The obtained receptive fields are shown 
in Fig. 2. To illustrate what has been learned from fabric 
textures, the receptive fields are coded so that the grey value of 
a pixel means the values of the coefficient at that pixel. Grey 
pixels mean zero coefficients. After converting the receptive 
fields to binary images by global thresholding, we can see much 
clearer details under higher contrast in Fig. 3. 

Observing carefully, we can see that these receptive fields 
having interesting properties. Firstly, they are localized in 
space: most of the coefficients are practically zero outside of a 
small receptive field. Secondly, the receptive fields are also 
oriented: most of the orientations are similar to the ones of 
fabric textures. 

Furthermore, they are multiscale in the sense that most of 
them seem to be coding for small structures whereas a few are 
coding for large structures. 

 

 

Fig. 2 Receptive fields of simple vision cells extracted from fabric 
textures 

 

 

Fig. 3 Binary receptive fields as shown in Fig. 2 

B. The Tuning Properties of Receptive Fields 

We can analyze the receptive fields Wi by looking at the 
responses when gratings, i.e., sinusoidal functions, are input to 
them. In other words, we create artificial images which are two 
dimensional sinusoids and compute the outputs Si. Two 
sinusoidal functions used in here are 

 

       , sin 2 sin cosof x y x y             (3) 

       , cos 2 sin cosef x y x y          (4) 

 
where θ is the orientation, i.e., angle of the oscillation, the x axis 
corresponding to θ=0. The parameter α gives the frequency. x 
and y are the coordinates of one pixel in the image patch. The 
two functions give two oscillations in different phases.  

If the number and values of orientations, frequencies, and 
phases are set, we can compute these functions for predefined 
orientations and frequencies. We normalize the obtained 
functions to unit norm. Then we calculate the dot-products of 
the receptive fields Wi with each of the gratings. We can then 
compute the optimal orientation and frequency by finding the θ 
and α that maximize the sum of the squares of the two 
dot-products corresponding to the sin and cos functions. That is 
to say the optimal orientation and frequency can be searched by 
solved the optimization problem described as 
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s. t. 0 , 0 / 2k j n      , 1 , 50k j       (6) 

 
where n is the number of columns of each image patch. x and y 
are the coordinates of the pixels in each image patch.  

In neurophysiology, such analysis of tuning properties of 
visual cells is routinely performed with drifting gratings. 
However, we do not need to use drifting gratings in our work 
because the receptive fields learned from fabric textures are 
only mathematic models but neurobiological cells.  

If the optimal frequency and orientation parameters are 
extracted for each receptive field by maximizing (5) subject to 
(6), the selectivity characteristics of orientation, frequency can 
be analyzed by changing one of the parameters in the grating. 
To analyze the selectivity to phase, we will simulate the 
response by simply taking the dot-product of Wi with gratings 
whose phase goes through all possible values, and still keeping 
the orientation and frequency at optimal values. In Fig. 4, the 
analysis for the first ten receptive fields in Fig. 2, i.e., the first 
ten receptive fields on the first row are shown. From left to 
right, the change in frequency, orientation and phase are 
demonstrated, as shown in Fig. 4. What we see is that all the 
cells are tuned to specific values of frequency, orientation, and 
phase: any deviation from the optimal values decreases the 
response. 

It is also interesting to look at how the optimal orientations 
and frequencies are related to each other. This is shown in Fig. 
5.  
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Fig. 5 Scatter plot of the frequencies and orientations of receptive 
fields 

 
One can see that the 160 receptive fields cover all possible 

combinations of these variables, even though a few receptive 
fields have nearly the same optimal frequency and orientation. 
In Fig. 5, the highest frequencies are much lower (approx. Five 
cycles per patch) than the Nyquist frequency.  

Another way of looking at the distributions is to plot the 
histograms of the two parameters separately, as shown in Figs. 
6 and 7. Here we see again that most of the receptive fields have 
very high frequencies. The orientations are covered rather 
uniformly, but there are receptive fields with horizontal and 
vertical orientation. It is to say that fabrics have obvious stripes 
in horizontal and vertical directions. This is another expression 
of the directionality of fabric textures, which is one of the 
intrinsic characteristics because of the weaving processing. 

 

 

Fig. 6 Histograms of optimal frequencies 
 

 

Fig. 7 Histograms of optimal orientations 
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                                                           (a) Frequency                             (b) Orientation                                    (c) Phase 

Fig. 4 Tuning curves of the first ten receptive fields in Fig. 2 
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C. The Tuning Properties of Receptive Fields 

Our motivation to discuss the effect of patch size on the 
tuning characteristics of receptive fields is to explore the 
correlation of optimal frequencies and optimal orientations 
when different image sizes are selected. In experiment, we set 
the patch size to be 2 pixels × 2 pixels, 4 pixels × 4pixels, 8 
pixels × 8 pixels, 16 pixels × 16 pixels and 32 pixels × 32 
pixels, respectively. One point can be easily found out from the 
following four figures is that the receptive fields become more 
and more anisotropic when the patch size increases from 2 
pixels × 2 pixels to 32 pixels × 32 pixels, which is supported by 
the phenomenon that the distribution of optimal orientations 
becomes more discrete. Another conclusion can be induced is 
that the distribution of the optimal frequencies becomes more 
scattering and much evener. 

 

 

(a) The patch size is 2 pixels × 2 pixels 
 

 

(b) The patch size is 4 pixels × 4 pixels 

 

(c) The patch size is 8 pixels × 8 pixels 
 

 

(d) The patch size is 16 pixels × 16 pixels 

Fig. 8 The distribution of optimal orientations and optimal frequencies 
when different patch sizes are used 

IV. CONCLUSION 

The selectivity of orientation, frequency and phase of simple 
cell in V1 are explored when fabric textures are used as 
stimulus. Experiment results indicate that the receptive fields of 
simple cells generated from independent component analysis 
have distinct orientation and frequency selectivity. The optimal 
orientation of each receptive field is determined by the 
dominant direction of the fabric textures. With the increase of 
patch size selected from each original fabric image, the optimal 
frequencies decided by drifting gratings become more 
scattering. Furthermore, the binary receptive fields include 
similar structure elements that existing in the original fabrics if 
the patch size is selected large enough. 
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