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The Mutated Distance between Two Mixture Trees
Wan Chian Li, Justie Su-Tzu Juan*, Yi-Chun Wang, and Shu-Chuan Chen

Abstract—The evolutionary tree is an important topic in bioinfor-
mation. In 2006, Chen and Lindsay proposed a new method to build
the mixture tree from DNA sequences. Mixture tree is a new type
evolutionary tree, and it has two additional information besides the
information of ordinary evolutionary tree. One of the information
is time parameter, and the other is the set of mutated sites. In
2008, Lin and Juan proposed an algorithm to compute the distance
between two mixture trees. Their algorithm computes the distance
with only considering the time parameter between two mixture trees.
In this paper, we proposes a method to measure the similarity of
two mixture trees with considering the set of mutated sites and
develops two algorithm to compute the distance between two mixture
trees. The time complexity of these two proposed algorithms are
O(n2 ×max{h(T1), h(T2)}) and O(n2), respectively.
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I. INTRODUCTION

THE phylogenetic trees or evolutionary trees are described

in the relationship of species. Using species information

to build phylogenetic trees is a popular problem. The species

information is including species external, species frame and

DNA sequence, etc. There are many methods to build trees,

like neighbor-joining [1], maximum likelihood [2], and so on.

In this topic, to propose a method for building trees must

do bootstrapping. Different trees could be built by a data set,

even if using the same method [3]. Besides, the comparison of

phylogenetic trees is necessary when we execute phylogenetic

queries on databases of phylogenetic trees [4]. Thus, this is an

important problem that how to measure distance between two

trees for tree comparison. It is difficult to compare two trees.

Unlike the comparison of two numbers or points in space [5],

there does not have obvious or natural way to measure the

distance between two trees. Many tree comparison metrics

have been proposed before, including the partition metric [6],

the quartet metric [7], the nearest neighborhood interchange

metric [8], the metric from the nodal distance algorithm [9],

etc. In 2006, Chen and Lindsay proposed a new method to

build the mixture tree from DNA sequences [10]. Mixture

tree is a type of evolutionary tree. Mixture tree has two

information. One of the information is time parameter, and

the other is the set of mutated sites. Fig.1 shows a mixture

tree.

In 2008, Lin and Juan gave a definition, called mixture

distance, and the corresponding algorithm to compute distance

between two mixture trees [11]. However, their algorithm

only considers the time parameter for computing the distance
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Fig. 1. A mixture tree M1 (source: [10]).

between two mixture trees. Moreover, the time complexity

of this algorithm is O(nlogn). In this paper, we give a new

definition of distance, called mutated distance, between two

mixture trees by considering the set of mutated sites. And we

also give a corresponding algorithm to computes the mutated

distance between two mixture trees. Then, we also give an

improved algorithm, such that the time complexity of this

algorithm is O(n2). We use the path difference metric [12]

concept to define the distance and design our algorithm by

using the concept of Lin and Juan’s algorithm [11]. Hence,

it is easy to combine our algorithm with Lin and Juan’s

algorithm [11].

Path difference metric [5] - It was mentioned by Penny

and Hendy in 1985. Let dij(T ) denote the number of

edges in the path which join two leaves that labeled by i

and j in T , and let d(T ) be the associate vector obtained

by fixed ordering of the pairs(i, j). dp(T1, T2) denotes

the Euclidean distance between the two vector d(T1) and

d(T2). That is, dp(T1, T2) is the square root of the sum

of the squares of the difference dij(T1) − dij(T2). The

distance between two phylogenetic trees T1 and T2 is defined

as Distance(T1, T2) = dp(T1, T2) = ||d(T1) − d(T2)||2.

Williams and Clifford [13] defined a similar dissimilarity

measure on trees, except using an L1-norm rather than

L2-norm. That is, Distance(T1, T2) = dp(T1, T2) =
||d(T1)− d(T2)||1.

The mixture distance [11] - In 2008, Lin and Juan

proposed mixture distance denoted by dm, as the sum of the

difference of PTi
(x, y) for any two leaves x, y. That is, the

mixture distance between two mixture trees T1, T2 is defined

as dm(T1, T2) = Σx,y∈V ′ |PT1
(x, y) − PT2

(x, y)|, where V ′

is the set of leaves of T1 (equals to the set of leaves of

T2) and PTi
(x, y) denote the time parameter of the least
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common ancestor of two leaves x, y in tree Ti for i = 1, 2.

Their corresponding algorithm, called the mixture distance

algorithm, only compares the least common ancestor of two

leaves in two trees. For an internal node in T1, the mixture

distance algorithm finds all pairs of leaves which the least

common ancestor is this internal node. Then, this algorithm

finds the least common ancestors of those leaves in T2, and

calculates the distance. In order to implement this approach,

similar to [12], they used two colors to color leaves of T2

according to T1.

Definition 1. [14] There are many topological spaces in which

the topology is derived from a notion of distance. A metric for

a set X is a function d on the cartesian product X×X to the

non-negative reals such that for all points x, y and z of X ,

(a) d(x, y) = d(y, x),
(b) (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z),
(c) d(x, y) = 0 if x = y, and

(d) x = y if d(x, y) = 0.

The last one of these conditions is inessential for many

purposes. A function d which satisfies only (a), (b) and (c) is

called a pseudo-metric.

In Section II, we define a new metric, the mutated distance,

to measure the distance between two mixture trees, and we

also show that this metric is a pseudo-metric. In Section III,

a algorithm for the mutated distance is proposed. Section IV

will proposes an improved algorithm for the mutated distance.

II. THE METRIC: MUTATED DISTANCE

Throughout this paper, we only discuss the full binary tree.

A fully resolved tree is a tree in which every node bifurcates

[15], and it also is called a full binary tree. The full binary

tree is a tree T = (V,E) with V nodes and n leaves, and

each node vi has either two children or no child. The node

without child is called a leaf, which is associated with a

species. Because we discuss mixture trees, every node vi will

be associated with a set MST (vi), mutated sites set, that

records the set of all sites of a species mutation occuring

from its father. Fig. 2 shows the data tree of the mixture tree

in Fig. 1.

Fig. 2. A data tree for the associated mixture tree M1.

In a tree T = (V,E), let V ′(T ) be the leaves vertex set

of T . Let LCAT (x, y) be the least common ancestors of

x, y ∈ V ′(T ) in T . Let VT (x, y)-path be the vertex set of

(x, LCAT (x, y))-path−LCAT (x, y) in T .

The notation △ is symmetric difference of two sets.

Let LCAT (x, y) be the least common ancestors of

x, y ∈ V ′(T ) in T . Let VTi
(x, y)-path be the vertex set

of (x,LCAT (x, y))-path−LCAT (x, y) in T . Let VTi
(x, y)-

path = {v1 = x, v2, . . . , vt =LCAT (x, y)}, and ST (x, y) be

the set of MST (v1)△MST (v2) △ . . .△MST (vt − 1).
Define d′(T1, T2) be the mutated distance between

two mixture trees, T1 and T2, by d′(T1, T2) =∑
x,y∈V ′ (|ST1

(x, y)△ ST2
(x, y)|+ |ST1

(y, x)△ ST2
(y, x)|)

where V ′ = V ′(T1) = V ′(T2).
From following Theorems 1, 2, 3 and Example 1, we

prove that our metric is a pseudo-metric.

Theorem 1. The mutated distance d′ satisfies d′(A,B) =
d′(B,A) for any two trees A, B.

Proof. Because |SA(x, y)△SB(x, y)| = |SB(x, y)△SA(x, y)|
and |SA(y, x) △ SB(y, x)| = |SB(y, x) △ SA(y, x)| , for

any two leaves x, y. d′(A,B) =
∑

x,y∈V ′ |SA(x, y) △
SB(x, y)| + |SA(y, x) △ SB(y, x)| =

∑
x,y∈V ′ |SB(x, y)△

SA(x, y)|+ |SB(y, x)△ SA(y, x)| =d′(B,A)

Theorem 2. The mutated distance d′ satisfies the triangle

inequality.

Proof. Let T1, T2 and T3 are three mixture trees with the

same set of leaves V ′. By the definition,

d′(T1, T2) =
∑

x,y∈V ′(|ST1
(x, y) △ ST2

(x, y)| + |ST1
(y, x)

△ST2
(y, x)|), d′(T2, T3) =

∑
x,y∈V ′ |ST2

(x, y) △ ST3
(x, y)|

+|ST2
(y, x) △ ST3

(y, x)| and d′(T3, T1) =∑
x,y∈V ′ |ST3

(x, y)△ ST1
(x, y)|+ |ST3

(y, x)△ ST1
(y, x)|

Our goal is to prove d′(T1, T2) + d′(T2, T3) ≥ d′(T3, T1).
Since the distance is the sum of two terms of symmetric

difference operations. So, if we prove that one of these two

terms satisfies triangle inequality, the whole inequality will

hold

Let S1(x, y) = |ST1
(x, y) △ ST2

(x, y)| + |ST2
(x, y) △

ST3
(x, y)| − |ST3

(x, y) △ ST1
(x, y)| ≥ 0, S2(x, y) =

|ST1
(y, x)△ST2

(y, x)|+|ST2
(y, x)△ST3

(y, x)|−|ST3
(y, x)△

ST1
(y, x)| ≥ 0 for any two leaves x and y in V ′. We have

S1(x, y) = |ST1
(x, y)△ST2

(x, y)|+ |ST2
(x, y)△ST3

(x, y)|−
|ST3

(x, y)△ST1
(x, y)| = |ST1

(x, y)∪ST2
(x, y)|−|ST1

(x, y)∩
ST2

(x, y)|+ |ST2
(x, y)∪ST3

(x, y)|−|ST2
(x, y)∩ST3

(x, y)|−
|ST3

(x, y) ∪ ST1
(x, y)|+ |ST3

(x, y) ∩ ST1
(x, y)|

Since |STi
(x, y) ∪ STj

(x, y)| = |STi
(x, y)| +

|STj
(x, y)| − |STi

(x, y) ∩ STj
(x, y)|, S1(x, y) =

{|ST1
(x, y)| + |ST2

(x, y)| + |ST2
(x, y)| + |ST3

(x, y)| −
2|ST1

(x, y) ∩ ST2
(x, y)| − 2|ST2

(x, y) ∩ ST3
(x, y)| −

|ST1
(x, y)| − |ST2

(x, y)| + 2|ST1
(x, y) ∩ ST3

(x, y)|} =
{2|ST2

(x, y)| − 2|ST1
(x, y) ∩ ST2

(x, y)| − 2|ST2
(x, y) ∩

ST3
(x, y)| + 2|ST1

(x, y) ∩ ST3
(x, y)|} = 2{|ST2

(x, y)| −
|ST1

(x, y)∩ST2
(x, y)|−|ST2

(x, y)∩ST3
(x, y)|+ |ST1

(x, y)∩
ST3

(x, y)|} = 2{|ST2
(x, y) ∪ (ST1

(x, y) ∩ ST3
(x, y))| +

|ST2
(x, y)∩(ST1

(x, y)∩ST3
(x, y))|−|(ST1

(x, y)∩ST2
(x, y))∪

(ST2
(x, y)∩ST3

(x, y))|−|(ST1
(x, y)∩ST2

(x, y))∩(ST2
(x, y)∩

ST3
(x, y))|} = 2{|ST2

(x, y) ∪ (ST1
(x, y) ∩ ST3

(x, y))| +
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|ST2
(x, y)∩ST1

(x, y)∩ST3
(x, y)|−|(ST1

(x, y)∩ST2
(x, y))∪

(ST2
(x, y)∩ST3

(x, y))|−|ST1
(x, y)∩ST2

(x, y)∩ST3
(x, y)|} =

2{|ST2
(x, y) ∪ (ST1

(x, y) ∩ ST3
(x, y))| − |(ST1

(x, y) ∩
ST2

(x, y)) ∪ (ST2
(x, y) ∩ ST3

(x, y))|}.
Since |ST2

(x, y) ∪ (ST2
(x, y) ∩ ST3

(x, y))| ≥ |ST2
(x, y)| ≥

|ST2
(x, y) ∩ (ST2

(x, y) ∪ ST3
(x, y))|, we have

S1(x, y) = 2{|ST2
(x, y) ∪ (ST1

(x, y) ∩ ST3
(x, y))| −

|(ST1
(x, y) ∩ ST2

(x, y)) ∪ (ST2
(x, y) ∩ ST3

(x, y))|} ≥ 0.

In the same way, we can also prove that S2 ≥ 0.

Hence, adding these two terms for any leaves x and

y, we have d′(T1, T2) + d′(T2, T3) − d′(T3, T1) =∑
x,y∈V ′ {S1(x, y) + S2(x, y)} ≥ 0.

Theorem 3. If tree A is equal to tree B, the mutated distance

d′(A,B) is zero.

Proof. If tree A is equal to tree B, then SA(x, y) =
SB(x, y) and SA(y, x) = SB(y, x) for any two leaves x,

y. Hence, |SA(x, y) △ SB(x, y)| = 0 and |SA(y, x) △
SB(y, x)| = 0 for any two leaves x, y. That implies∑

x,y∈V ′ |SA(x, y)△ SB(x, y)|+ |SA(y, x)△ SB(y, x)| =
0.

Example 1 shows that the mutated distance does not satisfy

(d) x = y if d(x, y) = 0.

Example 1. There exist two mixture trees A and B in Fig. 3,

such that the mutated distance of A and B, d′(A,B), is zero,

but tree A dose not equal to tree B.

(a) T1 (b) T2

Fig. 3. T1 and T2 of a counterexample.

III. THE ALGORITHM FOR MUTATED DISTANCE

Firstly, we design an algorithm for mutated distance in

Section III-A. Then, we give an example in Section III-B.

Section III-C is analysis of this algorithm.

A. The Algorithm

For finding the mutated distance d′ of any two mixture

trees, T1 and T2, we need find mutated site set data of a

path ST (x, y) for T = T1 and T2 at first. In 2008, Lin

and Juan proposed an algorithm to compute the distance

of time parameter between two mixture trees [11]. Their

algorithm use color information to find all the least common

ancestors of any two leaves in each of two trees. That will

reduce the complexity for finding for any two leaves x and

y in V ′ = V ′(T1) = V ′(T2). We will use this idea, too.

Before introducing the algorithm, we have to understand some

notations which are used in the algorithm.

• T1.uj denotes a node uj in T1, where j is in the order

of BFS, T2.vj denotes a node vj in T2, where j is in the

order of BFS. Note that T1.ui = T2.vj for some j for

any leaf ui of T1 such that T1.ui(= T2.vj) has the same

sequence name with vj in T2.

• color i of vi denotes the color information of the

subtree that rooted by vi in T2. The color i con-

tains two integer: color i.Red is the amount of

leaves that are colored by red, and color i.Green

is the amount of leaves that are colored by green.

For example, A,B,C is three nodes in a tree. Let

B,C be two children of A, then color i(A) =
color i(B) + color i(C). That means, these two values

color i(A). Red = color i(B).Red + color i(C).Red;

color i(A).Green = color i(B).Green + color i(C).
Green.

• sLeafTablei is the leaves data of Ti for i = 1, 2.

The data include sequence name, BFS number and color

information. The size of this table is n× 3, where a row

represents one leaf. The sequence name represents the

sequence title of this leaf. The BFS number is the order

of this leaf in the order of BFS. The color information is

the color of this leaf, which will be green, red or null.

• d.vk.Red (d.vk.Green) of T2.vk for T1.vj and

T2.vj denotes the sum of symmetric difference between

ST1
(vj , vi) and ST2

(vj , vk) for vk in (v1, vj)-path of T2

for any leaf vj when we fix i. And when we fix vi, if

the color of vj is red (green, respectively), this value

will be stored in d.vk.red (d.vk.green, respectively).

After computing all leaves vj , d.vk.Red (d.vk.Green,

respectively) is the sum of ST2
(vj , vk)△ ST1

(vj , vi) for

all leave vj in the subtree that rooted by vk which colored

by red (green, respectively).

• D is the record of the mutated distance of T1 and T2.

• ST2
(vj) is a temporary for calculating ST2

(vj , vk) for

any vk in T2.

• Ti.vj.l denotes the left child of Ti.vj , Ti.vj.l.r denotes

the right child of Ti.vj .

The algorithm of mutated distance is presented as follows.

Input: Two trees T1 and T2 with the same n leaves.

Output: The mutated distance between T1 and T2.

• Step 1 Traversal T1 and T2, and give all nodes an order

by BFS, respectively.

• Step 2 Find sLeafTable1 and sLeafTable2, and sort

sLeafTable1 and sLeaf Table2 by sequence name.

• Step 3 For each internal node ui in T1 do Step 4

to Step 13.

• Step 4 For the subtree which rooted by T1.ui, color all

leaves of its left subtree by red, and color all leaves of

its right subtree by green. And color all leaves in T2 by

the same color this leaf be colored in T1.

• Step 5 For each be colored leaf vj in T2 do Step 6

to Step 12.

• Step 6 Use sLeafTable to find leaf T1.vk with the
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same sequence name of T2.vj , and find ST1
(vk, ui).

• Step 7 For any node vl in (T2.vj , root of T2)-path do

Step 8 to Step 12.

• Step 8 ST2
(vj) is the symmetric difference of ST2

(vj)
and MS(T2.vl).

• Step 9 If T2.vj is red to do Step 10.

• Step 10 Compute d.vl.Red and color i.Red(T2.vl),
d.vl.Red add the number of element of the symmetric dif-

ference of ST1
(vk, ui) and ST2

(vj). And color i.Red(T2.

vl) add 1.

• Step 11 If T2.vj is green to do Step 12.

• Step 12 Compute d.vl.Green and

color i.Green(T2.vl), d.vl.Green add the number

of element of the symmetric difference of ST1
(vk, ui)

and ST2
(vj). And color i.Green(T2.vl) add 1.

• Step 13 For any internal node vj in T2, compute mu-

tated distance D. D add the sum of color i.Green(vj .l)
multiplied by d.(vj .r).Red, color i.Red(vj .r) multi-

plied by d.(vj .l).Green, color i.Green(vj .r) multiplied

by d.(vj .l).Red and color i.Red(vj .l) multiplied by

d.(vj .r).Green.

B. An Example of the Algorithm

In Fig. 4 and Fig. 5, there are two trees T1 and T2, and

the mutated site set of each node. First give T1 and T2 the

BFS numbers u1, u2, , u13 and v1, v2, , v13. The sLeafTable1
is the leaf table of T1 in Fig. 4. The sLeafTable2 is the

leaf table of T2 in Fig. 5. Table I shows the sLeafTable1
and sLeafTable2 sorted by sequence name. This algorithm

uses the sLeafTable to find two leaves, which two leaves

have the same sequence name of T1 and T2. Then, this

algorithm uses the color to compute the mutated distance

between T1 and T2. When we fix u1 as the subroot which

be computing currently in T1, see Fig. 4. The leaves of the

left subtree of u1 are {A,B,C, F} that are colored by red,

and the leaves of the right subtree of u1 are {D,E,G} that

are colored by green. The leaves in T2 are colored by the

same color. Table II shows after computing all leaves of T2,

the values of d.vk.Red and d.vk.Green, when the algorithm

color all leaves of the left subtree of the subtree, which rooted

by T1.u1, by red; and color all leaves of its right subtree

by green. Table III shows color i values in the algorithm.

We use these two tables to compute the mutated distance

between two mixture trees. The mutated distance of (A, E)-

path, (B,E)-path and (C,E)-path= 4 × 3 + 12 × 1 = 24
were computed in T2.v4. The mutated distance of (D,F )-

path = 4 × 1 + 4 × 1 = 8 was computed in T2.v3. The

mutated distance of (A,G)-path, (B,G)-path and (C,G)-path

= 3× 3 + 9× 1 = 18 were computed in T2.v2. The mutated

distances of (A,D)-path, (B,D)-path, (C,D)-path, (F,G)-

path and (F,E)-path = 4× 3 + 12× 1 + 4× 2 + 8× 1 = 40
were computed in T2.v1. When the subtree which rooted by

T1.u1 round finish to compute mutated distance, the mutated

distance = 24 + 8 + 18 + 40 = 90.

Next round the algorithm will fix the node u2, and consider

the subtree which rooted by T1.u2. Then, it will color all leaves

Fig. 4. T1 colored according to u1 of T1.

Fig. 5. T2 colored according to u1 of T1.

of its left subtree by red, and color all leaves of its right subtree

by green, and compute mutated distance until each internal

node of T1 has been fixed. The mutated distance between two

mixture trees will be computed. The mutated distance between

T1 and T2 is 146. Table IV shows the complete data when

computing the mutated distance between T1 and T2.

TABLE I
sLeafTable SORTED BY SEQUENCE NAME WITH COLORED BY T1.u1 .

T1 T2

sequence BFS color i sequence BFS color i
name order name order

A 8 red A 12 red

B 11 red B 13 red

C 10 red C 11 red

D 12 green D 6 green

E 13 green E 9 green

F 9 red F 7 red

G 6 green G 5 green
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TABLE II
THE d.vk.Green AND d.vk.Red TABLE OF T2 ACCORDING TO u1 OF T1 .

k 1 2 3 4 5 6 7 8 9 10 11 12 13

d.vk.Green - 8 4 3 3 4 0 0 4 0 0 0 0

d.vk.Red - 12 4 9 0 0 4 12 0 6 3 3 3

TABLE III
THE color i(vk) TABLE OF T2 ACCORDING TO u1 OF T1 .

k 1 2 3 4 5 6 7 8 9 10 11 12 13

color i(vk).Green - 2 1 1 1 1 0 0 1 0 0 0 0

color i(vk).Red - 3 1 3 0 0 1 3 0 2 1 1 1

C. Analysis

The time complexity of BFS order is O(n) in this algorithm.

The time complexity while finds sLaftTablei is O(n). The

time complexity of thise algorithm while sorts sLaftTablei is

O(nlogn). For each internal node of T1 we compute color i,

d.vk.Red, d.vk.Green and D between two mixture trees of

each node of T2 in time O(n×max{h(T1), h(T2)}×s), where

s means the sequence length of the DNA sequence of species.

The total time complexity is O(n2 × max{h(T1), h(T2)} ×
s). Since the sequence length s is a constant value, the total

time complexity is O(n2 × max{h(T1), h(T2)}). When T1

and T2 are complete binary trees, the height of a tree is log

n. Hence, the time complexity of our algorithm is O(n2logn)
for complete binary trees.

IV. THE IMPROVED ALGORITHM FOR MUTATED DISTANCE

Firstly, we design an improved algorithm for mutated dis-

tance in Section IV-A. Then, we give an example in Section

IV-B. Section IV-C is analysis of this algorithm.

A. The Improved Algorithm

This algorithm improves the time complexity of modified

algorithm, it transforms the data MS to TMS. The TMS of

vertex represents the difference sites between the root of T1

and this vertex. This algorithm uses TMS and color i of vertex

to compute the mutated distance between two mixture trees.

Before introducing the algorithm, we have to understand

some notations which are used in the algorithm.

• T1.uj denotes a node uj in T1, where j is in the order

of BFS, T2.vj denotes a node vj in T2, where j is in the

order of BFS. Note that T1.ui = T2.vj for some j for

any leaf ui of T1 such that T1.ui(= T2.vj) has the same

sequence name with vj in T2.

• color i of vi denotes the color information of the

subtree that rooted by vi in T2. The color i con-

tains two integer: color i.Red is the amount of leaves

that are colored by red, and color i.Green is the

amount of leaves that are colored by green. For ex-

ample, A,B,C is three nodes in a tree. Let B,C be

two children of A, then color i(A) = color i(B) +
color i(C). That means, these two values color i(A).
Red = color i(B).Red + color i(C).Red; color

i(A).Green = color i(B).Green+ color i(C).Green.

• sLeafTablei is the leaves data of Ti for i = 1, 2.

The data include sequence name, BFS number, color

information. The size of this table is n× 3, where a row

represents one leaf. And each row includes three items:

the sequence name represents the sequence title of this

leaf, the BFS number is the order of this leaf in the order

of BFS, the color information is the color of this leaf,

which will be green, red or null.

• D is the record of the mutated distance of T1 and T2.

• ST2
(vj) is a temporary for calculating ST2

(vj , vk) for

any vk in T2.

• Ti.vj.l denotes the left child of Ti.vj , Ti.vj.r denotes

the right child of Ti.vj .

• Path number of vi in T2 denotes an integer that

is the inner product of color information of the two

children of the subtree that rooted by vi. For example,

let B, C be two children of A, then the path number

of A is equal to color i(B).Red× color i(C).Green+
color i(B).Green× color i(C).Red.

• TMS of vi denotes a set, which represents the difference

mutated sites between root of T1 and vi. Moreover, this

set reveals the distance between root of T1 and vi.

The improved algorithm of mutated distance is presented as

follows.

Input: Two trees T1 and T2 with the same n leaves.

Output: The mutated distance between T1 and T2.

• Step 1 Traversal T1 and T2, and give all nodes an order

by BFS, seperatedly.

• Step 2 Find sLeafTable1 and sLeafTable2, and sort

sLeafTable1 and sLeaf Table2 by sequence name.

• Step 3 Transform T1, transformed set of mutated sites

TMS of root in T1 is null. For other node ui of T1,

compute TMS of node from u2 to u2n−1; TMS of ui

is the symmetric difference between TMS of the father

of ui and MS(ui).
• Step 4 Transform T2, the TMS(vj) of leaves in T2 is

the same with the TMS(ui) of T1 where vj and ui has

the same sequence name. For any internal node vj of

T2, compute TMS(vj) from leaf to root, TMS of vj is

the symmetric difference between TMS(vj .l) and MS(vj)
(=TMS(vj .r) and MS(vj)).

• Step 5 For each internal node ui in T1, do Step 6
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TABLE IV
THE DISTANCE TABLE IN THE EXAMPLE OF THE ALGORITHEM.

the subtree rooted D = (4× 3 + 12× 1) + (4× 1 + 4× 1) + (3× 3 + 9×
by T1.u1 1) + 4(4× 2 + 8× 1) + (4× 3 + 12× 1) = 90
k 1 2 3 4 5 6 7 8 9 10 11 12 13

d.vk.Green - 8 4 3 3 4 0 0 4 0 0 0 0

d.vk.Red - 12 4 9 0 0 4 12 0 6 3 3 3

color i(vk).Green - 2 1 1 1 1 0 0 1 0 0 0 0

color i(vk).Red - 3 1 3 0 0 1 3 0 2 1 1 1

the subtree rooted D = 90 + (3× 1 + 3× 1) + (3× 1 + 3× 1) + (4× 2+
by T1.u2 8× 1) = 118
k 1 2 3 4 5 6 7 8 9 10 11 12 13

d.vk.Green - 8 0 6 0 0 0 8 0 3 3 0 3

d.vk.Red - 4 4 3 0 0 4 4 0 3 0 3 0

color i(vk).Green - 2 0 2 0 0 0 2 0 1 1 0 1

color i(vk).Red - 1 1 1 0 0 1 1 0 1 0 1 0

the subtree rooted D = 118 + (1× 1 + 1× 1) + (2× 1 + 2× 1) = 124
by T1.u3

k 1 2 3 4 5 6 7 8 9 10 11 12 13

d.vk.Green - 2 2 1 0 2 0 0 2 0 0 0 0

d.vk.Red - 2 0 0 1 0 0 0 0 0 0 0 0

color i(vk).Green - 1 1 1 0 1 0 0 1 0 0 0 0

color i(vk).Red - 1 0 0 1 0 0 0 0 0 0 0 0

the subtree rooted D = 124 + (6× 1 + 6× 1) = 136
by T1.u4

k 1 2 3 4 5 6 7 8 9 10 11 12 13

d.vk.Green - 0 6 0 0 0 6 0 0 0 0 0 0

d.vk.Red - 6 0 5 0 0 0 6 0 3 0 1 0

color i(vk).Green - 0 1 0 0 0 1 0 0 0 0 0 0

color i(vk).Red - 1 0 1 0 0 0 1 0 1 0 1 0

the subtree rooted D = 136 + (3× 1 + 3× 1) = 142
by T1.u5

k 1 2 3 4 5 6 7 8 9 10 11 12 13

d.vk.Green - 4 0 3 0 0 0 4 0 3 0 0 3

d.vk.Red - 4 0 3 0 0 0 4 0 0 3 0 0

color i(vk).Green - 1 0 1 0 0 0 1 0 1 0 0 1

color i(vk).Red - 1 0 1 0 0 0 1 0 0 1 0 0

the subtree rooted D = 142 + (2× 1 + 2× 1) = 146
by T1.u7

k 1 2 3 4 5 6 7 8 9 10 11 12 13

d.vk.Green - 2 0 1 0 0 0 0 2 0 0 0 0

d.vk.Red - 0 2 0 0 2 0 0 0 0 0 0 0

color i(vk).Green - 1 0 1 0 0 0 0 1 0 0 0 0

color i(vk).Red - 0 1 0 0 1 0 0 0 0 0 0 0

to Step 8.

• Step 6 For the subtree which rooted by T1.ui, color all

leaves of its left subtree by red, and color all leaves of

its right subtree by green. And color all leaves in T2 by

the same color this leaf be colored in T1.

• Step 7 For each internal node vj in T2 do Step 8

• Step 8 Compute color i.Red(vj), color i.Green(vj),
Path-number and mutated distance D from v2n−1 to

v1; color i.Red(vj) is the sum of color i.Red(vj .l)
and color i.Red(vj .r); color i.Green(vj) is the sum

of color i.Green(vj .l) and color i.Green(vj .r); Path-

number is the sum of color i.Green(vj .l) multiplied by

color i.Red(vj .r) and color i.Green(vj .r) multiplied

by color i.Red(vj .l); D is Path-number multiplied by

two times of the number of element of the symmetric

difference between TMS(ui) and TMS(vj).

B. An Example of the Improved Algorithm

We use the same example as previous section in Fig. 4 and

Fig. 5 to present how does this algorithm work. There are two

trees T1 and T2, and the mutated site set of each node. First

transform Fig. 4 to Fig. 6 and transform Fig. 5 to Fig. 7. Then

give T1 and T2 the BFS numbers u1, u2, , u13 and v1, v2, , v13.

The sLeafTable1 is the leaf table of T1 in Fig. 6. The

sLeafTable2 is the leaf table of T2 in Fig. 7. Table I shows

the sLeafTable1 and sLeafTable2 sorted by sequence name.

This algorithm uas the sLeafTable to find two leaves, which

two leaves have the same sequence name of T1 and T2. Then

this algorithm using the color to compute the mutated distance

between T1 and T2. When we fix u1 as the subroot which be

computing currently in T1, see Fig, 6. The leaves of the left

subtree of u1 are {A,B,C, F} that are colored by red, and the

leaves of the right subtree of u1 are {D,E,G} that are colored

by green. The leaves in T2 are colored by the same color.

Table III shows color i values in the algorithm. We use these

table to compute the mutated distance between two mixture

trees. The mutated distance of (A, E)-path, (B,E)-path and
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(C,E)-path= (0× 0+ 3× 1)× 2× (|{}△ {9, 16, 12, 15}|) =
3 × 2 × 4 = 24 were computed in T2.v4. The mutated

distance of (D,F )-path = (1 × 1 + 0 × 0) × 2 × (|{} △
{9, 16, 3, 4}|) = 1 × 2 × 4 = 8 was computed in T2.v3. The

mutated distance of (A,G)-path, (B,G)-path and (C,G)-path

= (1× 0 + 3× 1)× 2× (|{}△ {9, 16, 2}|) = 3× 2× 3 = 18
were computed in T2.v2. The mutated distances of (A,D)-

path, (B,D)-path, (C,D)-path, (F,G)-path and (F,E)-path

= (2×1+3×1)×2× (|{}△{9, 16, 3, 4}|) = 5×2×4 = 40
were computed in T2.v1. When finish the round of computing

the mutated distance of the subtree which rooted by T1.u1,

the mutated distance = 24 + 8 + 18 + 40 = 90.

Fig. 6. The transform T1 colored according to u1 of T1.

Fig. 7. The transform T2 colored according to u1 of T1.

Next round the algorithm will fix the node u2, and consider

the subtree which rooted by T1.u2. Then, it will color all

leaves of its left subtree by red, and color all leaves of its

right subtree by green, and compute mutated distance until

each internal node of T1 has been fixed. The mutated distance

between two mixture trees will be computed. The mutated

distance between T1 and T2 is 146. Table V shows the

complete data when computing the mutated distance between

T1 and T2.

C. Analysis

The time complexity of BFS order is O(n) in this algo-

rithm. The time complexity of this algorithm which finds

sLaftTablei is O(n). The time complexity of this algorithm

while sorts sLaftTablei is O(nlogn). The time complexity

of this algorithm while transforms T1 and T2 is in time

O(n). For each internal node of T1, we compute color i

and D between two mixture trees of each node of T2 in

time O(n × max{h(T1), h(T2)} × s), where s means the

sequence length of the DNA sequence of species. The total

time complexity is O(n2 × s). Since the sequence length s is

a constant value, the total time complexity is O(n2). When T1

and T2 are complete binary trees, the height of a tree is logn.

Hence, the time complexity of our algorithm is O(nlogn) for

complete binary trees.

V. CONCLUSION

In this work, we define a metric, the mutated distance,

and propose two algorithms to compute the distance with

considering the set of mutated sites between two mixture trees.

Considering our algorithms and Lin and Juan’s algorithms

[16], these algorithms all calculate the distance between two

mixture trees. In [16], Lin and Juan also proposed two algo-

rithms, and these two algorithms focus on the time paremeter

of mixture trees. Table VI shows the time complexity of these

two algorithms and our two algorithms.

Hence, the two information of mixture trees are considered

by our algorithms and Lin and Juans algorithms [16]. One

can get a compound-distance Dc for two mixture trees T1

and T2 by our mutated distance d′ and mixture distance

(or mixture-matching distance) dm [16]. That means, let

Dc(T1, T2) = k1d
′ + k2dm for any two real number k1 and

k2, these two real number can be defined according to his (or

her) requirement. When one choose d′ be mutated distance and

dm be mixture distance, the time complexity of the proposed

algorithm for this compound-distance Dc will be O(n2). In the

future, we hope to find other metric for computing the distance

with considering these two information, time parameter and set

of mutated sites, between two mixture trees and it can satisfy

not only pseudo-metric, but also the metric conditions.

TABLE VI
THE COMPARISON OF THE ALGORITHMS OF OUR WORK.

Mixture Mutated

Distance [16] Distance

Modified Algorithm O(n2) O(n2 ×max{h(T1), h(T2)})
Improved Algorithm O(nlogn) O(n2)
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