International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:6, 2010

The knapsack sharing problem: a tree search exact
algorithm

Mhand Hifi and Hedi Mhalla

Abstract—In this paper, we study the knapsack sharing problem,
a variant of the well-known NP-Hard single knapsack problem. We
investigate the use of a tree search for optimally solving the problem.
The used method combines two complementary phases: a reduction
interval search phase and a branch and bound procedure one. First,
the reduction phase applies a polynomial reduction strategy; that is
used for decomposing the problem into a series of knapsack problems.
Second, the tree search procedure is applied in order to attain a set
of optimal capacities characterizing the knapsack problems. Finally,
the performance of the proposed optimal algorithm is evaluated on a
set of instances of the literature and its runtime is compared to the
best exact algorithm of the literature.

Keywords—branch and bound, combinatorial optimization, knap-
sack, knapsack sharing, heuristics, interval reduction.

[. INTRODUCTION

In this paper, we investigate the use of a tree search exact
algorithm for solving the knapsack sharing problem (KSP).
KSP is a variant of the well-known knapsack problem (KP), an
NP-hard combinatorial optimization problem. An instance of
KSP is characterized by a capacity c, a set N of n items, where
each item j € A has a weight w;, a profit p; and a demand d;.
Moreover, the set A/ of items denotes a collection of m disjoint
classes of items; that is, N' = U[*,J; and Vp € N, ¢ €
N,p # q,J, N J, = (. The objective of the problem is to
determine the subset of items satisfying the capacity constraint
¢ as to maximize the minimal value of a set of linear functions.
The KSP can be stated as follows:

{Zmm)

Jj€J;
Z wiz; < ¢
JEN
T S {071}, VJ GN
where z;, j € N, denotes the binary decision variable such
that ; = 1 if the item j is in the solution set, xz; = 0
otherwise. Without any loss of generality, we assume that
> Jen Wi > ¢ all classes are indexed from J; to .J,,, while the
elements of class J;, for i = 1,...,m, are indexed from 1 to
|.Ji|. We also assume that w;, p;, d;, and c are all nonnegative
integers.

The KSP has a wide range of commercial applications
(see Brown [1] and Tang [12]) and, the binary version of
the problem is NP-hard since it is a generalization of the
single knapsack (Martello and Toth [9], [10]). It is classified

Maximize min
1<i<m

(KSP) Subject to

M. Hifi is a Professor at Université de Picardie Jules Verne, Equipe ROAD,
UR MIS, 33 rue Saint Leu, 80000 Amiens, France (hifi@u-picardie.fi).

H. Mhalla is an Associate Professor at Université de Picardie Jules
Verne, Equipe ROAD, UR MIS, 33 rue Saint Leu, 80000 Amiens, France.
(hedi.mhalla@u-picardie.fr)

as KSP(Bn/m/1) (see Yamada and Futakawa [13], and Hifi
and Sadfi [3], [5]), which means that we have n items of binary
(B) type divided in m classes with one constraint.

In this paper, we propose an exact tree search algorithm for
the KSP. The proposed algorithm can be viewed as a two-
phase approach which combines a reduction interval search
and a branch and bound procedure. The first phase of the
algorithm consists in decomposing the KSP into a series of
KPs. The provided capacities associated o the KPs are reached
by using a heuristic. The second phase of the algorithm tries
to determine an attainable optimal set of capacities; that is
a set of capacities reaching the final optimal solution. Both
phases are complementary and essential to the success of the
algorithm, since the second phase is applied particularly for
stabilizing the set of the capacities given by the heuristic.

The remainder of the paper is organized as follows. First,
Section II presents a brief literature survey of the knapsack
sharing problems. Second, the main steps of the exact tree
search algorithm is described in Section III.Third, Section IV
evaluates, on a set of instances taken from the literature, the
performance of the exact tree search algorithm, compared
to the more performent exact algorithm of the literature
(when considering these instances). Finally, in conclusion, we
summarize the main results of the paper.

II. RELATED LITERATURE

Because of its NP-hardness, KSP has received little atten-
tion. A very few published papers addressing the problem
of sharing a given capacity are available. The first KSP,
namely max-min allocation problem, has been widely studied
(Brown [2], Kuno et al. [7], Luss [8], Pang and Yu [11],
Tang [12]). Different exact and approximate approaches have
been designed especially for this problem. For the particular
continuous KSP, Kuno et al. [7] have proposed a linear
time solution algorithm. Yamada and Futakawa [13] proposed
another algorithm for the continuous K SP(Cn/m/1).

The KSP has been addressed by Yamada and Fu-
takawa [13] who extended the heuristic approach tailored
to the KSP(Cn/m/1) to KSP(Bn/m/1) and Yamada et
al. [14] who developed several exact algorithms based upon
branch and bound procedures or binary search method. The
authors indicated that the binary search approach outperformed
the branch and bound algorithm. Hifi et al. [4] proposed an
approximate algorithm based upon tabu search and showed
that the method performed well for correlated and uncorrelated
problem instances. Hifi and Sadfi [3] designed a dynamic
programming algorithm in which the original problem is
decomposed into a series of single knapsack problems. The

1108

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:6, 2010

algorithm has a good behavior especially for the problem
instances containing an important set of classes. Hifi et al. [5]
have proposed a new version of the dynamic programming
algorithm already proposed in [3] in order to accelerate the
used search process. The computational results showed that
the new version of the algorithm was able to improve the
performance of the last version of the algorithm especially for
the instances containing more than ten classes and, fails in
general when the instance problem contains less than or equal
to ten classes.

In this paper, we propose an exact algorithm especially
when the density of the classes is small, i.e., the number of the
considered classes is small or equal to ten. The main idea of
the paper is to replace the dynamic programming resolution
(Hifi et al. [4]) by a specialized tree-search algorithm; that
is a branch and bound procedure combined with an interval
reduction search. In order to make the paper more clearer, we
repeat some points already developed in Hifi ez al. [3], [4], [5]
and for the rest of the paper, we adopt the following notations.

o S(P) : represents a feasible solution of the problem P
with value V.S(P).

e Opt(P) : denotes an optimal solution of the problem P
with value VO(P).

III. A TREE SEARCH EXACT ALGORITHM

We first describe the decomposition of the original problem
into a series of knapsack problems (see Hifi and Sadfi [3]). We
then show the calculus of the initial set of capacities. Finally,
we describe the main steps of the proposed tree search exact
algorithm.

A. Reduction of the KSP

The KSP can be reduced to a series of knapsack problems
(see Hifi and Sadfi [3]). By applying the same strategy, and in
order to clarify the contents of the paper, we summarize some
points already presented in Hifi and Sadfi [3]. Let SK 5:, 1=
1,...,m, be the auxiliary problems associated to KSP. The
series of the knapsack problems SK%, i=1,...,m, can be
stated as follows:

max ijl‘j
Jj€J:
Subject to Z W;T 5 < C;
JjeJi
MY S {0, 1}, for j € J;,

SK§

where ¢ is a nonnegative integer satisfying
¢ < ¢ Vi € {1,...,m} and, each SK%:
—represents a knapsack problem— is associated with
each specified class J;, for i = 1,...,m, and with capacity ¢;.

B. An initial set of capacities-based solution

The initial set of capacities-based solution uses the so-called
critical elements (Hifi et al. [4], [5]), where a critical element
of each class is the one that is able to decompose the current
class into two complementary areas-parts: the right-critical

and the left-critical areas. The initial solution, associated to
the set of the capacities provided, is given as follows:

1) Consider a portion of each S;, for ¢ = 1,...,m, where
S; denotes the binary representation of the i-th class.
Suppose that S;(k), k < |J;|, is a critical element of
the ¢-th class.

2) Fix all items of the left-critical region (of each class) to
“one” and consider that all elements of the right-critical
region as “free”.

Note that the obtained solution (steps 1 and 2 above)
represents a feasible solution for the KSP if all free elements
are setting equal to “zero". Let consider that, within each
group, items are ranged in a decreasing order of the profit
per weight. Then, the greedy algorithm, noted HEUR, can be
described as follows:

Input: An instance of KSP.
Output: An approximate solution with its set of capacities.

Starting.
a) Set the initial capacity to zero, i.e. SumCap = 0; (cumulate
total capacity)
b) Set min = 1, where min denotes the index of the class
realizing the minimum (sub)solution;
c) For each i € {1,...,m}, set j; =1, P, =0and W; =0,
where P; (resp. W;) is the cumulate profit (resp. weight) of
items picked in the ¢-th class.
Iteration.
1) If SumCap + wj,,,, < cthen
set SumCap = SumCap + wj,,, .3
2) Set jmin = Jmin +1;
3) Let min be an index realizing min {F;};
1<i<m

4) Repeat steps 1-3 till jpin > |J,;m\.

Fig. 1. HEUR: an initial set of capacities-base solution for the KSP.

Note that each class J; contains a critical element, noted r z,,
with a particular knapsack capacity ¢, and so, the above pro-
cedure (HEUR) can terminate with a non-null residual capacity,
ie., 27;1 ¢; # c. Of course, in this case we can observe that
by sharing the residual capacity (c — >..~, ¢; > 0) over the
classes (except for the class realizing the best solution), the
provided solution remains feasible for the KSP.

C. The main steps of the tree search algorithm

In this section, we describe the main steps of the tree search
exact algorithm. In fact, the key of the algorithm is based on
the result of the decomposition principle (Theorem 1 of Hifi
and Sadfi [3]) applied for providing a nonnegative vector ¢
=(¢1, . . ., Cm), Where szzl ¢’= c. We can remark that
¢ is associated to an optimal solution (as shown in Hifi and
Sadfi [3]) and so, the proposed algorithm applies the following
two phases:

Phase 1: Decompose the KSP into a series of
knapsack problems (see Section III-A) and apply
HEUR in order to reach a starting set of capacities
(see Section III-B).

Phase 2: At each step of the current phase, apply
the dichotomous search procedure as detailed below.

We note that the second phase above is applied till a minimal
solution value is attained; that is based on the following
optimality condition.

1109

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:6, 2010

Theorem 3.1: (fnee [5]) Let ¢ = (¢4, ..., Cm) be a nonneg-
ative vector with Z ¢; = ¢, and ¢ be an index verifying the
following equalityi:=1

VO(SKY.)=VO(KSP)=min { VO(SK?I), VO(SKG")} (1)
IfVi#¢, i €{1,...,m}, then

VO(SKS) > VO(SKS) ™), 2)

where o denotes a bounded nonnegative integer such that o <
¢; < ¢, then the vector ¢ characterizes an optimal solution for
KSP with value VO(SK5").

Proof. (see Hifi et al. [5]).

Input: an instance of the KSP.
Output: an optimal solution Opt(KSP) of value VO(KSP).

Phase 1. Initialization step
- Index the set of objets from 1 to m, i.e., J1,J2,..., Jm;
- Index the set of elements of each class J; from 1 to |J;];
1) Leté), fori=1,...,m,be the components of the capacity
vector & provided by applying HEUR.
2) Apply a branc}/t and bound exact procedure for solving the

problems SK c?, i =1,...,m, and denotes their solution
Ji

values by VO(SK;?).
- Let consider that dpt(KSP) is the solution realizing the
smallest value.

3) Setcy «— 5'@ where ¢ denotes the index of the class realizing

—/
the smallest value VO(SK;’f), fori=1,...,m.
4) Initialize the rest of the vector ¢ using the
IntReduction () procedure; that are,
¢ <« ¢/, i # ¢ i = 1,...,m, such that
e =
& = argmin {VO(SKCI’;) > VO(SK‘/‘)}.
o<el/<e] v ve
Evaluating the initial Gape :
Compute the starting Gape.
Phase 2. Tterative step

While (Gapz > 0) Do . .
a)(pblncre)mﬁl the capacity of the worst-class with the

value Gape; that is
Cp — ¢ + Gape;

b) Solve the current knapsack problem:
VO(SK;‘;) «—— B&B(¢, Jy, Cp);

c) Let £ be the class realizing the smallest solution
value.

d) Use the following IRP for restarting the remaining
capacity:
Set &; — &/, i # 4, f/’: 1,...,m, such that &/ =
arg min VO(SK') > VO(SK® }
oggag’gag { (Ji) (J[)

e) Evaluating thecurrent value of Gaps :
Compute the current value of Gaps.
EndDo
Exit with Opt(KSP) realizing the value VO(KSP) =

. g
1;rlusnm {VO(SKJI)}.

Fig. 2. The exact algorithm for the KSP (ALGO1).

At each step of the algorithm we apply a Branch and
Bound procedure following the main principle of Sahni [6],
denoted B&B(), to resolve each auxiliary problem SK SN i=
1,...,m. this last procedure is associated to a reduction
interval procedure, denoted IntReduction(), used to compute
the values of ¢;, ¢ = 1,...,m, at each step of the resolution.

Theorem 3.2: The algorithm stops after a finite number of
iterations. Then, the provided solution represents an optimal
solution to KSP.

IV. EXPERIMENTAL PART

In this section we evaluate the performance of the tree
search exact algorithm (denoted ALGO1) on a series of
instances taken from Hifi and Sadfi [3]. The algorithm is
tested on two set of problem instances with different densities
and sizes. ('). The first set contains the “strongly correlated"
instances, and the second set is composed of the “uncorrelated"
ones. The optimal solutions of these instances are known (see
Hifi et Sadfi [3]) and in order to evaluate the behavior of
ALGO1, we then compare its average runtime to that of the
algorithm proposed in Hifi ef al. [5], and noted ALGO. Both
algorithms were coded in C++ and tested on an UltraSparc-II
(450Mhz and with 2Gb of RAM).

First, as the behavior of both algorithm was equivalent
on the small-sized instances, we then decided to make a
comparative study on both medium and large sized instances.

TABLE I
PERFORMANCE OF ALGO1 VS ALGO ON THE “STRONGLY CORRELATED”

INSTANCES
Groupe | Ta1601 TALGo Acc
D02.C 2.00 127.50 63.75
EO02.C 3.50 229.25 65.50
F02.C 20.00 915.50 45.78
D05.C 1.50 10.75 7.17
E05.C 2.00 2575 12.88
F05.C 9.00 371.25 41.25
D10.C 1.00 5.00 5.00
E10.C 2.00 10.25 5.13
Fl10.C 5.00 5425 10.85
Average 5.11 194.39 28.59

Second, Table I summarizes the behavior of both exact
algorithms on the first set of problem instances. Column indi-
cates the instance’s name: we considered the set of instances
CmcC, ..., FmC which correspond to the “strongly correlated"
with the number of classes m varying in the integer interval
[2,...,10] and the number n of items varying in the integer
interval [7500,20000]. Column 2 contains the runtime (mea-
sured in seconds) that needs ALGO1 for reaching the optimal
solutions. Column 3 tallies the computational time that needs
ALGO, the best exact algorithm of the literature, for providing
the optimal solution. Column 4 displays the acceleration real-
ized by the proposed tree search algorithm ALGO1 compared
to ALGO computed as follows: TA1 go/TALGo1- Finally, the
last line of the table summarizes the average runtime of both
algorithms and the average acceleration realized by ALGO]1.

From Table I, we can observe that ALGO1 outperforms
ALGO on all instances of the first set. Indeed, the analysis of
the results of the table revels that the average acceleration is
equal to 28.59, for all treated “strongly correlated" instances.

IThe benchmark instances are available on http://www.laria.u-
picardie.fr/hifi/OR-Benchmark/KSP/KSP.html

1110

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:6, 2010

In fact, it realizes a minimum of acceleration of 5 (instance

D10.C) and it is able to realize a significant acceleration (for

example, 65.50 times for instance E02.C).

TABLE II
BEHAVIOR OF BOTH ALGO1 AND ALGO ON THE “UNCORRELATED"
INSTANCES
Group Tarcol TArco Acc
D02 2.00 122.25 61.13
E02 4.00 223.00 55.75
F02 13.00 892.00 68.62
DO5 1.00 10.00 10.00
EO05 2.00 30.75 15.38
FO05 8.00 358.75 44.84
D10 1.00 4.75 4.75
E10 2.00 8.25 4.13
F10 4.00 62.5 15.63
D20 1.00 2.25 2.25
E20 1.00 4.00 4.00
F20 3.00 17.25 5.75
D30 1.00 1.75 1.75
E30 1.00 3.00 3.00
F30 2.00 12.00 6.00
D40 1.00 1.75 1.75
E40 2.00 2.75 1.38
F40 2.00 9.00 4.50
D50 1.00 1.5 1.50
E50 2.00 2.25 1.13
F50 2.00 8.25 4.13
Average 2.67 84.67 15.11

Third and last, Table II shows the behavior of both al-
gorithms ALGO1 and ALGO on the second set of instances
containing large sized instances. Table II displays the same
informations as for Table I , i.e., the runtime needed by
both algorithms (ALGO and ALGO1, measured in seconds),
the acceleration (T'A1 go/TALgo1) and a line containing the
average rutime of each algorithm and the average acceleration
realized by the proposed tree search algorithm.

From Table II, we can observe that the same phenomenon
is realized. Indeed, we can remark that ALGO1 outperforms
ALGO on all instances of the second set. In this case, ALGO1
realizes a minimum acceleration of 1.13 and a maximum one
which attains the value of 68.62. Globally, the algorithm real-
izes an average acceleration of 15.11 which can be considered
as a significant acceleration for an exact algorithm.

V. CONCLUSION

We proposed an exact tree search algorithm for solving the
knapsack sharing problem. First, we showed how the problem
can be decomposed into a series of knapsack problems.
Second, we presented the procedure providing the initial set
of capacities-based solution; that is obtained by applying a
greedy algorithm. Third, we showed how the branch and bound
procedure can be applied for reaching an optimal solution for
the problem. Finally, an experimental part has been presented
in which we evaluated the performance of the proposed
algorithm on a set of problem instances of the literature.
On these problem instances, we proved experimentally the

effectiveness of the proposed exact algorithm compared to the
best exact algorithm of the literature.

REFERENCES

Brown JR. The knapsack sharing, Operations Research, 1979; 27:341-
355.

Brown JR. Solving knapsack sharing with general tradeoff functions,
Mathematical Programming, 1991; 5:55-73.

Hifi M., Sadfi S. The knapsack sharing problem: an exact algorithm,
Journal of Combinatorial Optimization, 2002;6:35-54.

Hifi M., Sadfi S., Sbihi A. An efficient algorithm for the knapsack shar-
ing problem, Computational Optimization and Applications, 2002;23:27-
45.

Hifi M., MHalla H., Sadfi S. An exact algorithm for the knapsack sharing
problem, to appear in Computers and Operations Research.

Horowitz E., Sahni S. Computing partitions with applications to the
knapsack problem, Journal of ACM, 1974;21:277-292.

Kuno T., Konno H., Zemel E. 4 linear-time algorithm for solving
continuous maximum knapsack problems, Operations Research Letters,
1991;10:23-26.

Luss H. Minmax resource allocation problems: optimization and para-
metric analysis, European Journal of Operational Research, 1992;60:76-
86.

Martello S., Toth P (eds.). Knapsack problems: algorithms and computer
implementation, John Wiley and Sons, 1990.

Martello S, Toth P. Upper bounds and algorithms for hard 0-1 knapsack
problems, Operations Research, 1997;45:768-778.

Pang JS., Yu CS. A4 min-max resource allocation problem with substi-
tutions, European Journal of Operational Research, 1989;41:218-223.
Tang CS. A max-min allocation problem: its solutions and applications,
Operations Research, 1988;36:359-367.

Yamada T., Futakawa M. Heuristic and reduction algorithms for
the knapsack sharing problem, Computers and Operations Research,
1997;24:961-967.

Yamada T., Futakawa M., Kataoka S. Some exact algorithms for the
knapsack sharing problem, European Journal of Operational Research,
1998;106:177-183.

1111

