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The invariant properties of two-port circuits
Alexandr A. Penin

Abstract—Application of projective geometry to the theory of
two-ports and cascade circuits with a load change is considered.
The equations linking the input and output of a two-port
are interpreted as projective transformations which have the
invariant as a cross-ratio of four points. This invariant has place
for all regime parameters in all parts of a cascade circuit. This
approach allows justifying the definition of a regime and its
change, to calculate a circuit without explicitly finding the a-
parameters, to transmit accurately an analogue signal through
the unstable two-port.

Index Terms—circuit regime, geometric circuit theory, projec-
tive geometry, two-port.

I. INTRODUCTION

THE theory of two-port circuits is widely used for the
analysis of linear electric circuits. It is convenient to use

the methods of projective geometry in the case of a load’s
change in a wide range. It allows visually establishing the
relationship between the various parameters of regime for
individual parts of cascade connection of two-port circuits. In
particular, this approach justifies the definition of the regime
in the relative view (relative to these characteristic regimes as
an open circuit OC and a short circuit SC). Also, it allows
comparing the regimes of the different circuits.

In projective geometry, corresponding expressions define
mapping between the elements of one-dimensional manifolds,
such as direct lines. In this case, the invariant properties such
maps or projective transformations are become apparent. Thus,
if there is a value equal to all parts of the circuit or network,
it is presents of interest to the theory of two-port and may
be useful in practice. This paper presents the results obtained
earlier by the author.

II. THE PROJECTIVE TRANSFORMATIONS IN THE CASCADE

CIRCUIT

Let we consider a cascade connection of the two two-port
TP1 and TP2 with the changeable conductivity or resistance
of the load within a wide range on Fig. 1. Load characteristics
or load lines for all parts or sections of the circuit can be
calibrated in corresponding values of conductivity, current or
voltage. The Fig. 1 shows there is the specified mapping a
load characteristics of different sections to each other, which
it is conditionally shown dashed lines.

Let the conductivity of the load YH2 be changed from the
value Y 1

H2 to the value Y 2
H2 , i.e. a changing of the load or

of the parameters of regime is defined by the length of the
segment Y 2

H2Y
1
H2 .This change determines the correspond

changes of the conductivity YH1 and YH0. It may be noted
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Fig. 1. A cascade connection of the two two-port with the changeable
conductivity of the load

that the length of segments for all the load lines is different
for the usually used Euclidean geometry. However, if the
mapping is viewed as a projective transformation (in the
sense of projective geometry), the invariant, a cross-ratio of
four points, is performed, which defines the same length of
segments.

The entire circuit regarding load YH2 represents an active
two-pole or an equivalent generator. The demonstration of
the projective geometry and the definition of regimes of
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the equivalent generators are considered in [1], [2]. In this
regard, let we use and complement the definitions valid for
the cascade circuit:

a) Regime of a circuit is a point (the work point) with a
specified (projective) coordinate on the load characteristics
and coordinate axes;

b) Change of the regime is a movement of a point for
all characteristics, which determines the segments with
corresponding length;

c) There is an independence or invariance of the regime
and its changes to the parts of a circuit.

III. PROJECTIVE CONFORMITY OF THE INPUT-OUTPUT OF

A TWO-PORT

Let we consider the first asymmetrical two-port TP1 and
give the necessary expressions. We use the specific values
of elements for visibility and dimensions of values are not
indicated for simplifying of the record. As it is known,
equation TP1 through the Y - parameters or parameters of
conductivity, taking into account the directions of currents
has the form [3]:

(
I1
−I0

)
=

( −Y11 Y10

Y01 Y00

)
.

(
U1

U0

)

where:

Y00 = Y10 + Y0 = 5, Y11 = Y10 + Y1 = 6.4, Y10 = Y01 = 4

The determinant of the Y -matrix is:

Δ = Y00Y11 − Y01Y10 = 16,
√
Δ = 4

The characteristic conductance of TP1 to the input and output
is:

YBX1.C =

√
Y00

Y11
Δ = 3.535, YH1.C =

√
Y11

Y00
Δ = 4.525

It is also known that the equation of the TP1 through a
-parameters or transmission parameters is as follows:

(
U0

I0

)
=

(
a11 a12
a21 a22

)
·
(

U1

I1

)
=

=

(
1.6 0.25
4 1.25

)
·
(

U1

I1

)
(1)

where:

a11 =
Y11

Y10
, a12 =

1

Y10
, a21 =

Δ

Y10
, a22 =

Y00

Y10

The inverse expression has the form:(
U1

I1

)
=

(
a22 − a12
−a21 a11

)
·
(

U0

I0

)
=

=

(
1.25 − 0.25

−4 1.6

)
·
(

U1

I1

)

The determinant of the a -matrix is:

Δa = a11a22 − a12a21 = 1

This feature of the a -parameters allows entering the hyper-
bolic functions:

Δa = cosh2 γ − sinh2 γ = 1

where: γ is an attenuation coefficient.

Then the equation of the TP1 is given by:
⎛
⎝ U0

Ī0

⎞
⎠ =

⎛
⎝ cosh γ sinh γ

sinh γ cosh γ

⎞
⎠ ·

⎛
⎝ U1ȲH.C

Ī1

⎞
⎠ (2)

where:

Ī0 =
I0

YBX.C
, ȲH.C =

YH.C√
Δ

, Ī1 =
I1√
Δ

In turn, the conductivities at the input and output are connected
already by the linear- fractional expression according to (1):

YBX1 =
I0
U0

=
a22YH1 + a21
a12YH1 + a11

=

=
1.25YH1 + 4

0.25YH1 + 1.6
(3)

This expression is in a normalized form takes the form
according to (2):

YBX1

YBX1.C
=

tanh γ + YH1/YH1.C

1 + (tanh γ)YH1/YH1.C
(4)

where:
tanh γ = 1/

√
2 = 0.707

Now, consider the second TP2. Let it be symmetrical with
the specific parameters. Then, similar to expressions (1), (3)
we get: (

U1

I1

)
=

(
1.25 0.25
2.25 1.25

)
·
(

U2

I2

)
(5)

The inverse expressions have the forms:(
U2

I2

)
=

(
1.25 − 0.25
−2.25 1.25

)
·
(

U1

I1

)
,

YBX2 =
I1
U1

=
1.25YH2 + 2.25

0.25YH2 + 1.25
(6)

The condition of the given cascade circuit is performed:

YH1 = YBX2.

A concrete mapping of the load characteristics for U0 = 10
is drawn on Fig. 2. Let the conductivity YH2 be equal
to the extreme values YH2(0) = 0, YH2(∞) = ∞ . The
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corresponding values of conductivitiesYH1, YBX1 according to
(6), (3) are:

YH1(0) = 1.8, YH1(∞) = 5,

YBX1(0) = 3.048, YBX1(∞) = 3.595.

Next, we find the values of current I0 :

I0(0) = YBX1(0) · U0, I0(∞) = YBX1(∞) · U0.

We find the values of currents

I1(0) = 8.78, I1(∞) = 17.54,

I2(0) = 0, I2(∞) = 14.03

and voltages

U1(0) = 4.88, U1(∞) = 3.51,

U2(0) = 3.89, U2(∞) = 0

using the inverse expressions (1), (5). The projective

Fig. 2. A concrete mapping of the load characteristics

mapping or transformation is defined by three pairs of points
[4]. Therefore, in addition to these two extreme points, it is
convenient as the third or the unit (or scale) to use the point
of maximum power P2M of the loadYH2 . In this case:

current I2(P2M ) = I2(∞)/2 = 7.016,

voltage U2(P2M ) = U2(0)/2 = 1.95,

and YH2(P2M ) = 3.597.

Next, we find the corresponding values of currents, voltages at
the remaining parts of the circuit. Let the initial regime of
the circuit (point ′i′ on the all load characteristics) be set by
the voltage of the load U 1

2 = 1. Let we calculate the values of
all currents, voltages, conductivities at the remaining parts of
the circuit. In terms of projective geometry the voltages and
currents are homogeneous coordinates, and conductivities are
heterogeneous. The idea is that the homogeneous coordinates
always have a finite value. The projective coordinate of a
point ′i′ at all lines is defined by cross-ratio m1 of four points
and takes the same value.We have for the part or terminals of
load YH2:

m1(YH2) = (YH2(0) Y
1
H2 YH2(P2M ) YH2(∞)) =

=
Y 1
H2 − YH2(0)

Y 1
H2 − YH2(∞)

÷ YH2(P2M )− YH2(0)

YH2(P2M )− YH2(∞)
=

=
Y 1
H2

YH2(P2M )
=

10.41

3.597
= 2.89, (7)

m1(U2) = (U2(0) U
1
2 U2(P2M ) U2(∞)) =

=
U1
2 − U2(0)

U1
2 − U2(∞)

÷ U2(P2M )− U2(0)

U2(P2M )− U2(∞)
=

=
1− 3.89

1− 0
÷ 1.95− 3.89

1.95− 0
= 2.89÷ 1 = 2.89, (8)

m1(I2) = (I2(0) I
1
2 I2(P2M ) I2(∞)) =

=
I12 − I2(0)

I12 − I2(∞)
÷ I2(P2M )− I2(0)

I2(P2M )− I2(∞)
=

=
10.41− 0

10.41− 14.03
÷ 7.016− 0

7.016− 14.03
= 2.89÷ 1 (9)

We have for the part or terminals of the load YH1 :

m1(YH1) = (YH1(0) Y
1
H1 YH1(P2M ) YH1(∞)) =

=
3.96− 1.8

3.96− 5
÷ 3.14− 1.8

3.14− 5
= 2.89, (10)

m1(U1) = (U1(0) U
1
1 U1(P2M ) U1(∞)) =

=
3.86− 4.88

3.86− 3.51
÷ 4.2− 4.88

4.2− 3.51
= 2.89÷ 1 (11)

m1(I1) = (I1(0) I
1
1 I1(P2M ) I1(∞)) =

=
15.28− 8.78

15.28− 17.54
÷ 13.15− 8.78

13.15− 17.54
= 2.89÷ 1 (12)
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For the current I0 is:

m1(I0) = ( I0(0) I
1
0 I0(P2M ) I0(∞) ) =

= ( 30.48 34.55 33.22 35.95 ) = 2.89÷ 1

Thus, the invariant property of cross-ratio is performed, be-
cause the projective transformations are defined by linear-
fractional expression like (3). These invariant relations in
all parts of cascade circuit define the original ”principle of
conformity of regimes”.
Therefore, the definition of regime by cross-ratio (7) - (12)
removes the indeterminateness in the choice of possible rel-
ative expressions across all parameters and parts of a circuit.
The value of the cross-ratio is not changed if to divide or to
normalize all members by the same value. For example, the
normalized value to the load YH2 will be YH2(P2M ) , and the
normalized value to the voltage U2 will be U2(0).
In turn, a special case of a cross-ratio, an affine ratio of three
points or usual proportion is for the currents and voltages. This
follows from the fact that for those already homogeneous coor-
dinates, the transformation is a linear type (1), corresponding
to affine transformation or affine geometry.
The first and the second fractions for the currents and voltages
for all parts are equal among themselves due to the implemen-
tation of proportion. Thus, the affine transformation is defined
by two pairs of corresponding points. Therefore, if we use
only the currents and voltages one can use an invariant in the
form of an affine ratio.
Conversion (2) is characterized also by another invariant. This
expression for the symmetric TP takes the form:⎛

⎝ U0

I0
√
Δ

⎞
⎠ =

⎛
⎝ cosh γ sinh γ

sinh γ cosh γ

⎞
⎠ ·

⎛
⎝ U1

I1
√
Δ

⎞
⎠

This transformation can be seen as a rotation of the radius-
vector 0YH of constant length at the angle γ to the position
0YBX in the pseudo-Euclidean space I, U on Fig. 3. Then the
invariant is given by the expression:

U2
1 − I21Δ = U2

0 − I20Δ

and ones is the length of the vector 0YH .
This approach corresponds to the Lorenz transformations in
the mechanics of the relative motion. In turn, (4) corresponds
to the rule of addition of relativistic velocities [5].

Let the regime of the circuit be changed (the point ′f ′

at all the load characteristics), so that the load voltage is
U2
2 = 3. Let we calculate similarly all values and make the

cross-ratio:

m2(YH2) = ( 0 Y 2
H2 YH2(P2M ) ∞ ) =

1.073

3.597
= 0.298,

m2(U2) = ( U2(0) U
2
2 U2(P2M ) U2(∞) ) =

= ( 3.89 3 1.95 0 ) = 0.296÷ 1,

Fig. 3. A rotation of the radius-vector of constant length at the angle γ

m2(YH1) = ( YH1(0) Y
2
H1 YH1(P2M ) YH1(∞) ) =

= ( 1.8 2.37 3.14 5 ) = 0.216÷ 0.72 = 0.299,

m2(U1) = ( U1(0) U
2
1 U1(P2M ) U1(∞) ) =

= ( 4.88 4.56 4.2 3.51 ) = 0.299÷ 1,

Let we express the changes of the regime Y 1
H2 → Y 2

H2 :

m21(YH2) = ( 0 Y 2
H2 Y 1

H2 ∞ ) =
Y 2
H2

Y 1
H2

=

=
1.073

10.414
= 0.103 =

1

m12(YH2)
=

1

9.7
,

m21(U2) = ( U2(0) U
2
2 U1

2 U2(∞) ) =

= ( 3.89 3 1 0 ) = 0.297÷ 2.89 = 0.103,

m21(YH1) = ( YH1(0) Y
2
H1 Y 1

H1 YH1(∞) ) =

= ( 1.8 2.37 3.96 5 ) = 0.215÷ 2.074 = 0.103,

m21(U1) = ( U1(0) U
2
1 U1

1 U1(∞) ) =

= (4.88 4.56 3.86 3.51) = 0.299÷ 2.89 = 0.103

It is seen that the group property is carried out:

m21 = m2 ÷m1
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This follows from the structure of the cross-ratio m1, m2. The
second fractions for the scale value U1(P2M ) are reduced, i.e.
such a definition of the regime change is matched with the
definition of regime itself.

IV. VARIANTS OF THE EXPRESSIONS OF THE CROSS-RATIO

There are different variants of the expressions of the cross-
ratio depending on the choice of the extreme points and the
scale point. Let us consider the first TP1. Expression (4)

Fig. 4. A conformity or mapping of the points of line YH1 on the points of
line YBX1 , including the negative values

on Fig. 4 also sets conformity or mapping of the points of
line YH1 on the points of line YBX1, including the negative
values. We assume that the normalized values YH1/YH1.C ,
YBX1/YBX1.C are just equal to YH1 and YBX1.The repre-
sentative load value of two-port, which transmits energy, is a
characteristic value. In this case YBX1 = YH1 = ±1.
We make the cross-ratio m1(YH1) , using the extreme values
YH1(0) = 0 , YH1(∞) = ∞ and characteristic value YH1(1)
as a scale point:

m1(YH1) = ( 0 Y 1
H1 1 ∞ ) = Y 1

H1

Then the cross-ratio takes the form:

m1(YBX1) = ( tanh γ Y 1
BX1 1

1

tanh γ
) =

=
Y 1
BX1 − tanh γ

1 − Y 1
BX1 · tanh γ

We express the regime changes when Y 1
H1 −→ Y 2

H1 and
respectively Y 1

BX1 −→ Y 2
BX1 :

m21 = m2 ÷m1 =
Y 2
BX1 − tanh γ

1− Y 2
BX1 · tanh γ

÷

÷ Y 2
BX1 − tanh γ

1− Y 2
BX1 · tanh γ

= Y 2
H1 ÷ Y 1

H1

It is seen that the group property is also carried out. It may
be noted that the expressions for the regime changes and
the expressions for the conductivity changes at the input and
output are analytically expressed in different ways, but their
numerical values are equal. In this connection, we can choose
extreme points and a scale point in such a way so that the
expressions for these changes are the same. To do this we use

the characteristic values −1, 1 as the extreme values.
Then:

m21(YH1) = ( −1 Y 2
H1 Y 1

H1 1 ) =

Y 2
H1 + 1

Y 2
H1 − 1

÷ Y 1
H1 + 1

Y 1
H1 − 1

=

=
1 + (Y 2

H1 − Y 1
H1)/(1− Y 2

H1 · Y 1
H1)

1− (Y 2
H1 − Y 1

H1)/(1− Y 2
H1 · Y 1

H1)

The resulting expression shows that there is solid argumen-
tation to enter the value of load change in the form:

Y 21
H1 = (Y 2

H1 − Y 1
H1)/(1− Y 2

H1 · Y 1
H1)

Then, regime change is:

m21(YH1) =
1 + Y 21

H1

1− Y 21
H1

Similarly, the same regime change and the conductivity change
are resulted at the input:

m21(YBX1) = ( −1 Y 2
BX1 Y 1

BX1 1 ) =
1 + Y 21

BX1

1− Y 21
BX1

where:

Y 21
BX1 = (Y 2

BX1 − Y 1
BX1)÷ (1− Y 2

BX1 · Y 1
BX1)

We are using as a scale or a unit point YH1(1) = 0 for
the setting of the regime. This point corresponds to the point
YBX1(1) = tanh γ on Fig. 4. Then:

m1(YH1) = ( −1 Y 1
H1 0 1 ) =

1 + Y 1
H1

1− Y 1
H1

Because the same extreme points are used in the cross-ratio

Fig. 5. A movement of the point from position YH1 to position YBX1 for
different initial values YH1

for the input and output, we can consider the point YH1 and
YBX1 on the superposed axis on Fig. 5. This figure represents
a movement of the point from position YH1 to position YBX1

(or motion of segment YH1YBX1 ) for different initial values
YH1 , as shown by arrows. Then, the points ±1 are fixed. You
can make a cross-ratio to the points YH1, YBX1 relatively fixed
points, which determines the ”length” of segment YH1YBX1 :

m(YH1 YBX1) = ( −1 YH1 YBX1 1 )
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It is known the properties of such cross-ratio in projective
geometry, its value does not depend on values YH1, YBX1

. Therefore, we set YH1 = 0 and YBX1 = tanh γ for
simplifying of the record:

m(YH1 YBX1) =
1− tanh γ

1 + tanh γ
= KPM

It is seen that the ”length” of segment YH1YBX1 equals to the
maximum of the efficiency KPM of a two-pole. Therefore, it
turns out that the concept of maximum efficiency is already
into this geometric interpretation, and do not have to ”think
of” his definition.
Thus, the proposed geometric approach provides variants for
the justified definition of a regime and his changes for the
different parts of a circuit.

V. APPLICATION OF THE INVARIANT PROPERTIES OF

CIRCUITS

The invariance of a cross-ratio can be applied in practice of
measurements, because many measuring means exercise linear
-fractional transformation on the input value [6].
The cross-ratio allows obtaining also the convenient calculated
expression YBX(YH) of the type (3), but without the explicit
finding of a -parameters. It is known, for the finding of the a-
parameters necessary to exercise three experiments measuring
values YBX , YH .
The most simple expressions for the calculation of the a -
parameters are obtained from experiments, in which the regime
of SC and OC at the output (two experiences) and one of
such experiments at the input when the circuit is supplied
from the output. Clearly, such manipulations are not always
convenient to implement (the length of the network, the
technical complexity of switching power supply from the input
to the output). It is therefore, possible the following algorithm
of the calculation:

-Circuit is tested (three experience are exercised) for the
three arbitrary values of the loads: YH(0), YH(∞) are the
extreme values and YH(1) is the scale value. If possible, it is
believed YH(0) = 0, YH(∞) = ∞, as a regime of the SC
and OC. Then, the scale value YH(1) is convenient to choose
so that the voltage UH(1) = UH(0)/2 .

- The respective values YBX(0), YBX(∞), YBX(1) are
measured.

- For the current load value Y 1
H the cross-ratio m1 is

calculated.
- The current value Y 1

BX is found through the m1 from a
similar, but a reciprocal expression.
Because

m1(YBX) =
Y 1
BX − YBX(0)

Y 1
BX − YBX(∞)

÷

÷ YBX(1)− YBX(0)

YBX(1)− YBX(∞)
=

Y 1
BX − YBX(0)

Y 1
BX − YBX(∞)

÷NBX(1) (13)

we get the final calculation expression:

Y 1
BX =

YBX(0)−m1NBX(1)YBX(∞)

1−m1NBX(1)
(14)

For the following values of the load Y 2
H value of the m2 is

firstly found and value of the Y 2
BX is further found.

Fig. 6. System of accurately transmission of the measuring signal

Cross-ratio permits accurately to transmit analog (measuring
signal) via the unstable two-pole [7]. The scheme of such
system is presented on Fig. 6. In a short time when the
parameters of a circuit does not significantly are changed,
the four samples of load are transmitted by connecting the
respective loads YH(0), Y 1

H , YH(1), YH(∞) .
Three of them YH(0), YH(1), YH(∞) are extremely and scale
values, and the sample Y 1

H is a signal or an information
sample. Therefore, its value is calculated by the formula which
is obtained similar to (14) through the prepared cross-ratio m 1:

Y 1
H =

YH(0)−m1NH(1)YH(∞)

1−m1NH(1)
= F (m1) (15)

We accept that value of the m1 = UC .
At the input of a circuit the cross-ratio or the signal is calcu-
lated similar to (13), using the measured values of samples of
the input conductivity:

m1 =
Y 1
BX − YBX(0)

Y 1
BX − YBX(∞)

÷NBX(1) = F−1(Y 1
BX) (16)
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We can also use only three samples where a circuit is loaded
on the sources of voltages on Fig. 6.
Because

m1(U2) = (U2(0) U
1
2 U2(P2M ) U2(∞)) =

U1
2 − U2(0)

U1
2 − U2(∞)

hence it follows the value of a signal sample, similar to (15)

U1
2 =

U2(0)−m1U2(∞)

1−m1

At the input of a circuit the cross-ratio or the signal is calcu-
lated similar to (16), using the measured values of samples:

m1 =
U1
1 − U1(0)

U1
1 − U1(∞)

The structure of this expression shows that the errors of mea-
surement of samples of voltages mutually are reduced. More
than a simple expression for the signal sample is obtained,
using the invariant in the form of an affine ratio:

m1(U2) = (U1
2 U2(0) U2(∞)) =

U2(0)− U1
2

U2(0)− U2(∞)

Then the value of the signal sampling is:

U1
2 = U2(0) + n1(U2(∞)− U2(0))

VI. CONCLUSION

1. The invariant relations for all regime parameters in all
parts of cascade circuit are shown.

2. The definition of a regime by the cross-ratio removes
the indeterminateness in the choice of the possible relative
expressions across all parameters and parts of a circuit.

3. The expressions for calculating the cascade circuit with-
out explicitly finding the a -parameters are obtained.

4. The cross-ratio is an effective way to transmit an analog
(measurement signal) via the unstable two-port.

5. The results are applicable to AC circuits.

REFERENCES

[1] A. A. Penin,”Linear- fractional relation in the problems of anal-
ysis of resistive circuits with variable parameters”, Electrich-
estvo, 11, 1999, pp.32-44, (Russian).

[2] A. A. Penin,”Determination of Regimes of the Equivalent Generator
Based on Projective Geometry.The Generalized Equivalent Genera-
tor”, International Journal of Electrical Systems Science and Engi-
neering, vol.1, n.3, 2008, pp.169-177.

[3] C. A. Desoer and E. S. Kuh, Basic Circuit Theory, McGraw - Hill,
New York, 1969.

[4] O. Veblen and J. W. A. Young, Projective Geometry, vol.1, Blaisdell,
New York, 1938- 1946.

[5] C. K. Kittel, W. D. Knight and M. A. Ruderman,Mechanics:
Berkely Physics Course, vol.1, McGraw - Hill, New York, 1973.

[6] A. I. Gerasimov and V. D. Masin, ”Aplication of the properties of
linear- fractional transformatoins in the measuring converters”, Pribory,
sistemy upravlenia, n. 9, 1983, pp. 22- 23, (Russian).

[7] A. A. Penin , ”Projective- affine properties of the resistive two-
port with the changeable load”, Electrodinamika, n. 2, 1991, pp.38-
42, (Russian).

Alexandr A. Penin graduated from Radio Department Polytechnic Institute
in 1974 of Odessa city, Ukraine. The area of research relates to the theory of
electrical circuits with variable elements or regimes. The area of interest in
engineering practice is the power electronics.


