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The Influence of Gravity on The Temporal Instability of
Viscoelastic Liquid Curved Jets

Abdullah Madhi Alsharif and Jamal Uddin

Abstract— A liquid curved jet has many applications in different
industrial and engineering processes, such as the prilling process
for generating small spherical pellets (fertilizer or magnesium). The
liquids used are usually molten and contain small quantities of
polymers and therefore can be modelled as non-Newtonian liquids. In
this paper, we model the viscoelastic liquid jet by using the Oldroyd-
B model. An asymptotic analysis has been used to simplify the
governing equations. Furthermore, the trajectory and a linear temporal
stability in the presence of gravity and rotation have been determined.
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I. INTRODUCTION

IT is important to understand the behaviour of non-
Newtonian jets because this phenomena of viscoelastic jets

has many industrial applications, including ink jets, fertilizers,
roll coating and paint levelling. Lord Rayleigh [19] carried out
the theoretical treatment for the instability of incompressible
inviscid liquid jets and found that the reason for break-up
is the surface tension. He found that the maximum growth
happens at ka = 0.697 with a corresponding wavelength
ω ≈ 2πR/0.697 ≈ 9R. The viscosity was considered in the
cylinder of incompressible liquid jets by Weber [26] who
found that the wave length of most unstable liquids is increased
by the viscosity. The asymptotic theory has been applied by
Papageorgiou [17] to the system of dynamics of viscous
fluid jets to derive the model for the nonlinear solution. He
also found that there are good agreements between theoretical
and asymptotic solution. Newtonian jet stability was examined
by Grant and Middleman [11] in terms of predicting the
stability in turbulent and laminar jets which emerged from
a nozzle. The temporal instability of capillary liquid jets was
investigated by Ashgriz and Mashayek [2].
The work of Wallwork et al. [25] examines the trajectory
and stability of inviscid curved liquid jets; their investigation
revealed temporal and spatial stability in the case of steady
state solutions. They also conducted some experiments for
inviscid rotating liquid jets and found agreement between the
theoretical and experimental work. Decent et al. [7] extended
the previous work to include gravity in the examination of
linear stability by Wallwork [24]. Moreover, the influence
of viscosity on the trajectory and stability of the break-up of
rotating liquid jets has been examined by Decent et al. [8] and
the experiments agree with the theoretical work. However, Ud-
din and Decent [23] studied the instability of non-Newtonian
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liquid curved jets under gravity. Uddin [22] has also investi-
gated the influence of gravity on non-Newtonian liquid curved
jets by adding surfactants. The influence of gravity on the
capillary jet instability was investigated by Cheong et al. [3].
They conducted experiments for this simulation and found
that the increase in gravity decreases disturbance frequency
and, without including gravity, the maximum wave number is
k = 0.697, which agrees with Rayleigh’s result. A numerical
study has been used by Renardy [20] to find the break-up of
Newtonian case and viscoelastic liquid jets for the Giesekus
model and upper convected Maxwell model. The stability
of viscoelastic jets has been discussed by Middleman [15]
who predicted a lower stability compared to Newtonian liquid
jets. This was also investigated by Goldin et al. [10], who
found that the droplets of viscoelastic jets connected to threads
which are thin because of the effects of stress on the thread
and surface tension. Mageda and Larson [14] have used the
Oldroyd-B model for ideal elastic liquids, called Boger fluids,
for investigating the rheological behavior of polyisobutylene
and polystyrene when the shear rates are low. Larson [12]
wrote an article reviewing instability in viscoelastic flows,
in which he described the simplest model for studying the
viscoelastic jets, which is the Oldroyd-B model. Larson [12]
also illustrated the linear and nonlinear instability for New-
tonian and non-Newtonian fluids. The numerical study for
pendant drop formation of viscoelastic liquid jets in air which
emerged from a nozzle was examined by Davidson et al. [6].
They used Oldroyd-B model and compared the drop shapes
numerically with experimental work. Cooper-White et al. [5]
investigated the effects on elasticity of the drop liquid jet
caused by gravity. The beads-on-string structure of viscoelastic
threads was discussed by Clasen et al. [4]. They applied the
Oldroyd-B model to this problem to study the beads-on-string
and liquid bridge. This article is well-presented and explains
the theoretical analysis and experimental study. Renardy [21]
studied the linear stability of viscoelastic shear flow when the
limit of high Weissenberg and Reynolds numbers by using
Maxwell upper convected fluid. Liu and Liu [13] discussed the
temporal instability of viscoelastic liquid jets for axisymmetric
and asymmetric disturbances. The dynamics of the beads-on-
a-string structure and filament thread have been discussed by
Ardekani et al. [1] for weakly viscoelastic jets by using the
Giesekus constitutive equation and compared the results to
those of the Oldroyd-B model (when α = 0). They found that
the mobility factor α, has an influence on the neck of droplets.
Morrison et al. [16] studied the viscoelasticity of the drop of
ink jet which emerged from the nozzle.
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Fig. 1. Sketch of coordinate system which uses the X,Y, Z axis. O represents
the orifice from which the liquid emerges.

II. PROBLEM FORMULATION

We assume that a large cylindrical container has radius s0
and rotates with angular velocity Ω. This container has a small
orifice at the bottom with radius a. This radius is very small
compared with the radius of the container. This problem is
examined by choosing a coordinate system (X,Y, Z) rotating
with the container, and having an origin at the axis of the
container. The position of the orifice is at (s0, 0, 0) as shown in
Fig. 1. Due to the rotation of the container, the liquid leaves the
orifice in a curve. In this problem of the prilling process. The
jet moves in the (X, , Y, Z) plane, so that the centerline can
be described by coordinates (X(s, t), Y (s, t), Z(s, t)), where
s is the arc-length along the middle of the jet which emerges
from the orifice and t is the time (see Wallwork [24]). In any
cross-section of the jet we also have plane polar coordinates
(n, φ), which are the radial and azimuthal direction and have
unit vectors which are es, en, eφ (see Decent et al. [7]). The
velocity components for this problem are (u,v,w), where u
is the tangential velocity, v is the radial velocity and w is the
azimuthal velocity.

To describe the flow we have to determine the equations of
motion, which are the continuity equation, the momentum
equation and the constitutive equation. We used the Oldroyd-
B model to study the viscoelastic liquid jet. The equations of
motion take the form

∇.u = 0, (1)

ρ

(
∂u

∂t
+ u.∇u

)
=

−∇p+ g +∇.τ − 2w × u−w × (w × r), (2)

τ = μs

(
∇u + (∇u)

T

)
+ T, (3)

λT∇ + T = μpγ, (4)

∂T

∂t
+ (u.∇)T − T.∇u− (∇u)

T
.T =

1

λ
(μpγ − T ), (5)

where ρ, p, μs, μp and T are the density, the pressure, the
viscosity of the solvent, the viscosity of the polymer and

the extra stress tensor respectively. We have two boundary
conditions which are the kinematic condition which takes the
form

∂R

∂t
+ u.∇R = 0, on n = R(s, φ, t), (6)

and the dynamic condition which is

n.Π.n = σκ, and ti.Π.n = ti · ∇σ, (7)

and the arc-length condition is

X2
s + Y 2

s + Z2
s = 1,

where Π = −pI + τ , n and ti for i = 1 and 2 are the total
stress tensor, the unit normal and tangential vectors and σ is
the surface tension of the liquid.
These equations are similar to Decent et al. [7]. However,
the differences are in the equations of the extra-stress term
which is T .

III. ASYMPTOTIC ANALYSIS

We expand u, v, w, p in Taylor series in εn (see Eggers [9])
and R,X,Z, Tss, Tnn, Tφφ, Tsn, Tsφ, Tnφ in ε.

(u, v, w)(s, n, φ, t) = (u0, 0, 0)(s, t) +

(ε n)(u1, v1, w1)(s, φ, t) + ...

p(s, n, φ, t) = p0(s, φ, t) + (ε n)p1(s, φ, t) + ...

R(s, n, φ, t) = R0(s, t) + (ε)R1(s, φ, t) + ...

(X,Y, Z)(s, n, φ, t) = (X0, Y0, Z0)(s) +

(ε)(X1, Y1, Z1)(s, t) + ...

(Tss, Tnn, Tφφ)(s, n, φ, t) = (T 0
ss, T

0
nn, T

0
φφ)(s, t) +

ε (T 1
ss, T

1
nn, εT

1
φφ)(s, t) + ...

(Tsn, Tsφ, Tnφ)(s, n, φ, t) = ε (T 1
ss, T

1
nn, εT

1
φφ)(s, t) + ...

We substitute these asymptotic expansions in the equations of
motion. We can therefore find from the equation of continuity
at the leading order

v1 = −u0s

2
. (8)

It can be also obtained that from the equation of motion in
s-direction at leading order

u0t + u0u0s = − 1

We

(
1

R0

)
s

+
(X + 1)Xs + ZZs

Rb2
+

3αs

R2
0 Re

(
R2

0 u0s

)
s

− Ys

F 2
+

1

R2
0Re

(
R2

0(T
0
ss − T 0

nn)

)
s

, (9)

(X2
ss + Y 2

ss + Z2
ss)

(
u2
0 −

3αs

Re
u0s −

√
u

We

)
= −Yss

F 2
+

2

Rb
u0

(
XsZss − ZsXss

)
+

(X + 1)Xss + ZZss

Rb2
= 0, (10)

ZsXss − ZssXs

F 2
+

(X + 1)(YssZs − YsZss)

Rb2
−

2Yssu0

Rb
+

Z(YsXss − YssXs)

Rb2
= 0, (11)
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from the extra stress tensor (Eq. 5) at leading order, we get

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (12)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+

∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (13)

from the kinematic condition, we obtain at ε
∂R0

∂t
+ u0R0s +

R0

2
u0s = 0, (14)

where Re = ρUa
μ0

, We = ρU2a
σ , Rb = U

s0Ω
, De = λU

s0
and

F = U√
gs0

and αs = μs

μs+μp
are Reynolds number, Weber

number, Rossby number, Deborah number, Froude number and
the viscosity ratio respectively. We can see that when Rb →
∞ and F → ∞ the equations (9)-(14) are the same as the
equations which are derived by Clasen et al. [4].

IV. STEADY STATE SOLUTIONS

We have the governing equations for this system as

u0u0s = − u0s

2We
√
u
+

(X + 1)Xs + ZZs

Rb2
+

3αs

Re

(
u0ss − u2

0s

u0

)
− Ys

F 2
+

1

Re

(
∂

∂s
(T 0

ss − T 0
nn)−

u0s

u0
(T 0

ss − T 0
nn)

)
, (15)

(X2
ss + Y 2

ss + Z2
ss)

(
u2
0 −

3

Re
u0s −

√
u

We

)
= −Yss

F 2
+

2

Rb
u0(XsZss − ZsXss) +

(X + 1)Xss + ZZss

Rb2
= 0, (16)

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(αs − 1)

∂u0

∂s
− T 0

ss

)
, (17)

u0
∂T 0

nn

∂s
+

∂u0

∂s
T 0
nn =

−1

De

(
(αs − 1)

∂u0

∂s
+ T 0

nn

)
, (18)

ZsXss − ZssXs

F 2
− 2Yssu0

Rb
+

(X + 1)(YssZs − YsZss)

Rb2

+
Z(YsXss − YssXs)

Rb2
= 0, (19)

and finally the arc-length condition is

X2
s + Y 2

s + Z2
s = 1. (20)

These are a system of six equations in six unknowns
which are X,Y, Z, u0,T 0

ss and T 0
nn. We solve these equations

by using the Runge-Kutta method in the inviscid limit (see
parau et al. [18]) for obtaining the trajectory of the jet with
following initial conditions as u0(0) = R0(0) = Xs(0) = 1
and Y (0) = X(0) = Z(0) = Zs(0) = Ys(0) = 0. In Figs. 2
and 3 show the influence of changing the Froude number and
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Fig. 2. Graph showing the trajectory of a liquid jet under the effect of gravity
and rotation for different values of the Froude number where De = 15 and
α̃ = 20.
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Fig. 3. Graph showing the trajectory of a rotating liquid jet under the effect of
gravity and rotation for different values of the Rossby number where De = 15
and α̃ = 20.

the Rossby number on the trajectory of a viscoelastic liquid
jet, which means when we decrease the Froude number the
effect of gravity becomes stronger on the trajectory. We find
the relationship between the extra stress tensor,T 0

ss and T 0
nn

and the arc-length s for different values of Rossby number
and Froude number which are in Figs. 4-7.

V. LINEAR TEMPORAL INSTABILITY ANALYSIS

We now consider the travelling wave modes of the form
exp(iks̄+ t̄), where s̄ = s/ε is small length scales, t̄ = t/ε is
small time scales, k = k(s) and ω = ω(s) are the wavenumber
and frequency of the disturbances, and δ is a small constant
which is 0 < δ < ε2 (see Uddin [22]).
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Fig. 4. Graph showing the relationship between T 0
ss and arc-length s of

a rotating liquid jets under the effect of gravity for different values of the
Rossby number at F = 3 and We = 25at De = 15 and α̃ = 20.
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Fig. 5. Graph showing the relationship between T 0
nn and arc-length s of a

rotating liquid jet under the effect of gravity for different values of the Rossby
number at F = 3 and We = 25 at De = 15 and α̃ = 20.

We make small perturbations to the steady state solutions
having the form δ exp(iks̄+ t̄), where δ is a small dimension-
sless constant. Then we obtain the eigenvalue relation at the
leading order which has the form(

ω + iku0

)2

+
3α̃sk

2

Re

(
ω + iku0

)
−

k2R0

2We

((
1

R2
0

− k2
)
− 2We

R0 Re
(T 0

ss − T 0
nn)

)
−

k2

Re

(
2T 0

ss + T 0
nn +

3

De

)
= 0. (21)

There is a new scaling for the viscosity ratio which is α̃s =
αs

ε .
Without this new scaling, we cannot bring the viscous term
into the equations which derived the dispersion relation. As
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Fig. 6. Graph showing the relationship between T 0
ss and arc-length s of

a rotating liquid jets under the effect of gravity for different values of the
Froude number at Rb = 1.5 and We = 25 where De = 15 and α̃ = 20.
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Fig. 7. Graph showing the relationship between T 0
nn and arc-length s of a

rotating liquid jet under the effect of gravity for different values of the Froude
number at Rb = 1.5 and We = 25, where De = 15 and α̃ = 20.

we mentioned earlier, αs + αp = 1, where αs and αp are
the solvent viscosity and the polymeric viscosity respectively.
After substituting the new scaling, the last equation becomes
εα̃s+αp = 1, which means that αp � αs. However, both the
solvent viscosity and the polymeric viscosity are very small.
By choosing ωi = −ku0, and differentiating the last equation
with respect of k we get

k∗ =
1

(2R3
0)

1/4

(
R0GWe

2 + 1− 2B

) 1
2

√(
3α̃sOh+

√
2R0

) , (22)
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Fig. 8. Graph showing the relationship between the radius and the arc-
length s for different values of the Froude number and the Rossby number
when We = 15.

where B = T 0
ss − T 0

nn and G = 4
Re

(
2T 0

ss + T 0
nn + 3

De

)
.

For temporal instability, the growth rate ωr is positive, which
happens when 0 < kR < 1 where k = k∗, and R0 is found
from the steady state solutions.

VI. RESULTS

In this section we examine the linear stability of
disturbances about the steady state solutions obtained in the
last section. It can be noticed in Fig. 8 that the radius of
the jet decreases with an increasing arc-length s. This Fig.
also shows that when the Froude number increases with
the constant Rossby number, F = 0.5, 1 and 3, Rb = 8,
the radius of the jet increases, which means the liquid jet
becomes thinner and moves more slowly. In Figs. 9 and
10, we plot the correlation between the growth rate and the
wavenumber of the most unstable modes and the arc-length
for different values of Froude number.
In Fig. 11, we chose a different value of the Rossby number,
making the Froude number as a constant, and showing that
when we increase the Rossby number the radius of the jet
increases as well. The same procedure is applied in Figs. 12
and 13 to find the relationship between the growth rate and
the most unstable mode for the wavenumber and arc-length
s. It can also be seen that when the Rossby number increases
the growth rate and the wavenumber increases.

VII. CONCLUSION

We have discussed the linear stability of a viscoelastic liquid
jets falling under gravity and rotation rates. We therefore
have examined the most unstable mode and growth rate for
viscoelastic liquid jets and found that a linear mode varies
with the distance downstream of the jet. This linear stability
cannot predict the satellite droplets. However, the main droplet
sizes for this prilling process can be predicted.
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