
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

369

Abstract—This paper will present the implementation of QoS

policy based system by utilizing rules on Access Control List (ACL)
over Layer 3 (L3) switch. Also presented is the architecture on that
implementation; the tools being used and the result were gathered.
The system architecture has an ability to control ACL rules which are
installed inside an external L3 switch. ACL rules used to instruct the
way of access control being executed, in order to entertain all traffics
through that particular switch. The main advantage of using this
approach is that the single point of failure could be prevented when
there are any changes on ACL rules inside L3 switches. Another
advantage is that the agent could instruct ACL rules automatically
straight away based on the changes occur on policy database without
configuring them one by one. Other than that, when QoS policy
based system was implemented in distributed environment, the
monitoring process can be synchronized easily due to the automate
process running by agent over external policy devices.

Keywords—QOS, ACL, L3 Switch.

I. INTRODUCTION
N order to provide reliable and sustained QOS in TCP/IP
network, well defined network architecture and application

installed inside the network should be accommodated
correctly. Conventional implementation approaches on QoS
policy system will alter the users by manipulating the
operation using centralized policy management application.
An effective approach to force network control is that QoS-
based policy management must have knowledge of the
capabilities of each of users attached into the network [1].

The centralized QoS-based policy system shows the lack of
good management, control mechanism, coordinate and
configuration parameters. It’s refused to give us a consistent
fashion result when these approaches are going to be deployed
in wide-range network or distributed environment [3].
Hardware requirement as well as system maintenance and
software used must be able to reach zero percent of down
time. It’s required for an organization to invest more resources
to ensure the QoS policy based system being installed ad suits
their needs includes the backup system employed in order to
avoid any bad circumstance happen.

As shown before, the deployment of QoS system and how
QoS is being defined by the network policies is left to the
network administrator. Thus, the automation processes include
the cited task between agent and L3 switch are derived from
the network administrator point of view [2].

Other proposed solution was to define the policies and let
an intelligent network devices implement them. The traffics
will go through a respective routers and it will be filtered. The
routers will decides which QoS policy for a particular traffic
flow based on their priority, service type, resource usage etc
[4]. In this case, we had proposed the implementation of QoS-
based policy system over L3 switch. We implement the
system over L3 switches rather than router regarding a couple
of things. First, we need a device that reliable enough to serve
large amount of traffic without forwarding that traffic into
multiple route.

The reason is that the L3 switch could pass the traffic as
fast as Layer-2 (L2) switch and yet the decision on how was
the traffic being transmitted would be made just like a router
[5]. Our network testbed employ the QoS policy based system
behind the core router, which is the traffic are being
prioritized before it going to be route to the respective subnet.
Thus, it’s more appropriate if the policy could be defined
through ACL in L3 switch before it going to be routed
externally.

The objective of this research is, to eliminate single point of
failure in a centralize policy server. Besides that, this
architecture could prevent or at least minimized the network
burden when single centralized QoS policy server had to be a
red dot bridging the internal network and core network. L3
switch installed inside the network will serve the real traffic
and it can be considered that a switch was a most critical
element in the network. To avoid a critical exception on that,
we minimize the human–manual interfere during the policy
configuration especially on ACL. Thus, agent was developed
to execute remote automation process. This agent will emulate
all human-input command over the L3 switch through the
command instruction scripting. The overall script was
constructed using Ckermit [12] programming language.

II. RELATED LITERATURE
Several agent-based QoS policy systems were proposed and

are widely implemented. S.S Manvi et al. [7] describe the
mobile agent based QoS simulation model on multimedia
communication environment. This work states that mobile
agent paradigm significantly reduce bandwidth consumption
and network traffic in contrast to client/server paradigm.
Every node in the networked multimedia system must have an
agent execution environment. Two type of agent are going to

The Implementation of Remote Automation
Execution Agent over ACL on QOS POLICY

Based System

Hazly Amir, and Roime Puniran

I

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

370

be installed; static agent (recognized as a server agent) and
mobile agent. Mobile agents are traveled on each of nodes
where the server agents are installed inside and also
negotiation were made in between with the service provider in
order to prioritize the policy regarding bandwidth usage
within the network. This implementation are work well in
multimedia centralized communication network which is all
nodes are sharing same mobile environment and multimedia
content. Outside that, this proposal not addresses the most
issues arise on ‘best effort’ QoS policy based network
environment where, all users deserve to get certain level of
bandwidth guarantees whatever services their used even in
different platform or different application.

In Weiyi Li et al. [8] extended abstract, despite to archive
differentiate QoS among network users, and there will be a
requirement for the active configuration of QoS. These
network services and resource configuration requires an
enhanced control infrastructure as well as associated pricing
mechanism as part of session establishment. The issues arise
regarding the latency due to the message propagation from
one host to another. Especially today’s broadband networks
when much more time required in transmitting a large packet.
Therefore, this works introduce signaling mechanism with
mobile agent. Agent-based signaling is used in negotiations of
cost and resources. A mobile agent can be constructing to
perform multiple tasks. The mobile agent may be traveled
widely to collect information and the same agent can issue the
appropriate management control on it. The problem is that this
mobile environment and all the element are installed in
centralized platform which is the traffic are also goes through
the same machine. These not prevent the network burden and
bottle neck on physical specification issues.

III. OUR IMPLEMENTATION ARCHITECTURE
Our proposed system was derived from several

implementation issues in the field. The packets are being
probed through Packet Capture Terminal (PACAT) script in
IPCON Box. All probing packet basically formatted as a raw
data and being polled and processed into a readable data
before they were dumped into a system database.

Fig. 1 IPCON QoS policy system architecture

PACAT Box is a device which is installed after the ISP
core network. It can be considered as a passive box which is,
no critical execution implement inside. We choose to use L3
switch instead of single centralized server to avoid different
subnet being created on each of an interface and to prevent
packet flow through multiple hop.

We used Multinet Network, a private ISP network
environment in our system implementation. Initially, our
mediation system will collect basic data from IP DSLAM
devices located at scattered exchanges using IPCON Box.
These data will be translated into valuable information.
Regarding on Fig. 1, IPCON Controller, a program being
installed inside Central IP Controller, will analyzed that data
and from there, they need to make a decision whether to
execute policy rules based on data, send a notification to the
network administrator or waiting for any further instruction
from an administrator.

IPCON Agent, a policy agent, are programmed and
installed in each of every IPCON Box. They share the same
platform with PACAT script. L3 switch were installed as a
‘bridge’ in between the core network and a billing system. L3
switches used to be a main traffic highway of internal packet
flow. Thus the configurations for sure are regularly made.

IPCON Agent was created in order to emulate human-
manual command line input. The simple rationale behind that
is that if there were several switches are installed distributed,
the automation process (e.g ACL instruction) can be
synchronized and the risk of human-error could be decreased.

Fig. 2 IPCON QoS policy system development area

Regarding Fig. 2, our QoS policy based system involves 2

main devices; 1 – IP Policy Agent (IPCON Agent) in PACAT
Box 2 – IP Policy Controller (IPCON Controller). Agent that
is installed inside IP Policy Agent box is responsible to
interact directly to L3 switches regarding instruction came
form IPCON Controller.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

371

Fig. 3 Sequence Diagrams of Policy agent and Policy Controller

Fig. 3 illustrate the flow process between IPCON Agent

and IPCON Controller. The system starts when IPCON
Controller triggered the process. Triggering the process
basically initiated when there are any changes made within the
databases. It could be happen if there is some users changing
their packages or admin need to do something over some
user’s services (block, warning or changing the packages).
IPCON agent starts their works when socket on RMI on their
services accepted the incoming request from the IPCON
Controller (step 2). Triggering status are responded whether
the IPCON Agent ready to run the process or append it.
IPCON Controller start initiated the process if IPCON Agent
are ready (step 4) and then wait until IPCON Agent processes
the request (step 7). The result (session and transaction log) of
the process will be gathered at the end of the processes (step
11 and 12).

There is only 2 type of policy rules used in this work; block
and unblock. The rules was set up on ACL inside the L3
switch and each rules indicate 12 ACL sequence rules which
is, all of these must be emulate by IPCON Agent. Each users
initially are be given the amount of bandwidth volume
regarding the packages their purchase for a particular time. If
the usage of volume exceeded the initial amount, the
administrator has a capacity to block or pending these users
based on their IP address until those particular users clean
their status (by paying a bill or purchase the other package).
Our concerned is, how was this will be going to be happen if
there is a thousand of users in different area attaching different
QoS policy server? Thus, the implementations of automation
process to execute all of rules are being our main priority.
These rules are installed in every L3 switch which is
connected to DSLAM directly to CPE of the users. ACL rules
inside the L3 switch will be used to implement our policy.
Basically, an administrator will defined the rules need to be
executed. This rule will be sent into IPCON Agent, and those
agents are responsible to read that rules instruction and
executed it automatically.

Fig. 4 Simple Class Diagrams of Policy agent and Policy controller

IPCON Agent that installed inside PACAT Box is generally

stand-alone-script. From IPCON Agent point of view, its
merely impossible if we let them alone since we want to
trigger them when there are any changes occur on the
database. Since IPCON Agent only works if there is an
attention invoked from IPCON Controller, at least there is a
function / mechanism used to accept the request. Thus, as
mention through Fig. 4, it’s possible if there is some RMI
function implemented together in PACAT Box besides the
IPCON Agent. This function will accept any incoming request
from IPCON Controller. Besides accepting incoming request,
RMI also responsible to execute automate script (CKermit).
See step 7 on Fig. 4. After script finishing their process, these
RMI will determine the status and respond the answer back to
the IPCON Controller.

We manage not to use RMI to record the entire log (session
and transaction log). IPCON Agent script can manage them
after all.

IV. EXPERIMENT AND RESULT
IPCON Agent was formed entirely in C-Kermit script. The

architecture of C-Kermit IPCON Agent script was showed in
Fig. 5.

There were several approaches we have been used to enable
the connection between IPCON Agent and IPCON Controller.
We had developed remote invocation application using Java
RMI in order to apply remote execution between controller
and agent.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

372

Fig. 5 Policy Agent Scripts Architecture

Physically, we used 3 types of machines which are can be

categorized into 2 segments. Regarding an architecture
illustrated on Fig. 3, we use NetGear-GSM-7312 series as our
main L3 switch connected to the outside network and
NexGate-NSA-1041 series as an agent platform running DSL
3.0 UNIX OS, CKermit library and Java RMI, as shown in
Table I.

TABLE I

IMPLEMENTATION SETUP TOOLS
IP Policy Agent /
PACAT Box

• NexGate-NSA-
1041

• DSL 3.0 OS
L3 Switch • NetGear-GSM-

7312
• Standard IOS

Based on the research, CKermit (technically inherited from

Kermit Protocol) is a computer file transfer/management
protocol and a set of communications software tools [9] [10].
It provides a consistent approach to the file transfer, terminal
emulation, script programming, and character set conversion
across many different computer hardware and OS platforms.

The IPCON Agent main script (hostmode.ksc) was re-
invented from original Kermit 95 hostmode.ksc [11]. Other
than that, several threads were used such as hosthread.ksc and
ftpsyncup.ksc to implements multiple inter-networking
processes such as FTP, read-write-execute process, LOG and
error handling.

Regarding Fig. 5, top level script consists of hostmode.ksc,
hosthread.ksc and ftpsyncup.ksc. The initiator of the processes
besides providing users main GUI was the hostmode.ksc.
hosthread.ksc was constructed to implement the thread
process between IPCON Agent and L3 switch, meanwhile
ftpsyncup.ksc will execute FTP process in order to transfer
LOG files from agent to controller. ftpsyncup.ksc is an
optional. It’s not required as a basic iteration process for the
whole system.

Actually, users can choose to enable or disable the FTP
process regarding the situation and needs.

In order to block or unblock users based on their IP address,
there is sequences of command input have to be issued over
L3 switch. Manual human-input scheme provide 12 rules in
order the administrator complete the task.

joe=enable
joe=
joe=?
joe=
joe={show access-list interface 0/2 in }

joe=
joe=exit
joe=
joe=logout
joe=n
joe=

Fig. 6 Instruction script for show access list interface

To execute all 12 rules as an automation process, CKermit
must issue the instruction file where all respective command
lines are exposed to instruct the rules. Fig. 6 shows the
example of the instruction file where it will indicate the
command that is an administrator should be issued manually
in a regular basis configuration. The example shows the
access-list type on interface 0/2. It will indicate the current
status on that interface.

All 12 rules will instruct the different command line
interface. Regarding test case result, in order to block/unblock
users based on their IP address, the process starts by enabling
configuration mode on L3 switch. The most important rules
need to be issued by an administrator was a permit/deny
instruction which is being presents in test case number 5. Test
case number 12 was the final stage used to show all access-list
being configured in the system. Table II shows the sample of
test case.

As an example, Fig. 7 will show the list of access-lists in
the interface 0/2 when administrator manually telnet the L3
switch and issue a command line.

Fig. 7 Human input command lines to show access-list interface

IPCON Agent emulates this same process when
hostmode.ksc calling hosthread.ksc threads and read the
execution instruction defined on automation script (as shown
in Fig. 6) with the key attribute was joe. For-loop statement
was used in order to enable loop process in every joe attribute.
Instruction sequence will be register in memory buffer before
hostmode.ksc issues CKermit connect method to send all of
these instructions into L3 switch. L3 switch that accept these
packet, starts to process them in sequence as a normal human
manual input command. Fig. 8 shows the example of
emulation process, issuing same input commands line issued
in Fig. 7.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

373

TABLE II
TEST CASE FOR AUTOMATE EXECUTION

Acronym:
S = Success
F = Fail

Test Case
TEST CASE 1: Accessing ACL (Access Control
List)

..

..

..

TEST CASE 5: Permit/deny Rules

Command Purpose Status Remarks Rate
(%)

Enable
Config
{ mac access-
list extended
<name> permit
or
deny <srcmac>
<dstmac>
<ethertypekey>
vlan <0-4095>
cos <0-7>
assign-queue
<queue-id>
redirect
<interface> }

To
permit
/ deny
ACL

S NIL 100

..
..
..

TEST CASE 12: Show Access Lists

Command Purpose Status Remarks Rate
(%)

enable
{ show
access-
lists
interface
<slot/port>
in }

To show
Access
List

S NIL 100

Test case is created to define the result yields when the

same command line was executed by using 2 different
approaches; human-manual input and automation execution.
System test conducted in order to achieves a number of
objectives.
a. To satisfy the output between human-based input

emulation and automate-based CLI instruction.
b. To satisfy the both result are comparable.

In a system test, we use command input as a main metrics
to indicate the successful result. Comparable test between
manual command-input and automate execution will be ran
and the result will be rated. Besides that, LOG file will record
the status of execution.

Fig. 8 Automation execution process to emulate show access-list
interface

Last but not least, the LOG file will be created at the end of

every session and transaction. Basically, there would be two
type of LOG in our system; logs that indicate the transaction
status and log that gathered the result of every session.

When the system starts running, all the process includes the
execution of configuration file and access status will be
recorded as a transaction log. The timestamp will be used to
indicate the time the process was running. It used in order for
administrator to debug any error which is occur. This
transaction log only records the processes that are running and
interacts internal. Fig. 9 shows the example of transaction log.

Command Purpo
se

Statu
s(S/F
)

Remark
s

Rate
(%)

enable
config

Acces
s ACL

S NIL 100

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

374

Fig. 9 Transaction log

When the IPCON Agent starts to issues an automation

instruction over L3 switch, the system will use session log to
indicate the status of that particular session. Session log only
record the session made by an agent regarding an automation
scripts.

The response command line from L3 switch and any
changes being made following the instruction on automation
script then will be recorded in that session log. The status of
the session (success or fail) would be indicated at the top of
the log file. Meanwhile, the remaining details will indicate
every single response during the automation execution process
made from agent over the L3 switch.

Fig. 10 show the session log details produced during
process.

Fig. 10 Session log

V. CONCLUSION
The paper presents the implementation of remote

automation execution agent, its comparable issues between the
human manual inputs, also the system design and tools being
used. Initially, the QoS policy based systems are sets for all
users that used ‘best-effort’ network where each users
interfaces are defined on each of different port. The users
which are unable to fulfill the requirement of usage will be
block. And currently, the system only promotes the
block/unblock function as an indication of QoS policy
implementation in this research. The result shows that an
agent could execute almost all command lines on L3 switch
and produce the result which is 100 percent accurate as
human-manual input command line. In our implementation,
there is only 12 compulsory L3 switch command line interface
which is it will instruct a rules in a way to block/unblock user.
By the way, the scalability of the system also depends on how
was the capability and specification of the devices.

REFERENCES
[1] M. Stevens, W. Weiss, H. Mahon, B. Moore, J. Stassnerr, G. Waters, A.

Westerinen, Policy Framework, Internet Draft IETF (1999)
[2] Marcelo Borges Ribeiro, Lisandro Zambenedetti Granville, Maria

Janilce Bosquiroli Almeida, Liane Margarida, An Architecture to
Monitor QoS in a Policy-Based Network, XXI Simpósio Brasileiro de
Redes de Computadores (2003)

[3] Silvano Gai, John Strassner, David Durham, Shai Herzog, Hugh Mahon,
Francis Reichmeyer, QoS Policy Framework Architecture, Network
Working Group IETF(1999)

[4] Haiming Huang, Andreas Mainssner, Wolfgang Schoenfeld, Ralf
Steinmetz, QoS Policy Framework and Its Implementation,
Communication Technology Proceedings, WCC - ICCT 2000.
International Conference on (2000)

[5] http://computer.howstuffworks.com/lanswitch15.htm
[6] http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-

2/switch_evolution.html
[7] http://computer.howstuffworks.com/lanswitch15.htm
[8] http://computer.howstuffworks.com/lanswitch16.htm
[9] http://www.spacedaily.com/news/iss-03zq.html
[10] http://www.columbia.edu/kermit/faq.html#licence
[11] http://ftp.nluug.nl/networking/kermit/k95/
[12] http://www.columbia.edu/kermit/

Hazly Amir is a BEE (Hons) graduate from UTM Malaysia majoring in
Telecommunication (1999) and MEE (2003). His interest involved QoS, P2P
control, MPLS, diffserv, traffic generation, digital modulation and Software
Radio based baseband processing.

Roime Puniran graduated from FSCIT UNIMAS Malaysia, received his
Degree in Computer Science in 2004. Currently he is attached to Network
Services & Management Cluster as a researcher which is given the
responsibility in the development of multi platform networking &
programming.

