
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

63

Abstract—Communicating and managing customers’

requirements in software development projects play a vital role in the
software development process. While it is difficult to do so locally, it
is even more difficult to communicate these requirements over
distributed boundaries and to convey them to multiple distribution
customers. This paper discusses the communication of multiple
distribution customers’ requirements in the context of customised
software products. The main purpose is to understand the challenges
of communicating and managing customisation requirements across
distributed boundaries. We propose a model for Communicating
Customisation Requirements of Multi-Clients in a Distributed
Domain (CCRD). Thereafter, we evaluate that model by presenting
the findings of a case study conducted with a company with
customisation projects for 18 distributed customers. Then, we
compare the outputs of the real case process and the outputs of the
CCRD model using simulation methods. Our conjecture is that the
CCRD model can reduce the challenge of communication
requirements over distributed organisational boundaries, and the
delay in decision making and in the entire customisation process
time.

Keywords—Customisation Software Products, Global Software
Engineering, Local Decision Making, Requirement Engineering,
Simulation Model.

I. INTRODUCTION

HE software industry has shifted its attention to global
software engineering. Nevertheless, numerous challenges

have arisen. In order to meet the challenges associated with
global adoption, changes in software engineering practices are
needed. Requirements engineering (RE) serves a very
important role in the software development process in both
collocated and distributed domains [1]. Managing the
communication of customer requirements is a key component
of the development production process for the marketplace.

While it is difficult to negotiate and communicate these
requirements locally, it is even more difficult to communicate
them over distributed boundaries, particularly to multiple
customers. This difficulty increases in distributed software
development (DSD) projects as well as projects that have
multiple distributed customers across organisational and
cultural boundaries. In the last two decades, a significant

A.M. Qahtani is with School of Electronics and Computer Science,

University of Southampton, Southampton, United Kingdom (corresponding
author e-mail: amq1u10@ecs.soton.ac.uk).

G.B. Wills and A.M. Gravell are with School of Electronics and Computer
Science, University of Southampton, Southampton, United Kingdom (e-mail:
gbw@ecs.soton.ac.uk, gbw@ecs.soton.ac.uk).

transition from co-located forms of development to global
software development has taken place, requiring more
communication across organizational boundaries [1], [2].
Requirement engineering in a distributed domain is a complex
intersection phenomenon that encompasses numerous
technical, social, and organisational aspects [3].

In recent years, the amount of research conducted in the
fields of requirement engineering and requirement
management have increased [4]. Different aspects of
requirement engineering in both distributed and global
development environments have been examined in order to
identify challenges and propose solutions [1]. Meanwhile,
customised software has become commonplace in the software
industry, particularly due to the boom in outsourcing software
and the offshore development process for many software
development vendors [5].

This research aims to identify the requirements of multiple
distributed customers in the context of customised software
products. To achieve this goal, we began by reviewing the
previous research on requirements engineering in the
development and outsourcing process in a DSD setting. We
propose a model for Communicating Customisation
Requirements of Multi-Clients in a Distributed Domain
(CCRD). Thereafter, we evaluate that model by presenting the
results of a case study of a company with customisation
projects for 18 distributed customers. Next, we compare the
outputs of the real case process and the outputs of the CCRD
model using simulation methods.

We believe that managing customisation requirements in
the DSD context is important, and local negotiation of
customers’ requirements has seen successes in many agile
development projects in the DSD domain. In addition, our
conjecture is that CCRD model can reduce the challenge of
communication requirements over distributed organisational
boundaries, and reduce the delay in decision making and in the
entire customisation process time.

II. RELATED WORK

Global software development has been of significant
interest in the last several years, as it aids software
development projects in overcoming certain difficulties
associated with recruiting qualified practitioners in their
projects. Furthermore, it benefits development projects in
terms of cost and productivity [6]. However, many challenges
have arisen with the shift to distributed development, such as
adequate communication and issues related to coordination

The Impacts of Local Decision Making on
Customisation Process Speed across Distributed

Boundaries: A Case Study
A. M. Qahtani, G. B. Wills, A. M. Gravell

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

64

between distributed teams [7].
Requirement engineering is an important area in the

software development process, which is affected by
communication challenges in a distributed domain [8]. The
main challenge lies in accommodating the needs of distributed
stakeholders for either development or customised software.
Many researches have discussed different aspects of that
challenge and have proposed solutions for requirements
engineering in a distributed domain. Hayat et al. [9] proposed
a model to manage requirement changes during the
development process. That model has since been extended to
serve as a framework for global development projects, called
RCM, by Khan et al. [10]. The RCM framework emphasizes
knowledge sharing by adding a central repository in order to
increase awareness between distributed teams, thereby
reducing the need for communication across distributed
boundaries. In terms of global software development projects
addressing the challenges of communication across different
cultures, Damian [2] discussed the challenges of global
development projects across various organizational and
cultural boundaries. Moreover, this research explores how
knowledge acquisition and sharing between developers and
stakeholders can help requirements engineering in the GSD
domain.

On the other hand, several researchers have discussed and
taken an interest in managing and communicating customers’
requirements in a distributed domain. Damian and Zowghi [1]
investigated the impact of multi-distributed customers on
requirement management and communication and proposed a
model addressing several factors that affect requirements
management in distributed development projects, such as
remote communication and knowledge management, cultural
diversity and time differences. Other researchers have
emphasised the most frequent challenge of cross-sites
problems, namely, a delay in resolving customers’ issues. This
delay means that customers’ requirements take up additional
time in communications between distributed teams [11].
Gopal et al. [12] conducted a study on the impacts of
coordination and communication of requirements across the
global software process. They emphasised the fact that speed
and productivity are the consequences of the distributed
boundaries, and they found that local negotiation of
customers’ needs and requirements reduce the delay in
resolving time.

III. BACKGROUND AND PROBLEM AREA

This research discusses communication requirements, as
this issue is significant in the customisation process of
distributed development projects. Our research target is
software vendor organisations, which customise software
products for different distributed customers. They then appoint
representative customisation teams to install the software and
deal with customisation requests and changes (Fig. 1). The
problem is how to reduce the challenges of communicating
customisation requirements between a software vendor and
customers’ locations; also, to reduce the implications of those
issues on the customisation process speed. This paper also

presents a model for the customisation process of distributed
customers’ requirements, which enhanced the concept of
locality for making decisions at customers’ locations (i.e., the
CCRD model, Fig. 3).

Fig. 1 Distributed customization software domain

A. Research Objectives and Questions

The objectives of this research are:
• Discuss customization requirements in the context of

DSD across distributed boundaries.
• Applying the concept of locality on decision making for

the customisation process by presenting the CCRD model,
and evaluating it to see how much that would impact the
productivity and speed of the customisation process.

To achieve the above objectives, the following research
question is formulated:

RQ1. What are the impacts of making decisions locally on
the total decision making time, and the total customisation
time of the software customisation process in a distributed
domain?

Fig. 2 Flow chart of the research method

A. Research Methodology

The methods used in this research (as shown in Fig. 2)
started by reviewing the literature in order to investigate the
success of locality in software development and how that
applied in some approaches, such as the Agile development
method. Then, customisation model was designed, which
located the decision making at customers’ locations and the
rest of the customisation process at the software vendors’
distributed locations (Fig. 3). Afterward, in order to evaluate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

65

the proposed model (CCRD model), we conducted a case
study of a company that has 18 distributed customers using
one software product, as the company deals with their
customisation requirements across distributed boundaries. The
customisation scenario model of the selected company and the
CCRD model have been transformed into simulation models
in order to evaluate the impacts of local decision making on
both models, and to examine how much the CCRD model
improves the productivity and speed of the customisation
process and overcomes the distribution challenges.

IV. COMMUNICATING CUSTOMIZATION REQUIREMENTS

MODEL (CCRD)

The CCRD model was designed to model the
communication of customisation requirements of distributed
clients. This model was designed to enhance local decision
making in order to overcome the challenges of communicating
clients’ requirements across multiple sites. The designed
model relies on the main practices of a software development
life cycle for the customisation process, starting from
collecting clients’ requirements, to resolving and delivering
them. Also, it relies on theories which emphasize the benefits
of local negotiation and decision making and on distributed
development in the productivity and speed of the software
development process in distributed domains [12]. Through the
CCRD model, this research aims to investigate the impacts of
decision making on clients’ customization requirements at
clients’ locations, in order to reduce the challenges of
communicating customization requirements for multi-
distributed clients.

This scenario of this CCRD model aims to provide a
mechanism to manage and communicate customisation
requirements for multi-clients across distributed boundaries,
and shows the importance of communication and coordination
among the three main groups in software development
projects in a distributed domain, which are the client, the
onshore customisation team (at the client’s location) and the
offshore customisation team (at the vendor location), in order
to deal with clients’ customisation requirements [13]. This
model enhances the practice of local decision making at
clients’ locations in order to overcome the challenges of
communicating and coordinating clients’ requirements in a
distributed domain and to reduce the implications of these
challenges.

The design of this model, as mentioned before, relies on the
main software development life cycle process and practices
such as requirement gathering and analysis, design,
implementation and testing [14], and the benefits and features
of a collocated team and the successful experience of agile
software development through local negotiation and decision
making at the client’s location [15]. Thus, the CCRD model
components are designed to start with the requirements
analysis process. In this model, the collection of customisation
requirements occurs at the client’s location. Then, the
development process includes design, implementation, testing
and evaluation at the offshore site of the software vendor. All
these components come to work in the designed model as

follows:
The flow of the customisation process starts from collecting

clients’ requirements. The customisation requirements in this
case come as two types. The type first is bugs, which represent
the problems of the working system. This requirement
demands investigation to find the issues and debug them. The
second type of clients’ requirements is new features (when
clients request new features that need to be added to the
system). This need requires analysis and development in most
cases. Both types require some communications between
clients and software vendors in order to understand their
collective requirements. In typical offshore projects, there is a
small vendor team located in a client’s location to undertake
these activities and act as a proxy for the main software
vendor [16]. The second step is making a decision and then
negotiating on the request. The decision takes three forms:
• Cancellation: This form of decision happens when the

client changes his mind about the requests before or after
some discussions regarding his requests.

• Rejection: The rejection decision is made by a decision
maker after investigation of that request. It is rejected
because it is outside the project scope, it would create
more implications for the project, or the request does not
make sense.

• Acceptance: Acceptance happens when the initial
investigation has been conducted to make sure the request
make sense, and accounts for bugs or new features. Then,
it is sent to the central customisation team in order to
apply the required development or debug any issues.

After that, the request goes through a check with the
offshore customisation team at the vendor’s location to make
sure the requests are understood and scheduled into the team
tasks. If the request does not exist, in the case of bugs, or if the
new features requested are not clear, it returns to the client’s
location for more investigation and another decision. The last
process in the customisation life cycle, in which the requests
go through it, is the development process, which includes
implementation, testing and verifying, and delivery of the
completed requests to client’s location. It is worth noting that
the offshore team at the vendor’s location deals with multi-
distributed clients at the same time, which makes
communication and coordination more challenging. However,
most communication in this type of project happens at the
level of decision making and negotiation, which is moved in
this model to the client’s location in order to reduce those
challenges.

Communications is one of the main challenges of
distributed development projects, and the customisation
process for multi-clients involves struggling with that
challenge. On the other hand, locality in some software
development and management processes has achieved success
in different development approaches and contexts. This model
adopts the concept of local decision making in the
customisation process for multi-clients in order to provide a
model for communicating customisation requirements for
different clients and overcoming the challenges of distributed
domains.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

66

Fig. 3 CCRD model — local decision making

V. CASE STUDY DESIGN AND EVALUATION METHOD

A. Case Study

The case study is suitable methodology for software
engineering research, as it studies different phenomena in their
natural context [17]. Therefore, this research used a real case
study of the customisation process in order to build and
validate a simulation model for that case, and then used it as a
baseline in the evaluation process for this research. To this end
of building a baseline model of the selected company, the
selected company was working in customisation software and
dealing with customers’ requirements in a distributed domain.
The selected company has significant experience in
customisation software products for distributed customers.
The company has developed a variety of software solutions for
different sectors, such as academic systems, healthcare
systems and business intelligence systems. These products
have been developed and customised based on customers’
needs.

In this study, we have collected the historical data of 18
customers, which contains 2,479 customisation requirements
observed in 1,290 working hours. In addition, the collected
data includes the processes applied on customers’ requests
starting from arrival time, decision making time and
development. Also, the decisions made on those requirements
are studied. All this information is used as trace data to drive
the design of a simulation of the case study in order to use it as
a baseline model [18]. Furthermore, the arrival requirements
are used as input for both CCRD and baseline simulation
models in the evaluation process.

B. Baseline Simulation Model

This section describes the importance of the modelling and
simulation process in research and evaluation studies, and how
it reduces the effects of conducting experiments on real cases.
According to Robinson (2007), simulation is defined as,
“Experimentation with a simplified imitation (on a computer)
of an operations system as it progresses through time, for the
purpose of better understanding and/or improving that
system.” Modelling and simulation become very popular
methods in research and industry for many subjects such as
engineering, business and medical science. However, the
software development field has increasingly used modelling
and simulation to support the process of software development

and software project management [19]. In addition, Kellner et
al. [19] state that software process simulations are currently
being used for different issues such as strategic software
development, process improvement, and control and
operational management of software engineering.

In this research, simulation has been selected as the
evaluation method for the research hypothesis. According to
Abdel-Hamid [20], although it is easy to propose a hypothesis
in software engineering, it is very difficult to test it. There are
many reasons for the difficulty in testing a software
engineering hypothesis. Applying and controlling software
engineering experiments in the real world demand cost and
time [21]. The challenge and difficulty increase in large,
complex and dynamic projects like distributed development
projects [22]. Therefore, simulation models enable researchers
to control software engineering experiments, and also allow
them to identify the factors that impact the outputs of the
simulation model with less cost and time [21]. In terms of the
evaluation software development process, Martin & Ra [23]
state that changes in the software development process can be
evaluated by simulation models. However, that evaluation
should consider the context of the project environment.

We used Simul8 as a software simulation package, which
validates and is used in many simulation projects [24]. In
terms of the simulation model settings and the fitting of
activity distribution, all activities are set and fit based on the
collected empirical data of the real system. We applied the
Black Box validation comparison method, which examines the
validity of the simulation model of real system by using the
same inputs of the real system and compares the outputs by
using the Wilcoxon signed-rank test. All results of the
comparison between both simulation models were not
significantly different, which means that the simulation model
is valid enough. Table I shows the results of the Wilcoxon test
for comparing real system outputs and simulation model
outputs. It examines all activity in order to test the validity of
the baseline simulation model of a real system. The results
showed there is no significant difference between real system
outputs and the baseline simulation model, as all P values are
greater than 0.05 at the 95% level of confidence, and the mean
of the proceed requirements through these activates is closer in
both models. Fig. 3 illustrates the simulation of the CCRD
model, which has allocated decision making teams at
customers’ locations. In that model, holding and rejection
activities have been removed as there is no need for them in
the CCRD model.

The main goal of these activates in the baseline model was
for negotiation and discussion with distributed customers in
order to make an accurate decision, which is done in the
CCRD model face-to-face by the local decision making team.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

67

Fig. 4 Baseline model for the real case study

TABLE I
 RESULTS OF WILCOXON TEST FOR REAL SYSTEM OUTPUTS VS. SIMULATION

OUTPUTS
Activity Model Mean T P

Decision process Real system 100.05 7
0.167

Simulation 116.40 13

Holding process Real system 0.92 7
0.953

Simulation 1.00 8

Rejection
process

Real system 1.20 5
0.395

Simulation 1.60 2

Approval
process

Real system 58.50 8
1.00

Simulation 63.31 16

Development
process

Real system 124.53 6
0.449

Simulation 124.53 10

VI. EVALUATION RESULTS

The evaluation experiments in this study have been
designed in order to examine the locality in the CCRD model
and how much applying that concept would reduce the
implications of communication across distributed boundaries
by reducing customisation time and decision making time.

A. CCRD Simulation Model

The evaluation experiments used a Black-Box comparison
approach between outputs of the CCRD simulation model and
the baseline simulation model (Fig. 5). This experiment was
run on three different groups of customer requirements. The
first customer group had up to 50 requests during the
observation time (1,290 working hours). The second group
had seven customers, each of them having between 51 and 100
requests in the observation time. The final group had five
customers with 101 or more requests. The arrival time of the
three groups’ requirements was inserted into both simulations
and the outputs were compared using the Wilcoxon signed-
rank test.

Fig. 6 illustrates the comparison between outputs of
simulations of the real-world model and the CCRD model.
Fig. 6 (a) shows the difference in the mean of decision making
time between the baseline model and CCRD model for all
three groups of requirements, which indicates a significant
reduction in the decision time from more than two hours to
less than 30 minutes. Fig. 6 (b) illustrates the impact of local
decision making on the entire customisation process mean
time for the three groups, which were between 2.52 and 2.79
in the baseline model, and decreased to between 1.13 and 1.65
in the CCRD model.

In terms of statistical results of the experiment, Table II
displays the inferential results of the Wilcoxon signed-rank
test, which refers to the significant difference for all results
when P values are less than 0.05 at 95% confidence level. In
this case, the null hypothesis rejected and the alternative
hypothesis accepted the difference between the simulation
model of baseline and CCRD outputs in decision making time
and in the entire customization process time.

Fig. 5 Evaluation of experiment design using the Black-Box
comparison approach

(a) (b)

Fig. 6 Comparing results of baseline and CCRD models

VII. DISCUSSION

Results presented in the previous section indicate that
making decisions for customisation requirements at
customers’ locations in distributed domains reduces the time
need to make decisions, and therefore it reduces the entire

0.00

0.50

1.00

1.50

2.00

2.50

Baseline model

CCRD model

0.00
0.50
1.00
1.50
2.00
2.50
3.00

Baseline model

CCRD model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

68

customisation process time. This reduction refers to decision
making which includes requirements for negotiation to
overcome the challenges of communicating customisation
requirements across distributed domains, as most
communications in the customisation process involve
discussing and understanding customers’ requirements [12]. It
was eliminated in the proposed model (CCRD model) by
discussing all issues face-to-face at customers’ locations.

TABLE II A

STATISTICAL RESULTS OF EVALUATION EXPERIMENTS OF THE CCRD MODEL
Mean time

of
decision
making

Baseline model CCRD model P
value Mean Std. Dev Mean Std. Dev

Group1 2.24 5.7 0.4 0.32 0.001

Group2 2.07 5.45 0.34 0.33 0.001

Group3 2.08 5.53 0.38 0.37 0.001

TABLE II B

STATISTICAL RESULTS OF EVALUATION EXPERIMENTS OF THE CCRD MODEL
Mean time
of Entire
process

Baseline model CCRD model P
value Mean Std. Dev Mean Std. Dev

Group1 2.79 5.69 1.65 2.14 0.001

Group2 2.64 5.51 1.99 2.87 0.028

Group3 2.52 5.62 1.13 1.3 0.001

VIII. CONCLUSION AND FUTURE WORK

This study aims to discuss the benefits of locality in
reducing the implications of communication across distributed
boundaries. It proposed a customisation model for multiple
customers, which enhances the locality concept by locating
decision making at customers’ locations. Furthermore, this
study has evaluated the CCRD model by using a real case
study from a company that customised software for 18
distributed customers. The evaluation results refer to the
significant difference in reducing the mean time of decision
making and the entire customisation process time for the
CCRD model.

The future purpose of this research is to examine locality on
the development process. In addition, using local decision
making in distributed projects gives rise to the issue of
awareness between distributed teams, so it is useful to
investigate the knowledge and awareness of management
when decisions are taken locally.

REFERENCES
[1] D. Damian and D. Zowghi, “Requirements Engineering challenges in

multi-site software development organizations,” Requir. Eng. J., vol. 8,
pp. 149–160, 2003.

[2] D. Damian, “Stakeholders in Global Requirements Engineering�: from
Practice,” IEEE Softw., vol. 24, no. 2, pp. 21–27, 2007.

[3] D. E. Damian, “The study of requirements engineering in global
software development: as challenging as important,” in International
Workshop on Global Software Development, 2002.

[4] J. R. Jiao and C. Chen, “Customer Requirement Management in Product
Development: A Review of Research Issues,” Concurr. Eng. Res. adn
Appl., vol. 14, no. 3, pp. 1–25, 2006.

[5] A. M. Qahtani, G. B. Wills, and A. M. Gravell, “Customising software
products in distributed software development A model for allocating
customisation requirements across organisational boundaries,” in
International Conference on Information Society, i-Society 2013, 2013,
pp. 92–98.

[6] F. Q. B. da Silva, C. Costa, a. C. C. Franca, and R. Prikladinicki,
“Challenges and Solutions in Distributed Software Development Project
Management: A Systematic Literature Review,” 2010 5th IEEE Int.
Conf. Glob. Softw. Eng., pp. 87–96, Aug. 2010.

[7] M. Jiménez, M. Piattini, and A. Vizcaíno, “Challenges and
Improvements in Distributed Software Development: A Systematic
Review,” Adv. Softw. Eng., vol. 2009, pp. 1–14, 2009.

[8] D. Damian, S. Marczak, and I. Kwan, “Practice: Requirements
Engineering in Global Teams,” in Global Software and IT A Guide to
Distributed Development, projects, and OUtsourcing, First Edit., John
Wiley & Sons, Inc., 2012, pp. 257–267.

[9] F. Hayat, N. Ehsan, A. Ishaque, S. Ahmed, and E. Mirza, “A
methodology to manage the changing requirements of a software
project,” 2010 Int. Conf. Comput. Inf. Syst. Ind. Manag. Appl., pp. 319–
322, Oct. 2010.

[10] A. A. Khan, S. Basri, and P. D. D. Dominic, “A propose framework for
requirement Change Management in Global Software Development,”
2012 Int. Conf. Comput. Inf. Sci., pp. 944–947, Jun. 2012.

[11] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An
Empirical Study of Global Software Development: Distance and Speed,”
pp. 81–90, 2001.

[12] A. Gopal, J. A. Espinosa, S. Gosain, and D. P. Darcy, “Coordination and
Performance in Global Software Service Delivery: The Vendor’s
Perspective,” vol. 58, no. 4, pp. 772–785, 2011.

[13] J. Espinosa, S. Slaughter, R. Kraut, and J. Herbsleb, “Team Knowledge
and Coordination in Geographically Distributed Software
Development,” Journal of Management Information Systems, vol. 24.
pp. 135–169, 2007.

[14] I. Sommerville, Software Engineering, 6th ed. Essex: Pearson Education
Limited, 2001.

[15] K. Sureshchandra and J. Shrinivasavadhani, “Adopting Agile in
Distributed Development,” 2008 IEEE Int. Conf. Glob. Softw. Eng., pp.
217–221, Aug. 2008.

[16] K. V. P. Y. S. Gopalakrishnan S., “Offshore model for software
development: the infosys experience,” in Proceedings of the ACM
SIGCPR Conference, 1996, pp. 392–393.

[17] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empir. Softw. Eng., vol. 14, no.
2, pp. 131–164, Dec. 2008.

[18] A. M. Law, Simulation Modeling and Analysis, Fourth Edi. New York:
McGraw-Hill, 2007.

[19] M. I. Kellner, R. J. Madachy, and D. M. Ra, “Software process
simulation modeling: Why? What? How?,” J. Syst. Softw., vol. 46, pp.
91–105, 1999.

[20] T. K. Abdel-Hamid, “The Economics of Software Quality Assurance: A
Simulation-Based Case Study,” MIS Q., vol. 12, pp. 395–411, 1988.

[21] S. Setamanit, W. Wakeland, and D. Raffo, “Using Simulation to
Evaluate Global Software Development Task Allocation Strategies,”
Softw. Process Improv. Pract., vol. 12, no. May, pp. 491–503, 2007.

[22] R. L. Glass, “Modern Programming practices: A Report from industry,”
Englewood Cliffs, 1982.

[23] R. Martin and D. Ra, “Application of a hybrid process simulation model
to a software development project,” vol. 59, 2001.

[24] K. H. Concannon, K. I. Hunter, and J. M. Tremble, “SIMUL8-Planner
simulation-based planning and scheduling,” Proc. 2003 Int. Conf. Mach.
Learn. Cybern. (IEEE Cat. No.03EX693), pp. 1488–1493, 2003.

