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Abstract—The aim of presented research was to improve 

numerical predictions of air parameters distribution in the actual 
natatorium by the selection of calculation formula of mass flux of 
moisture emitted from the pool. Selected correlation should ensure 
the best compliance of numerical results with the measurements' 
results of these parameters in the facility. The numerical model of the 
natatorium was developed, for which boundary conditions were 
prepared on the basis of measurements' results carried out in the 
actual facility. Numerical calculations were carried out with the use 
of ANSYS CFX software, with six formulas being implemented, 
which in various ways made the moisture emission dependent on 
water surface temperature and air parameters in the natatorium. The 
results of calculations with the use of these formulas were compared 
for air parameters' distributions: Specific humidity, velocity and 
temperature in the facility. For the selection of the best formula, 
numerical results of these parameters in occupied zone were 
validated by comparison with the measurements' results carried out at 
selected points of this zone. 

 
Keywords—Experimental validation, indoor swimming pool, 

moisture emission, natatorium, numerical calculations, CFD, thermal 
and humidity conditions, ventilation. 

I. INTRODUCTION 

HERMAL-Moisture conditions in natatoria are affected 
by heat and moisture gains from various outdoor and 

indoor sources. They involve heat gains or losses through 
building envelope and internal partitions. Heat can also flow 
from central heating radiators and lighting. Water in pool 
exchanges heat with surrounding air by convection. The 
source of heat and moisture are also people. However, the 
main source of moisture is pool’s water surface and surface of 
moist floors. 

Natatoria are usually ventilated and the goal of ventilation 
system is to take and remove excess heat and moisture gains 
from such facility. Modern ventilation design can be supported 
in this respect by numerical modeling of air, heat and moisture 
flow with the use of CFD method. Numerical calculations 
allow predicting thermal comfort conditions in natatoria at the 
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design stage of ventilation. 
The issue of numerical modeling CFD of air and moisture 

flow in natatoria was analyzed by [1]-[3], who numerically 
and experimentally studied the impact of supply jets on 
moisture emission from the swimming pool. Experimental 
validation of numerical calculations, carried out by [4], 
indicated the need to improve modeling method of moisture 
emission from the water surface. This emission depends on 
water temperature, but also to a large extent on air parameters 
in a room, which during the course of numerical calculations 
change. On the other hand, the value of mass flux of emitted 
moisture has an important effect on numerically predicted air 
parameters distribution in a natatorium, especially on its 
humidity. Therefore, it is advisable to implement this emission 
in a form of water and air parameters correlation, as in case of 
calculations carried out for ice rinks [5]. In literature, a wide 
range of formulas describing mass flux value of emitted 
moisture can be found. They were listed in [1]. 

The purpose of presented research was to enhance 
numerical modeling of air parameters distribution in the actual 
natatorium by the selection of formula for calculating the mass 
flux of emitted moisture from the swimming pool. The 
correlation should ensure the best compliance of numerical 
and experimental results of air parameters in the facility. 

II. DESCRIPTION OF THE NATATORIUM AND ITS NUMERICAL 

MODEL 

The facility used for tests was the actual school natatorium 
in Gliwice (Poland) (Fig. 1), with dimensions: Length 17.55 
m, width 11.6 m and the average height 4.35 m. The 
dimensions of the pool were: Length 12.5 m, width 7 m. 

Internal partitions of the tested natatorium were: The north-
east wall, the south-east wall and the floor of the natatorium. 
The rest of the partitions were external. In the south-west wall 
were windows. Around the pool was a flooring called the 
beach. 

The natatorium was ventilated by the supply-exhaust 
ventilation. The air was supplied into the natatorium by 7 inlet 
grilles mounted in the supply duct in the suspended ceiling 
along the north part of the beach and by 12 inlet slots located 
at the bottom along the windows. The air was exhausted by 12 
outlet grilles mounted in the exhaust duct in the ceiling recess 
(6 outlet grilles on opposite sides of the recess). 
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evaporating moisture from moist floors. Convective and 
radiation heat flows from radiators and lamps were determined 
on the basis of known values of their power. 

The boundary conditions for the natatorium are presented in 
Table I. 
 

TABLE I 
THE BOUNDARY CONDITIONS FOR THE NATATORIUM 

Mass flow of supply air 

Ceiling inlet grilles 

0.025 kg/s 

Inlet slots 

0.020 kg/s 

Supply air temperature 36oC 

Outside air temperature 9oC 

Specific humidity of supply air 0.00409 kg H2O/kg of dry air 

Water temperature 31oC 

Water surface temperature 29.75oC 
Mass flow of evaporating moisture 

from the moist floors 
0.00105 kg/s 

Heat flow from a single lamp 
Radiation Convection 

395.2 W/m2 592.8 W/m2 

Heat flow from a single radiator 
Radiation Convection 

462.8 W/m2 694.2 W/m2 

 
The values of these conditions were constant in all analyzed 

variants. Only one condition was variable – moisture emission 
from the pool. This condition was presented in a form of 
function, which was implemented into ANSYS CFX and 
allowed to determine the emission in each point of the 
discretization grid at the water surface. It depended on air 
parameters’ values above the pool during the course of 
numerical calculations. In presented research for calculations 
of mass flux of emitted moisture E, kg/s from the swimming 
pool’s water surface A, m2 six correlations were used. 

CARRIER formula [7] was recognized as a primary 
correlation: 

 

E	 	 ∙ 0.0888 0.0783 ∙ V ∙ p p             (1) 

 
where V is air velocity over water surface, m/s; pw is saturation 
vapor pressure taken at surface water temperature, kPa; pi is 
saturation pressure at room air dew point, kPa; hw is latent heat 
required to change water to vapor at surface water 
temperature, kJ/kg. 

Smith et al. [8] recommended that results of the Carrier 
formula should be multiplied by 0.73. 

Ashrae [9] introduces to Carrier formula multiplying 
activity factor Fa, which is equal to 0.5 for unoccupied pool. 

German standard VDI 2089 [10] recommends the 
correlation, in which evaporation factor is introduced, B = 5 
for calm pool surface: 

 
E A ∙ B ∙ p p ∙ 3600                                 (2) 

 
In Biasin & Krumme formula [11], for unoccupied pool, 

three experimental factors occur: 
 

E	 	A ∙ 0.059 0.0105 ∙ p p ∙ 133.3 ∙ 3600   (3) 
 

Shah [12] expressed moisture emission depending on the 
difference of air density and air specific humidity above the 
water surface and in the room: 

 
E	 	A ∙ C ∙ ρ ∙ ρ ρ ⁄ ∙ x x ∙ 3600              (4) 

 
where C = 35, for (ρi - ρw) > 0.02; C = 40, for (ρi - ρw) < 0.02; 
xw is air specific humidity taken at surface water temperature, 
kg H2O/kg d.a.; xi is air specific humidity at room air dew 
point, kg H2O/kg d.a.; ρw is air density taken at surface water 
temperature, kg/m3; ρi is air density at room air dew point, 
kg/m3. 

For the same water and air parameters, the biggest value of 
moisture mass flux is obtained with the use of Carrier formula, 
and the lowest, equal to about 30% of the biggest value, on the 
basis of Biasin & Krumme formula. Smith et al. formula 
provides the value equal to 73% of the biggest one, Shah 67%, 
Ashrae 50%, and VDI 35%. 

IV. RESULTS OF NUMERICAL CALCULATIONS 

Numerical calculations of air parameters distribution in the 
natatorium were carried out for 6 presented formulas for 
moisture emission calculations. 

Results of numerical calculations were presented in the 
form of parameters’ maps in two planes: X = 13.9 m (passing 
through the ceiling inlet grill and the inlet slot) and Y = 0.6 m 
(0.2 m above the water surface, on the level of swimmers’ 
heads). Distributions of speed, temperature and specific 
humidity were analyzed. In case of each map, red color means 
values exceeding scale range. 

In Fig. 4, distribution of air specific humidity in the 
natatorium is shown. In case of Carrier formula, predicted 
values were the biggest and almost in whole natatorium their 
distribution was aligned. The exception was the region close 
to the inlet grilles, because of lower specific humidity values 
of supply jets. The range of the highest air specific humidity 
values was smaller for Smith et al. formula, and even smaller 
for Shah formula. In case of Ashrae formula, that region 
occurred only above the water surface and in the rest of 
natatorium values were significantly lower than in case of 
previous formulas. For VDI formula, the biggest values of air 
specific humidity occurred only locally above the water 
surface. With the use of Biasin & Krumme formula, definitely 
the lowest values of air specific humidity were predicted. In 
case of Carrier, Smith et al. and Shah formulas, on vertical 
plane, the biggest values of this parameter occurred almost 
along whole height of the facility. In case of Ashrae, VDI and 
Biasin & Krumme the region of biggest values occurred only 
close to the water surface. 

In Fig. 5, distribution of air speed in the natatorium is 
shown. The length and width of jets supplied by inlet grilles 
were similar in each case. For jets supplied by inlet slots, such 
comparison was more difficult because of jet’s deflection off 
vertical axis, different for each case. The longest jets were 
predicted for Carrier, Smith et al. and Shah formulas. The 
range of air speed values and mixing degree of air in case of 
each correlation was similar, both on vertical and horizontal 
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