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The Giant Component in a Random Subgraph of a
Weak Expander
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Abstract—In this paper, we investigate the appearance of the giant
component in random subgraphs G, (p) of a given large finite graph
family Gy, = (V,,, E,,) in which each edge is present independently
with probability p. We show that if the graph G, satisfies a weak
isoperimetric inequality and has bounded degree, then the probability
p under which G, (p) has a giant component of linear order with
some constant probability is bounded away from zero and one. In
addition, we prove the probability of abnormally large order of
the giant component decays exponentially. When a contact graph is
modeled as G, our result is of special interest in the study of the
spread of infectious diseases or the identification of community in
various social networks.
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I. INTRODUCTION

NFORMATION networks are often observed as subgraphs

of some host graphs with orders prohibitively large or
with incomplete information [8]. The property of a random
subgraph of a given graph is thus very interesting. Let G,, =
(V, E,) be a finite graph with |V,,| = n vertices (or order
n) and G,,(p) be the spanning subgraph of G,, obtained by
retaining each edge of G,, independently with probability p. If
G, is a complete graph, this model is known as the classical
Erd6s-Rényi random graph G(n,p) [6], [12], which can be
regarded as percolation on (finite) complete graphs. Other
examples of percolation on finite graphs are concerned with
graphs of some symmetries such as regular graphs [10], [15],
[16] and d-dimensional torus or box, which is closely related
to percolation on corresponding infinite lattice graph Z¢ [4],
[13]. Recently, random subgraph problem on general classes
of finite graphs has also been investigated, see e.g. [1], [3],
[5], [7], where isoperimetric inequalities instead of symmetry
assumptions play a key role. In this paper, following the path
of Alon et al. [1] and Benjamini et al. [3], we study the
probability of emergence of the giant component in finite large
graphs which satisfy a weak isoperimetric inequality (referred
to as “weak expanders”).

For any two sets of vertices A and B in G, the set
E, (A, B) consists of all edges with one endpoint in A and
the other in B. The edge-isoperimetric number, (T(Gn), (also
called the Cheeger constant) is given by

O A
Al

min
C
o1 1< 2

where 0 A = E,(A,V,\A) is the exterior edge-boundary
of A. Let b and d be positive constants. A (b, d)-expander
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graph is a graph G,, = (V,,, E,,) such that the maximal degree
in Gy, is not greater than d, and ¢(G,) > b. In this paper,
all asymptotics are as n — oco. We say that an event holds
asymptotically almost surely (a.a.s.) if the probability that it
holds tends to 1, following the notations in [12].

In [1], Alon, Benjamini and Stacey derived the precise

critical probability for the emergence of a linear order giant
component in expander graphs under the assumptions of
regularity and high-girth:
Theorem 1.([1], Theorem 3.2) Let d > 2 and let GG,, be a
sequence of d-regular (b, d)-expander graphs with girth g, —
oco. If p > 1/(d — 1), then there exists a ¢ > 0 such that,
asymptotically almost surely,

Gn(p) contains a component of order at least cn.

If p < 1/(d — 1), then for any ¢ > 0, asymptotically almost
surely,

G (p) does not contain a component of order at least cn.

Recently, Benjamini, Boucheron, Lugosi and Rossignol [3]
are able to show that in any (b, d)-expander graph, every giant
component of given proportion emerges in an interval of length
o(1), removing the regularity and high-girth assumptions in
Theorem 1. The result regarding the critical probability is the
following.

Theorem 2.([3], Proposition 3.1) Let G, be a (b,d)-
expander graph and let ¢ € (0,1). There exist constants
@ = q(d) > 0and ¢ = q2(c) € (qu,1), such that for
any B € (0,1), for all n large enough, py g(c) € (q1,q2(c)).
Here, p,, 5(c) is the probability under which the probability of
the giant component of G,,(p, g(c)) has order at least cn is
equal to .

Furthermore, for any c € (0, 1), there are constants C; > 0
and Cy > 0, depending only on b and d, such that for any
p > q2(c), the probability that the giant component has order
at least cn is large than 1 — Cre~C2m,

In this paper, we move a further step beyond Theorem 2 by
allowing a weaker assumption on the expansion property of
G,,. We introduce a weak isoperimetric inequality, which can
be viewed as a weaker version of the open question proposed
in [3]. We prove the probability that the giant component has
linear order is bounded away from zero and one, as in Theorem
2 above, and the probability of abnormally large order of the
giant component has exponential decay. Note that if G,, is
modeled as a contact graph, consisting of edges formed by
pairs of people with possible contact, our result is of special
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interest in the study of the spread of infectious diseases or the
identification of community in various social networks.

The rest of the paper is organized as follows. In Section
2, we introduce some preliminaries and then present our main
result. Section 3 is devoted to the proof. It is often that several
key lemmas in Section 3 are to be found as pieces of a long
proof of a big statement in [1], [3], [4] and so the validity
of these technical lemmas under weaker assumption needs to
be carefully checked. We include the proofs of them, more or
less as they were presented in [1], [3], [4], not only for the
convenience of the reader but also to convince the reader that
they do hold in our setting.

II. SOME NOTATIONS AND MAIN RESULT

We introduce some notations that will be used throughout
the paper. For any «, € (0,1], we define the a weak
isoperimetric inequality as
O A

B A ’
| Al

min
o 1< 2
where 0 A = E,,(A, V,\A) is the exterior edge-boundary of
A. Clearly, if «,, = 1, we recover the ordinary isoperimetric
inequality. We remark that there is a more typical definition
of weak isoperimetric inequality [2] which is in a different
manner from ours.

In what follows, denote by G,, = (V,,, E,,) a (b,d, oy,)-
expander graph such that the maximum degree is not larger
then d and the above weak expansion property holds. Each
point configuration x € {0,1}F is identified with the
subgraph of G,, with vertex set V,, and edge set obtained
by removing from F, all edges e such that z(e) = 0. For
p € [0, 1], we equip the space {0,1}¥ with the product prob-
ability measure y,, , under which each z(e) is independently
1 with probability p and 0 with probability 1 — p. We denote
by Enp(f) = [ f(#)dpn () the mean of random variable
{0,132 S R Fora e {0,118, let Y = c{M(x) be
the largest connected component in the configuration z, and
let L = LE,,”(J:) = |C7(,,1)(m)|. Denote by C(v) the connected
component containing a vertex v € V,.

Note that, for any ¢ € (0,1), ;L,,,’,,{LS) > cn} is a strictly
increasing polynomial of p. Therefore, for any 3 € [0, 1], we
define p, g(c) as the unique real number p € [0, 1] such that

Mn,p{lel) Z CTL} = 6

We sometimes suppress the subscript n if no ambiguity will
be caused. Our main result reads as follows.

Theorem 3. Let ¢ € (0,1) and b € (0,1). Suppose that
1—a, = O(1/lun). There exist two constants g1 = g1(d) > 0
and q2 = q2(c) € (q1, 1), such that for any 3 € (0,1), for all
n large enough, p, 5(c) € (q1,q2(c)).

Moreover, for any ¢ € (0,1), there are positive constants
C1 and Cy, depending only on b and d, such that for any

P> q(0),
finp{ LD > en} >1 - Cre= " . (1)

III. PROOFS

To prove Theorem 3 we need the following two lemmas,
the proofs of which are extended from [1] (Lemma 2.2,
Proposition 3.1) and [4] (Theorem 2).

Lemma 1. There exist constants 0 < po(b) < 1, a(b) > 0
and C(b,d) > 0, such that for any p > po and large enough
n,

Mn,p{lﬁ(’}) > an} > 1— cfc'n,

Proof. We first will show that if p > 1 —b, then there is some
0 > 0, depending only on p — 1 + b, such that for any v € V,

pmp {lC@I 2 2} 26 @

To see this, we explore the giant component C'(v) and its edge-
boundary W (v) as follows. We order the edges in F,, and let
Cy = {v}, Wi = 0. At each step, Cy, is a subset of C(v)
and W}, is a subset of W (v). At step k, we explore the first
edge ex = (y,2) from E,\W), which is adjacent to a vertex
y € Cy and to a vertex z € V,\Cy, if there exists such an
edge. Otherwise, Cx11 = C) and Wy = Wy If the edge
(y,2) is open (i.e., z(er) = 1), let Cy1 = Cx U {2z} and
Wiy1 = Wy If the edge (y, 2) is closed (i.e., z(ex) = 0),
let Cxr1 = Cy and Wiy = Wi U {er}. Hence, we have
C(v) = U, Cy. If |C(v)| < n, there exists a smallest N such
that Wy = g Cy. In addition, we have N = |Cn| + |[Wy/|
and C'y = C(v). Therefore, by the weak expansion property,
if |Cn| < n/2.

W, -
Nyl = lowl< B¥ewp
Nl—a
< Whn|-
< ;x|
Thus,
Nb
Wn| > ————
Wil 2 373
Under the measure iy, p, (2(e1), -+ ,2(en)) can be com-

pleted so as to form an infinite .7.d. sequence of Bernoulli
random variables with parameter p. To construct C(v), we
flipped N —1 independent coins (with probabilities p and 1—p)
and at least Nb/(b+ N'=® ) among them turned out zero.
Let A,, be the event that in the first n® terms there are at
least (n+1)b/(b+ (n+1)17% +1) terms equal zero. When n
is large enough, we can write

n

Involving the Kolmogorov strong law of large numbers, we

obtain
2 iy x(ei) S
nOé
a.a.s. Thus, it is easy to see if p > 1 — b, then with positive
probability ¢, depending only on p — 1 + b, a random infinite
sequence of 7.7.d. Bernoulli variables of parameter p does not
have an n such that at least (n + 1)b/(b + (n + 1)1=@ +1)
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among the n® first coordinates equal zero. Consequently, for
any v € V,,, since

n Nb
o [ < =3 < 5.1, D
Nn,p{‘C(U” = 2} = Nn,p{EINv sit. Wy 2 b+ Nl-a }’
we deduce

n
g {ICE) > 3 }

. Nb

]-_/'['n,p {3N7 s.t. V[/N Z W}

1-— (1 — Hnp {El tn, st. Wy 2 b—l—%})

pnp {3 n, sit. A, occurs}
= (57

v

which concludes the proof of (2).

Next, we fix ¢ € (1 —b,1), and let R be a positive real
number to be determined later. Denote by .S,, the number of
vertices which belong to a component of order at least R/2.

That is,
Sn = Z X’uv

veV

where X, = 1lyc()>gr/2)- Note that X, and X, are
independent as soon as d(v,v") > R where d(v,v’) is the
distance of vertices v and v’ according to the shortest path
metric in G,,. Since the maximum degree of G,, is less than
d, the maximum degree in the dependency graph of (X, ),cv
is less than d'*. Recall that the dependency graph [12] of the
random variables (X, ),cv is given by the vertex set V,, and
the edge set satisfying that if for two disjoint sets of vertices
A and B there is no edge between A and B then the families
(Xv)vea and (X,)ep are independent. By Theorem 2.1 [11],
for every ¢t > 0,
2
finp S < B p(Sn) =1} <"
Using (2) we know that if p > ¢, E,,(S,) =
Y>oeey Hnp{lC(W)| > R/2} > én. Choosing t =
E, »(S,)/2 in the above concentration inequality yields, for

any p > ¢,
on __2
Nn,p{5n<7}§€ 2.

2
Thus, with probability at least 1 — e 2, there are at least
dn/2 vertices which belong to components of size at least
R/2.

Fix po € (¢,1) and a set of at most r = dn/R components
of order at least R/2 which contain together at least dn/2
vertices. If e = 1— (1 —pg)/(1 — q), G(po) has the same law
as G(q)UG(e), where G(q) and G(¢) are independent. Hence,
we claim that there is some C depending only on b,d and ¢
such that with probability at least 1 —e~¢™ | in the random
graph G(e), there is no way of splitting these components into
two parts A and B, each containing at least dn/6 vertices, with
no path of G(g) connecting the two parts. By the method of
reduction to absurdity, we see that the above comment implies
that, with the required probability, G(¢) U G(¢) contains a
connected component consisting of at least dn/6 vertices. In

what follows, we will show the claim. Let us fix two parts A
and B of the components above, each containing at least 6n/6
vertices. By virtue of the Menger theorem, there are at least
b(on)* /6« edge-disjoint paths between A and B. Since the
total number of edges is less than dn/2, at least half of these
paths are of length not larger than 6% dn'=® /(b6® ). Thus,
the probability that there is no path between A and B in G(g)
is at most

- \TEe
) ) <e 26 €

(1—56

There are at most 2" ways to choose A and B. Thus,
the probability that there is a way to split the components into
two parts A and B, each containing at least dn/6 vertices,
with no path of G(¢) connecting the two parts is at most

— 26'7L/R

as long as

B> 46n1=> 6* In2
g

which is a finite number since 1 — o, = O(1/Inn). This
finishes the proof of the claim.

Wrapping up the arguments, we have proved that if R
is chosen large enough, there is some positive constant C'
depending only on b,d,d,po and ¢ such that with probability
at least 1 —e”2  — e~ %" | for n large enough, there is a
component of size at least on/6 in Gy, (po). Lemma 1 then
follows readily. O
Lemma 2. For any a1 € (0,1/2) and ay € (1/2,1), there
is a constant 0 < g3(a1,a2) < 1, depending only on ay,as,b
and d, such that, for any p > gs(a1,az),

tn p{Grn(p) contains a component of order in [ain, azn)}

1
<4 <1 + —) e ".
a1

Proof. From [9] (pp. 68) we know that an infinite d-regular
rooted tree contains m (dr' ) < (de)" rooted subtrees of
order r. Given a vertex v € (3,,, one may associate a subtree of
the infinite d-regular tree rooted at v by considering the self-
avoiding paths issued from v in GG,,. Therefore, any connected
subgraph of order r in G,, containing v can correspond to
a different subtree of order r. Thus, the total number of

connected subsets of order r in V,, is less than n(de)”/r.

Thanks to the weak expansion property, for any subset U C
V., of order r, the probability that all edges in O U are absent
is at most (1—p)*"  if 7 < n/2; and at most (1 —p)>(»—")
if r > n/2. Hence, for any n € N, the probability of having
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a connected component of order in [a;n, agn) is at most

/2] n(de)”
r

>

r=[ain]

(1—p)¥r

lazn]

N SR

r=n/2]+1
/2l )
= D C(de(l-p)) 1-p 7
r=[ain]
Lairfj n de "
+(1 - p)bn . ( b)
r=ny2)+1 (1-p)
(1= pHn=r) =(n=r)
_ 1 (de(t-pyen
~ a1 1—(de(1—p)?)
b (de(1 = p) byt
201 = p) de(1—p)~t—1
4
S S + 46—717
ai

provided that

de(1—p)~">2, (de)*(1— p)b(l_‘“) <e !l (3

and
(de(1—p)*)* < el 4)

The conditions (3) and (4) are satisfied if p is larger than some
qs(a1,as), which is bounded away from 1. O

Now we will show Theorem 3 by exploiting Lemma 1 and
Lemma 2.
Proof of Theorem 3. First, we show the lower bound of
pn(c). Fix 0 < g1 < 1/(d—1) and p < ¢;. Consider the sub-
critical Galton-Watson process with the first offspring distribu-
tion Bin(d, p) and other offspring distributions Bin(d—1,p).
Since the maximum degree of (,, is at most d, the connected
component C(v) containing a vertex v € V,, has order no
more than S, where S is the total number of descendants of
the above branching process with root v. It is well-known (e.g.
[14] pp. 172) that there are some A > 0, M < oo, depending
only on d and gy, such that, for any n and p < ¢,

Epp(e®) < M.

Hence, by Markovian inequality, we have for any ¢ > 0 and
p <4,

pap LY >t} < npp{S >t}
= et
< nMe .
We obtain
2
Un,p{Lng) > C'II,} < lnp {L'Ezl) > X 111(7LM1/2)}

1
< =
n

Taking into account the fact that ,un,p{LS) > cn} is increasing
with respect to p, we have p, g(c) > ¢1 for any @ € (0,1)
and large enough n.
Next, the upper bound of p,, g(c) can be shown by choosing
(recall Lemma 1 and Lemma 2)
C}> 7270(5)} :

(c) = m nd :
q2(c) = max < q3 | min 4,(1 , max 7

In fact, we can show this by the reduction to absur-
dity. Suppose that p,g(c) > ¢o(c), ie., ppglc) >
gs(min{1/4, a}, max{3/4,c}) and p, g(c) > po(b). If ¢, <
3/4,

3
(0,1) 3 8 = pinp{ LY > en} > pn, {Lgll) > ln} G
and if ¢ > 3/4,

(0,1) 3 B = pnp{ LY > en}. ©6)

Involving Lemma 1 and Lemma 2, the right-hand sides of (5)
and (6) tend to 1 as n — oo, which is a contradiction. Hence,
we have p,, 5(c) < ¢2(c).

Finally, we show the statement (1). This can be proved by
comparing ¢ with a in Lemma 1. Suppose that p > g2(c).
Case (i): ¢ < a. By Lemma 1, we have

Nn,p{ngl) >cnp > ﬂn,p{Lg) >an} >1- e en

Case (ii): ¢ > a > 1/2. Choosing a; = 1/4 and az = ¢, we
have by Lemma 1 and Lemma 2,

Mrl,p{[%(zl) Zzcenp = N'n.p{Lgll) > an}

—pinplan < LY < en}

1
> 1—e —4<1+—)e—”
a1

= 1-e

—20e™".

Case (iii): ¢ > 1/2 > a. Choosing a; = a and ay = ¢, we
have by Lemma 1 and Lemma 2,

Nnﬁp{Lg) >cn} = Nn,p{lel) > an}

—pinplan < LY < en}

1—e " —4 <1+ 1) e ™.
a

Case (iv): 1/2 > ¢ > a. Choosing a; = a and ay = 3/4, we
have by Lemma 1 and Lemma 2,

IV

pnp{ LS > an}
—pnplan < LY < en}

1
> 1—e O —4(1—&——)6_”‘
a

Hn,p {LS) > Cnn} =

The proof of Theorem 3 is thus complete. O
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