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Abstract—Effective evaluation of software development effort is 
an important issue during project plan. This study provides a model 
to predict development effort based on the software size estimated 
with function points. We generalize the average amount of effort 
spent on each phase of the development, and give the estimates for 
the effort used in software building, testing, and implementation. 
Finally, this paper finds a strong correlation between software defects 
and software size. As the size of software constantly increases, the 
quality remains to be a matter which requires major concern. 
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I. INTRODUCTION 
ITH the dramatic improvements in hardware 
performance, software has become the key factor 

influencing the success of computer-based systems [1]. In the 
course of time, hardware costs have decreased dramatically, 
but software is still costly to develop and maintain [2]. In spite 
of many advanced debugging systems and models developed 
for predicting software reliability, software quality has 
remained to be a continuing concern. In software development 
the two primary problems that have yet to be solved 
satisfactorily are making systems cost-effective and of higher 
quality. 

Researchers and practitioners have found it useful to regard 
software development as an economic production process [3]. 
Estimating the amount of effort required for developing a 
system is an important management concern [4]. Accurate 
estimate is essential since the client and project management 
must agree on the boundaries of cost, time, quality, and 
capability [5]. A low cost estimate may either cause loss or 
compromise the quality of the software developed, resulting in 
partially functional or insufficiently tested software that 
requires later high maintenance costs [6]. 
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A common approach to predict development effort is to first 

estimate the software size, and then use some guidelines on 
productivity rates to arrive at the time and effort needed to 
complete the project [7]. Past studies have developed a 
multitude of models to estimate development effort. For 
instance, The COCOMO method uses a set of parameters 
gathered from studies of earlier projects to predict the time 
needed for the development. However, whereas many models 
have been proposed, in practice, these models are used rarely 
or unsuccessfully [8]. This is owing to the complicacy and 
unreliability of the proposed models. Therefore, estimating 
software development effort still remains a complex problem 
which attracts considerable research [9]. One of our goals in 
this study is to develop a simple model with reasonable 
accuracy for the estimate of development effort. 

Our second objective is to identify the relationship between 
software default and software size. Given that software size is 
constantly growing, the issue of software quality requires 
more attention. A fundamental objective of software 
development is to deliver high quality products that are correct, 
consistent, and complete [10]. Lo and Huang [11] point out 
that software failures that occur later will result in 
maintenance costs, and even a loss of system availability and 
performance. The correct performance of a software system is 
an important issue of many critical systems [12]. 

This study works on the latest release of the ISBSG 
(International Software Benchmarking Standards Group) 
database with 4106 projects ever developed worldwide. This 
paper is organized as follows. Section II gives an overview of 
the database. Section III builds the model for estimating the 
total effort for the development, and section IV validates the 
model with diagnostic plot.  Section V generalizes the average 
amount of effort spent on each phase of the development, and 
presents the estimates for the effort used in software building, 
testing and implementation. Section VI identifies the strong 
correlation between software fault and software size. Finally, 
section VII presents the conclusion to the study. 

II.  BACKGROUND  
The common difficulty in the study of software metrics is 

the lack of accessible and reliable large dataset [13]. Many 
contemporary metrics repositories have limited use due to 
their obsolescence and ambiguity of documentation [14].  

The data repository maintained by the International 
Software Benchmarking Standards Group (ISBSG) does not 
have the above deficiencies and has been widely researched 
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[13, 15-18]. The latest release of ISBSG data repository 
(Release 10) contains information on 4106 projects, and each 
project is recorded with 107 metrics or descriptive pieces of 
information. The manual accompanied with the data gives 
detailed descriptions of project attributes. The data repository 
is regularly updated with substantial projects added in every 
year. Our study will be focused on the analysis of the data 
Release 10.  

III.  THE ESTIMATION OF TOTAL DEVELOPMENT EFFORT 
For a specific software project, it is necessary to evaluate 

the development efforts required, thus completing the task 
within the budget of time and cost. Past studies focused on 
four distinct approaches for the estimate of software 
development effort [19]: 

(1) Historical-Experiential models 
These involve expert judgment based on experience with 

similar projects and historically maintained information about 
projects. 

(2) Statistically-based models 
Among these methods, regression analysis is the main 

technique used which describes the relationship between 
development effort and its predictor variables such as project 
size. 

(3) Analytical-based models 
This approach is on the basis of a mathematical relationship 

between the manpower used during software development and 
effort in all life cycle phases.  

(4) Composite models 
These models integrate the methods of analytic equations, 

regression analysis, and expert judgment. 
 

Our research will be focused on statistically-based models. 
As Fenton [20] observed, most of the approaches for 
estimating development effort involve a prediction system in 
which the underlying model has the form E = f(S), where E is 
the development effort and S is a measure of project size. The 
function f may involve other product attributes (e.g., 
complexity or required reliability) and process and resource 
attributes (e.g., programmer’s experience). Accordingly, the 
estimate of project size is necessary, which will be plugged 
into the model to predict the development effort.  

Two methods for the estimate of project size have been 
widely applied: lines of code (LOC) and function points (FP). 
The main limitation of a LOC-based model is that it is usually 
difficulty to provide accurate estimates of lines of code for the 
development [4]. On the other hand, while the measure of 
function points has been criticized relating to its reliability [21] 
and usefulness of the complexity adjustments [22], it has been 
extensively used as a part of overall estimation and planning 
techniques for software development [23, 24]. 

In the ISBSG data repository, total development effort is 
reflected by the metric Summary Work Effort, which is the 
total effort in hours spent on the project. Project size is 

measured with function points which are based on various 
counting standards (e.g., IFPUG, NESMA, Mark II). Among 
these counting standards, NESMA is considered to produce 
equivalent results with IFPUG [25]. In data Release 10, 3281 
out of 4106 projects applied IFPUG as size count approach, 
and there are further 152 projects using NESMA. Thus, to 
give more reliable results, projects using size count 
approaches other than IFPUG and NESMA were excluded, 
and a sample size of 3433 was used for the analysis.  

We first examine the distributions for the two variables 
Effort and Functional Size (FS). Fig. 1 is the histogram of the 
variable Effort, which indicates that the data are highly 
skewed. After the logarithmic transformation the skewness is 
greatly improved, and the data approximate to normal 
distribution (see Fig. 2). 

 
        Fig. 1 Histogram of development effort 
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Fig. 2 Histogram of development effort after logarithmic 
transformation 

 
 

Similarly, the variable FS has skewed distribution (see Fig. 
3). Therefore, we applied logarithmic transformation which 
greatly rectified the skewness. The data approach to normal 
distribution (see Fig. 4). 
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     Fig. 3 Histogram of functional size 

 

 
Fig. 4 Histogram of functional size after logarithmic transformation 
 

 
Fig. 5 The scatterplot of development effort against project size after 

logarithmic transformation 
 

 
We now examine the potential relationship between 

development effort and project size with the scatterplot in Fig. 
5 above. It shows that these two variables are highly correlated 
with a positive linear relationship. Running regression analysis, 
we obtained the following result: 
 

ln (Effort) = 3.645 + 0.736 × ln(Size) 
or  
              Effort = 38.3 × Size 0.736 

  
The multiple R2 reported for the fitted model is 0.475, 

which means that 47.5% of the variance in the dependent 
variable Effort can be explained by the project size. Therefore, 

based on a large sample size of 3433, this model was fitted 
with reasonable accuracy. This model can be used to predict 
development effort based on project size, which is measured 
with function points. 
 

IV.  MODEL VALIDATION 
In linear model it is assumed that the residuals are normally 

distributed with zero mean and homogeneity of variance [26]. 
Equal scatter of residual points about the horizontal axis 
indicates that the residuals have homogeneity of variance [27]. 
We plotted the residuals against the fitted values in Fig. 6 
below. The graph displays that the points evenly scatter along 
the horizontal axis without obvious patterns. Therefore, the 
assumption of homogenous variance is validated.  
 

 
   Fig. 6 Plot of residuals against the fitted values 

 
 

We now check the assumption of normality of the residuals. 
Fig. 7 shows that the pattern of the residuals conforms well to 
the normal curve. Therefore, the normal assumption is 
validated. 
      

 
Fig. 7 Histogram of the residuals from linear regression 

 
V.  THE EFFORT FOR DIFFERENT DEVELOPMENT PHASES 

Software development usually experiences a series of 
phases, such as planning, design, building and testing. A good 
software project needs to successfully manage these 
development phases. The ISBSG data repository contains the 
fields which record the amount of effort spent on each 
development phase of the project. We calculated the average 
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amount of effort used in each phase in Table I below. Note 
that our analysis has excluded those cases of which the sum of 
effort for each development phase does not match the total 
development effort reported. 

 
TABLE I  

AVERAGE AMOUNT OF EFFORT SPENT ON EACH DEVELOPMENT PHASE 

Effort Average (in hours) Percentage 

Plan 182 7.2% 
Specify 401 15.9% 
Design 324 12.9% 
Build 952 37.8% 
Test 443 17.6% 
Implement 217 8.6% 
Summary 2519 100% 

    
Table I shows that the average amount of effort spent on the 

whole development is 2519 man-hours. Of the total 
development effort, a large proportion (37.8%) is spent on 
software building, while planning (7.2%) and implementation 
(8.6%) cost much less effort. To improve software reliability, 
a great amount of effort (17.6%) is used in software testing. 
Considering the many issues that have been raised on software 
quality, it is necessary that much effort spent on software 
testing. 

As we have found in section III, there exists a strong 
positive relationship between total development effort and 
software size. Using statistical tests, we found the effort used 
in each development phase is also strongly correlated with 
software size. Table II below summarizes the results of the 
correlation test. Since the data for functional size deviate from 
normal distribution, we applied Spearman’s correlation test 
other than those tests used for normally distributed variables. 
Spearman’s correlation test is a common nonparametric test 
that calculates the correlation based on the ranked order of the 
two series [28]. 

 
TABLE II  

RESULTS OF SPEARMAN CORRELATION TEST  
 Software size 

Effort Correlation  
coefficient p-value 

Plan 0.519 < 10-5 

Specify 0.438 < 10-5 

Design 0.611 0.0001 

Build 0.592 < 10-5 

Test 0.478 < 10-5 

Implement 0.532 < 10-5 

 
 
Project size that is measured with function points is 

evaluated in the design stage of the development. Therefore, it 

is insignificant to estimate the effort used before project 
design. However, it is feasible and practical to forecast the 
effort required for such development phases as software 
building, testing, and implementation. Similar to the analytic 
procedures in section III, we generalized the models in Table 
III which can be used to estimate the effort needed for 
software building, testing, and implementation. The column 
multiple R2 gives the goodness-of-fit of the model. 

TABLE III  
MODELS FOR THE PREDICTION OF EFFORT IN  

SOFTWARE BUILDING, TESTING, AND IMPLEMENTATION 

Estimation model Multiple R2 

BuildEffort = 18.10×Size0.736 0.421 

TestEffort = 12.24×Size0.667 0.293 

ImplementEffort = 0.55×Size1.067 0.340 
 

VI.  THE RELATIONSHIP BETWEEN SOFTWARE FAULT AND 
SOFTWARE SIZE 

Software fault is a structural imperfection in a software 
system that may lead to the system’s eventually failing [29]. In 
spite of many advanced debugging systems and models 
developed for predicting software reliability, software has 
suffered much from its failures. For instance, the ISBSG data 
repository records one parameter Total Defects Delivered 
specifying the total number of faults in the software which 
was reported in the first month of its use. Among the 4106 
projects in the database, a staggering number of 484 projects 
were reported with faults in the first month of use. With the 
increasing complicacy inherent in software development, more 
attention should be paid to software quality. 

Project size is measured with function points which are 
based on various counting standards (e.g., IFPUG, NESMA, 
Mark II). As before, we retained those projects with counting 
approach IFPUG or NESMA, since these two counting 
standards are considered to produce equivalent results.  

The values for the variable Total Defects Delivered range 
widely from 0 to 2554, which entails a logarithmic 
transformation. We then use Shapiro-Wilk test to check the 
normal assumption of the data. The significance of the test 
indicates that the variable Total Defects Delivered deviates 
from normal distribution. Therefore, we used nonparametric 
test (Spearman’s correlation test) to find the relationship 
between software defect and size. For our study, the reported 
p-value is far smaller than 10-5, which indicates that there is 
strong relationship between software defect and size. 
Furthermore, the nonparametric correlation coefficient is 
0.451, which proves that these two variables are positively 
related. Therefore, the rising of software size tends to result in 
more software deflects.  

With the trend of increasing size of software, it is inevitable 
that software fault becomes a serious problem. Hence much 
attention should be paid to the development of advanced 
debugging systems for testing software reliability.  
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VII.  CONCLUSION 
This paper worked on the latest release of the ISBSG 

database, which is a large database recording the software 
projects ever developed worldwide. A model for the estimate 
of development effort was developed based on software size. 
This model can be applied during software plan and design.  
This study also summarized the average amount of effort spent 
on each development stage, and presented the formulae to 
estimate the effort for software building, testing, and 
implementation. 

This study also found a strong positive correlation between 
software fault and size. With the growing of software size, 
software quality remains to be an ongoing concern and calls 
for more serious attention.  
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