
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3105

The Effects of Software Size on Development Effort
and Software Quality

Zhizhong Jiang, Peter Naudé, and Binghua Jiang

Abstract—Effective evaluation of software development effort is
an important issue during project plan. This study provides a model
to predict development effort based on the software size estimated
with function points. We generalize the average amount of effort
spent on each phase of the development, and give the estimates for
the effort used in software building, testing, and implementation.
Finally, this paper finds a strong correlation between software defects
and software size. As the size of software constantly increases, the
quality remains to be a matter which requires major concern.

Keywords—Development effort, Function points, Software
quality, Software size.

I. INTRODUCTION
ITH the dramatic improvements in hardware
performance, software has become the key factor

influencing the success of computer-based systems [1]. In the
course of time, hardware costs have decreased dramatically,
but software is still costly to develop and maintain [2]. In spite
of many advanced debugging systems and models developed
for predicting software reliability, software quality has
remained to be a continuing concern. In software development
the two primary problems that have yet to be solved
satisfactorily are making systems cost-effective and of higher
quality.

Researchers and practitioners have found it useful to regard
software development as an economic production process [3].
Estimating the amount of effort required for developing a
system is an important management concern [4]. Accurate
estimate is essential since the client and project management
must agree on the boundaries of cost, time, quality, and
capability [5]. A low cost estimate may either cause loss or
compromise the quality of the software developed, resulting in
partially functional or insufficiently tested software that
requires later high maintenance costs [6].

Manuscript received June 28, 2007. This research was supported by the
ISBSG (International Software Benchmarking Standards Group).

Zhizhong Jiang was with Harbin Institute of Technology (China), and
University of Oxford. He is now with University of Manchester, Booth Street
West, Manchester, M15 6PB, UK (phone:+44(0)8708328157; fax: +44 (0)
1612756596; e-mail: Zhizhong.Jiang@postgrad.mbs.ac.uk).

Peter Naudé was with University of Bath, UK. He is now a Professor in
Manchester Business School, University of Manchester, Booth Street West,
Manchester, M15 6PB, UK (e-mail: pete.naude@mbs.ac.uk).

Binghua Jiang was with London School of Economics and Political
Science (LSE). She is now a consultant in Paragon Consulting Group Ltd in
central London (email: Jessica.Jiang@paragonbpm.com).

A common approach to predict development effort is to first

estimate the software size, and then use some guidelines on
productivity rates to arrive at the time and effort needed to
complete the project [7]. Past studies have developed a
multitude of models to estimate development effort. For
instance, The COCOMO method uses a set of parameters
gathered from studies of earlier projects to predict the time
needed for the development. However, whereas many models
have been proposed, in practice, these models are used rarely
or unsuccessfully [8]. This is owing to the complicacy and
unreliability of the proposed models. Therefore, estimating
software development effort still remains a complex problem
which attracts considerable research [9]. One of our goals in
this study is to develop a simple model with reasonable
accuracy for the estimate of development effort.

Our second objective is to identify the relationship between
software default and software size. Given that software size is
constantly growing, the issue of software quality requires
more attention. A fundamental objective of software
development is to deliver high quality products that are correct,
consistent, and complete [10]. Lo and Huang [11] point out
that software failures that occur later will result in
maintenance costs, and even a loss of system availability and
performance. The correct performance of a software system is
an important issue of many critical systems [12].

This study works on the latest release of the ISBSG
(International Software Benchmarking Standards Group)
database with 4106 projects ever developed worldwide. This
paper is organized as follows. Section II gives an overview of
the database. Section III builds the model for estimating the
total effort for the development, and section IV validates the
model with diagnostic plot. Section V generalizes the average
amount of effort spent on each phase of the development, and
presents the estimates for the effort used in software building,
testing and implementation. Section VI identifies the strong
correlation between software fault and software size. Finally,
section VII presents the conclusion to the study.

II. BACKGROUND
The common difficulty in the study of software metrics is

the lack of accessible and reliable large dataset [13]. Many
contemporary metrics repositories have limited use due to
their obsolescence and ambiguity of documentation [14].

The data repository maintained by the International
Software Benchmarking Standards Group (ISBSG) does not
have the above deficiencies and has been widely researched

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3106

[13, 15-18]. The latest release of ISBSG data repository
(Release 10) contains information on 4106 projects, and each
project is recorded with 107 metrics or descriptive pieces of
information. The manual accompanied with the data gives
detailed descriptions of project attributes. The data repository
is regularly updated with substantial projects added in every
year. Our study will be focused on the analysis of the data
Release 10.

III. THE ESTIMATION OF TOTAL DEVELOPMENT EFFORT
For a specific software project, it is necessary to evaluate

the development efforts required, thus completing the task
within the budget of time and cost. Past studies focused on
four distinct approaches for the estimate of software
development effort [19]:

(1) Historical-Experiential models
These involve expert judgment based on experience with

similar projects and historically maintained information about
projects.

(2) Statistically-based models
Among these methods, regression analysis is the main

technique used which describes the relationship between
development effort and its predictor variables such as project
size.

(3) Analytical-based models
This approach is on the basis of a mathematical relationship

between the manpower used during software development and
effort in all life cycle phases.

(4) Composite models
These models integrate the methods of analytic equations,

regression analysis, and expert judgment.

Our research will be focused on statistically-based models.
As Fenton [20] observed, most of the approaches for
estimating development effort involve a prediction system in
which the underlying model has the form E = f(S), where E is
the development effort and S is a measure of project size. The
function f may involve other product attributes (e.g.,
complexity or required reliability) and process and resource
attributes (e.g., programmer’s experience). Accordingly, the
estimate of project size is necessary, which will be plugged
into the model to predict the development effort.

Two methods for the estimate of project size have been
widely applied: lines of code (LOC) and function points (FP).
The main limitation of a LOC-based model is that it is usually
difficulty to provide accurate estimates of lines of code for the
development [4]. On the other hand, while the measure of
function points has been criticized relating to its reliability [21]
and usefulness of the complexity adjustments [22], it has been
extensively used as a part of overall estimation and planning
techniques for software development [23, 24].

In the ISBSG data repository, total development effort is
reflected by the metric Summary Work Effort, which is the
total effort in hours spent on the project. Project size is

measured with function points which are based on various
counting standards (e.g., IFPUG, NESMA, Mark II). Among
these counting standards, NESMA is considered to produce
equivalent results with IFPUG [25]. In data Release 10, 3281
out of 4106 projects applied IFPUG as size count approach,
and there are further 152 projects using NESMA. Thus, to
give more reliable results, projects using size count
approaches other than IFPUG and NESMA were excluded,
and a sample size of 3433 was used for the analysis.

We first examine the distributions for the two variables
Effort and Functional Size (FS). Fig. 1 is the histogram of the
variable Effort, which indicates that the data are highly
skewed. After the logarithmic transformation the skewness is
greatly improved, and the data approximate to normal
distribution (see Fig. 2).

 Fig. 1 Histogram of development effort

12.5010.007.505.002.500.00

log(Effort)

400

300

200

100

0

Fr
eq

ue
nc

y

Fig. 2 Histogram of development effort after logarithmic
transformation

Similarly, the variable FS has skewed distribution (see Fig.
3). Therefore, we applied logarithmic transformation which
greatly rectified the skewness. The data approach to normal
distribution (see Fig. 4).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3107

 Fig. 3 Histogram of functional size

Fig. 4 Histogram of functional size after logarithmic transformation

Fig. 5 The scatterplot of development effort against project size after

logarithmic transformation

We now examine the potential relationship between

development effort and project size with the scatterplot in Fig.
5 above. It shows that these two variables are highly correlated
with a positive linear relationship. Running regression analysis,
we obtained the following result:

ln (Effort) = 3.645 + 0.736 × ln(Size)
or
 Effort = 38.3 × Size 0.736

The multiple R2 reported for the fitted model is 0.475,

which means that 47.5% of the variance in the dependent
variable Effort can be explained by the project size. Therefore,

based on a large sample size of 3433, this model was fitted
with reasonable accuracy. This model can be used to predict
development effort based on project size, which is measured
with function points.

IV. MODEL VALIDATION
In linear model it is assumed that the residuals are normally

distributed with zero mean and homogeneity of variance [26].
Equal scatter of residual points about the horizontal axis
indicates that the residuals have homogeneity of variance [27].
We plotted the residuals against the fitted values in Fig. 6
below. The graph displays that the points evenly scatter along
the horizontal axis without obvious patterns. Therefore, the
assumption of homogenous variance is validated.

 Fig. 6 Plot of residuals against the fitted values

We now check the assumption of normality of the residuals.
Fig. 7 shows that the pattern of the residuals conforms well to
the normal curve. Therefore, the normal assumption is
validated.

Fig. 7 Histogram of the residuals from linear regression

V. THE EFFORT FOR DIFFERENT DEVELOPMENT PHASES

Software development usually experiences a series of
phases, such as planning, design, building and testing. A good
software project needs to successfully manage these
development phases. The ISBSG data repository contains the
fields which record the amount of effort spent on each
development phase of the project. We calculated the average

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3108

amount of effort used in each phase in Table I below. Note
that our analysis has excluded those cases of which the sum of
effort for each development phase does not match the total
development effort reported.

TABLE I

AVERAGE AMOUNT OF EFFORT SPENT ON EACH DEVELOPMENT PHASE

Effort Average (in hours) Percentage

Plan 182 7.2%
Specify 401 15.9%
Design 324 12.9%
Build 952 37.8%
Test 443 17.6%
Implement 217 8.6%
Summary 2519 100%

Table I shows that the average amount of effort spent on the

whole development is 2519 man-hours. Of the total
development effort, a large proportion (37.8%) is spent on
software building, while planning (7.2%) and implementation
(8.6%) cost much less effort. To improve software reliability,
a great amount of effort (17.6%) is used in software testing.
Considering the many issues that have been raised on software
quality, it is necessary that much effort spent on software
testing.

As we have found in section III, there exists a strong
positive relationship between total development effort and
software size. Using statistical tests, we found the effort used
in each development phase is also strongly correlated with
software size. Table II below summarizes the results of the
correlation test. Since the data for functional size deviate from
normal distribution, we applied Spearman’s correlation test
other than those tests used for normally distributed variables.
Spearman’s correlation test is a common nonparametric test
that calculates the correlation based on the ranked order of the
two series [28].

TABLE II

RESULTS OF SPEARMAN CORRELATION TEST
 Software size

Effort Correlation
coefficient p-value

Plan 0.519 < 10-5

Specify 0.438 < 10-5

Design 0.611 0.0001

Build 0.592 < 10-5

Test 0.478 < 10-5

Implement 0.532 < 10-5

Project size that is measured with function points is

evaluated in the design stage of the development. Therefore, it

is insignificant to estimate the effort used before project
design. However, it is feasible and practical to forecast the
effort required for such development phases as software
building, testing, and implementation. Similar to the analytic
procedures in section III, we generalized the models in Table
III which can be used to estimate the effort needed for
software building, testing, and implementation. The column
multiple R2 gives the goodness-of-fit of the model.

TABLE III
MODELS FOR THE PREDICTION OF EFFORT IN

SOFTWARE BUILDING, TESTING, AND IMPLEMENTATION

Estimation model Multiple R2

BuildEffort = 18.10×Size0.736 0.421

TestEffort = 12.24×Size0.667 0.293

ImplementEffort = 0.55×Size1.067 0.340

VI. THE RELATIONSHIP BETWEEN SOFTWARE FAULT AND
SOFTWARE SIZE

Software fault is a structural imperfection in a software
system that may lead to the system’s eventually failing [29]. In
spite of many advanced debugging systems and models
developed for predicting software reliability, software has
suffered much from its failures. For instance, the ISBSG data
repository records one parameter Total Defects Delivered
specifying the total number of faults in the software which
was reported in the first month of its use. Among the 4106
projects in the database, a staggering number of 484 projects
were reported with faults in the first month of use. With the
increasing complicacy inherent in software development, more
attention should be paid to software quality.

Project size is measured with function points which are
based on various counting standards (e.g., IFPUG, NESMA,
Mark II). As before, we retained those projects with counting
approach IFPUG or NESMA, since these two counting
standards are considered to produce equivalent results.

The values for the variable Total Defects Delivered range
widely from 0 to 2554, which entails a logarithmic
transformation. We then use Shapiro-Wilk test to check the
normal assumption of the data. The significance of the test
indicates that the variable Total Defects Delivered deviates
from normal distribution. Therefore, we used nonparametric
test (Spearman’s correlation test) to find the relationship
between software defect and size. For our study, the reported
p-value is far smaller than 10-5, which indicates that there is
strong relationship between software defect and size.
Furthermore, the nonparametric correlation coefficient is
0.451, which proves that these two variables are positively
related. Therefore, the rising of software size tends to result in
more software deflects.

With the trend of increasing size of software, it is inevitable
that software fault becomes a serious problem. Hence much
attention should be paid to the development of advanced
debugging systems for testing software reliability.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3109

VII. CONCLUSION
This paper worked on the latest release of the ISBSG

database, which is a large database recording the software
projects ever developed worldwide. A model for the estimate
of development effort was developed based on software size.
This model can be applied during software plan and design.
This study also summarized the average amount of effort spent
on each development stage, and presented the formulae to
estimate the effort for software building, testing, and
implementation.

This study also found a strong positive correlation between
software fault and size. With the growing of software size,
software quality remains to be an ongoing concern and calls
for more serious attention.

REFERENCES
[1] R. S. Pressman, Software Engineering: A Practitioner's Approach.

London: McGraw-Hill, 2005.
[2] J. C. Vliet, Software Engineering: Principles and Practice. Chichester:

Wiley, 1993.
[3] R. D. Banker, H. Chang, and C. F. Kemerer, "Evidence on economies of

scale in software development," Information and Software Technology,
vol. 36, pp. 275-282, 1994.

[4] A. Heiat and N. Heiat, "A model for estimating efforts required for
developing small-scale business applications," Journal of Systems and
Software, vol. 39, pp. 7-14, 1997.

[5] D. V. Steward, Software Engineering with Systems Analysis and Design.
Belmont, California: Brooks/Cole, 1987.

[6] A. Lee, C. H. Cheng, and J. Balakrishnan, "Software development cost
estimation: Integrating neural network with cluster analysis,"
Information & Management, vol. 34, pp. 1-9, 1998.

[7] W. S. Humphrey and N. D. Singpurwalla, "Predicting (individual)
software productivity," IEEE Transactions on Software Engineering, vol.
17, pp. 196-207, 1991.

[8] M. van Genuchten and H. Koolen, "On the use of software cost models,"
Information & Management, vol. 21, pp. 37-44, 1991.

[9] G. R. Finnie, G. E. Wittig, and J. M. Desharnais, "A comparison of
software effort estimation techniques: Using function points with neural
networks, case-based reasoning and regression models," Journal of
Systems and Software, vol. 39, pp. 281-289, 1997.

[10] L. Dai and K. Cooper, "Modeling and performance analysis for security
aspects," Science of Computer Programming, vol. 61, pp. 58-71, 2006.

[11] W. Kuo, "Software reliability estimation: A realization of competing
risk," Microelectronics and Reliability, vol. 23, pp. 249-260, 1983.

[12] J. Lo and C. Huang, "An integration of fault detection and correction
processes in software reliability analysis," Journal of Systems and
Software, vol. 79, pp. 1312-1323, 2006.

[13] Q. Liu and R. C. Mintram, "Preliminary data analysis methods in
software estimation," Software Quality Journal, vol. 13, pp. 91-115,
2005.

[14] W. Harrison, "A flexible method for maintaining software metrics data:
a universal metrics repository," Journal of Systems and Software, vol. 72,
pp. 225-234, 2004.

[15] C. J. Lokan, "An empirical analysis of function point adjustment
factors," Information and Software Technology, vol. 42, pp. 649-660,
2000.

[16] R. Jeffery, M. Ruhe, and I. Wieczorek, "A comparative study of two
software development cost modeling techniques using multi-
organizational and company-specific data," Information and Software
Technology, vol. 42, pp. 1009-1016, 2000.

[17] J. J. Cuadrado-Gallego, M. Sicilia, M. Garre, and D. Rodríguez, "An
empirical study of process-related attributes in segmented software cost-
estimation relationships," Journal of Systems and Software, vol. 79, pp.
353-361, 2006.

[18] J. Moses, M. Farrow, N. Parrington, and P. Smith, "A productivity
benchmarking case study using Bayesian credible intervals," Software
Quality Journal, vol. 14, pp. 37-52, 2006.

[19] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering
Metrics and Models. Menlo Park, California: Benjamin/Cummings
Publishing Company, 1986.

[20] N. Fenton, "Software measurement: A necessary scientific basis," IEEE
Transactions on Software Engineering, vol. 20, pp. 199-206, 1994.

[21] C. F. Kemerer, "Reliability of function points measurement: a field
experiment," Communications of the ACM, vol. 36, pp. 85-97, 1993.

[22] C. R. Symons, "Function point analysis: difficulties and improvements,"
IEEE Transactions on Software Engineering, vol. 14, pp. 2-11, 1988.

[23] C. F. Kemerer and B. S. Porter, "Improving the reliability of function
point measurement: an empirical study," IEEE Transactions on Software
Engineering, vol. 18, pp. 1011-1024, 1992.

[24] G. Orr and T. E. Reeves, "Function point counting: one program's
experience," Journal of Systems and Software, vol. 53, pp. 239-244,
2000.

[25] NESMA, NESMA FPA Counting Practices Manual 2.0: Nesma
Association, 1996.

[26] A. C. Rencher, Linear Models in Statistics. New York: John Wiley &
Sons, 2000.

[27] W. J. Krzanowski, An Introduction to Statistical Modelling. London:
Arnold, 1998.

[28] J. D. Gibbons, Nonparametric Methods for Quantitative Analysis.
Columbus, Ohio: American Sciences Press, 1985.

[29] J. C. Munson, A. P. Nikora, and J. S. Sherif, "Software faults: A
quantifiable definition," Advances in Engineering Software, vol. 37, pp.
327-333, 2006.

Zhizhong Jiang is a PhD student at Manchester Business School, University
of Manchester, United Kingdom. He received his B.E.(first-class honors) from
Harbin Institute of Technology (China) and MSc in Applied Statistics from
University of Oxford.

Peter Naudé is a Professor of Marketing at Manchester Business School,
University of Manchester, United Kingdom. He publishes widely in business
studies and information systems.

Binghua Jiang is a consultant in Paragon Consulting Group Ltd, London. She
received her B. E (first-class honors) from Tongji University, Shanghai, and
MSc with distinction in Analysis, Design, and Management of Information
System from London School of Economics and Political Science (LSE).

