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Abstract—For decades financial economists have been attempted 

to determine the optimal investment policy by recognizing the option 
value embedded in irreversible investment whose project value 
evolves as a geometric Brownian motion (GBM).  This paper aims to 
examine the effects of the optimal investment trigger and of the 
misspecification of stochastic processes on investment in real options 
applications.  Specifically, the former explores the consequence of 
adopting optimal investment rules on the distributions of corporate 
value under the correct assumption of stochastic process while the 
latter analyzes the influence on the distributions of corporate value as a 
result of the misspecification of stochastic processes, i.e., mistaking an 
alternative process as a GBM.  It is found that adopting the correct 
optimal investment policy may increase corporate value by shifting 
the value distribution rightward, and the misspecification effect may 
decrease corporate value by shifting the value distribution leftward.  
The adoption of the optimal investment trigger has a major impact on 
investment to such an extent that the downside risk of investment is 
truncated at the project value of zero, thereby moving the value 
distributions rightward.  The analytical framework is also extended to 
situations where collection lags are in place, and the result indicates 
that collection lags reduce the effects of investment trigger and 
misspecification on investment in an opposite way. 
 

Keywords—GBM, real options, investment trigger, 
misspecification, collection lags 

I. INTRODUCTION 
OR decades financial economists have been attempted to 
determine the optimal investment policy by recognizing the 

option value embedded in irreversible investment.  Along the 
line of real options theory, numerous studies explore the 
optimal investment timing to pay an investment cost in return 
for an irreversible project whose value is a major source of 
uncertainty, evolving as a geometric Brownian motion 
(GBM).2  Research is then extended to determine the optimal 
investment policy under a variety of stochastic processes, 
which has been shown to have a major impact on irreversible 
investment decisions in literature.  Yet, among abundant 
literature few studies are directed at exploring the actual effect 
of adopting the optimal investment policy on investment, 
particularly on corporate value.  Furthermore, the optimal 
investment policy in the context of real options is built on the 
foundation of maximizing the value of managerial flexibility 
rather than of maximizing the expected project payoffs.  It is 
thus interesting to investigate how the optimal investment 
policy influences the distribution of corporate value under a 
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2 See [3] and [20] for a complete literature review. 

specific stochastic process. 
On the other hand, since most real options models make the 

common assumption that the underlying variable follows a 
GBM for tractable solutions, it is possible that management 
may take the GBM assumption for granted without further 
examining the appropriateness of the GBM assumption.  
Another reason of management accepting the GBM assumption 
is possibly the difficulty of distinguishing a GBM from an 
alternative process because of the short-sampled data.  In any 
case, the literature has documented that there are plenty of 
practical examples that practitioners explicitly apply the 
GBM-based models in the practical investment decisions.  
These examples include Merck [7, 14], British 
Telecommunications [8]: the former applies the Black-Scholes 
model to evaluate pharmaceutical development projects and the 
biotech stock index to estimate project volatility; the latter uses 
Geske’s [5, 6] compound options model to managing R&D 
investment in the telecommunication service industry.  It is 
important to point out that both the Black-Scholes and Geske 
models rest on the assumption that the underlying process 
follows a GBM.  More applications building on the GBM 
assumption can be found in Eastman Kodak [4], New England 
Electric, Enron [2], Mycogen [19], and Phillips Electronics [9].  
 This paper aims to examine the effects of optimal investment 
triggers and of the misspecification of stochastic process on 
investment in real options applications.  Specifically, the 
former is to explore the consequence of adopting optimal 
investment rules on the distributions of corporate value under 
the correct assumptions of stochastic process; the latter is to 
analyze the influence on the distributions of corporate value as 
a result of the misspecification of stochastic processes, 
particularly, mistaking an alternative process as a GBM.  
Research methodology is based on Monte Carlo simulation, 
from which several performance measures are also constructed 
to gauge the misspecification effect.  In addition, a numerical 
procedure is developed to simulate capital investment decisions 
and realized project payoffs under a GBM and an alternative 
process.  These alternative processes of interest are mixed 
diffusion-jump (MX), mean reversion (MR), and jump 
amplitude (JA). 
 As most real options models, with few exceptions, assume 
that a project is brought on line immediately without collection 
delays after the investment decision is made, the study of the 
trigger price effect and the misspecification effect will start by 
making the same assumption.  The analytical framework is then 
extended in the presence of delays in collecting project payoffs.  
The rest of the paper is organized into four sections.  Section 2 
presents the base case for analyzing these two effects on 
investment.  Section 3 describes research methodology 
involving a simulation procedure to approach the problem.  
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Three performance measures are also constructed to examine 
the misspecification effect of stochastic processes.  Section 4 
explains simulation results with/out collection lags.  Finally, 
Section 5 gives concluding remarks. 

II. BASIC INVESTMENT PROBLEM 
Consider a firm that is currently holding a license, expiring 

in τ  years, to manufacture a widget and trying to decide 
whether to invest in the widget factory.  Once the project is 
launched, the firm needs to invest a direct cost, I, which is 
assumed to be irreversible, in return for a value, V, with a 
growth rate of α  and a volatility of σ .  The project life is 
assumed to be T, the risk-free rate is currently r , and the 
opportunity cost of holding a project is δ .  
 To examine the effects of optimal investment triggers and 
misspecification of stochastic processes, it is assumed that there 
are three financial managers, each of which represents a 
particular value distribution.  For the reason of comparison, 
Manager A assumes that the investment opportunity should be 
taken after the licensing period.  Consequently, Manager A 
essentially reflects the value distribution based on a given 
stochastic process.  Manager B and C both are assumed to be 
rational managers who make investment decisions by following 
the optimal decision rules.  The difference between Manager B 
and C is that the former can correctly identify the actual 
stochastic process and make optimal investment decisions 
accordingly while the latter makes investment decisions based 
on the mistaken assumption that V follows a GBM.  Let BV ∗  and 

CV ∗  denote the optimal investment rules adopted by Manager B 
and C, respectively.  Since Manager B adopts the optimal 
investment rule based on the actual process, BV ∗  can be MXV ∗ , 

MRV ∗ , or JAV ∗ , depending on the actual process assumed.  In 
addition, Manager C’s optimal investment policy, CV ∗ , is equal 
to GBMV ∗  as Manager C assumes that the underlying stochastic 
process evolves as a GBM.   
 It is important to point out that these three types of different 
investment behavior are designed to conveniently investigate 
the trigger price effect and the misspecification effect.  As 
mentioned earlier, the trigger price effect describes the 
consequence of the actions of adopting the optimal investment 
triggers on the distribution of corporate value.  It is therefore 
obvious that the effect of adopting an investment trigger can be 
easily observed by comparing the distributions of realized 
project payoffs caused by Manager A and B, given a specific 
stochastic process.  In addition, the misspecification effect of 
stochastic process depicts the impact on the corporate value due 
to the misspecification of stochastic process, i.e., mistaking an 
alternative process for a GBM.  In our setting, the 
misspecification effect can be examined by comparing the 
distributions of realized project payoffs of Manager B and C.  
To further explore the misspecification effect on investment, 
three performance measures are constructed to measure the 
likelihood of making mistaken decisions and the loss in 
corporate values.  These performance measures are the 
probability of making mistaken decisions, the unconditional 

loss ratio, and the conditional loss ratio, which will be 
illustrated in the next section. 

For the purpose of simplifying the problem, when facing an 
investment opportunity, management is given two alternatives 
only: to invest or to defer the project.  Let Ψ  and Ω  denote 
binary variables which represent investment decisions made by 
Manager B and C, respectively.  Therefore, Ψ  represents the 
optimal decision, given the correct specification of stochastic 
process, and Ω  is the mistaken decision, given the 
misspecification of stochastic process.  Suppose both Ω  and 
Ψ  can either take 1 (invest) or 0 (defer) in the binary setting.  
Since Ω  and Ψ  are independent decisions for the same 
investment opportunity under consideration, there are four 
possible outcomes, two of which describe the situations in 
which have consistent investment decisions and the other two 
state the situations where mistaken decisions are in place.  
Table 1 outlines these four possible outcomes due to the 
misspecification of stochastic process. 

 
TABLE I  FOUR POSSIBLE OUTCOMES DUE TO MISSPECIFICATION OF 

STOCHASTIC PROCESS 
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According to Table 1 it is possible that Manager C may still 

make investment decisions which are “consistent” with the 
optimal decisions made by Manager B, even though an 
underlying process is not correctly specified.  On the other 
hand, it is also possible that Manager C may make mistaken 
decisions in the situations that he decides to invest as opposed 
to the optimal decisions to defer the project, or that he decides 
to defer the project as opposed to the optimal decisions to 
invest.  It is therefore important to distinguish between 

( )P Ω = Ψ  and ( )P Ω ≠ Ψ , both of which are defined as the 
probability of making consistent decisions and the probability 
of making mistaken decisions, respectively.  In the situations 
where the misspecification of stochastic process occurs, i.e., 
Ω ≠ Ψ , there are two types of investment losses, which are 
regarded as realized losses and forgone profits.  Realized losses 
are referred to as negative payoffs due to the actions of 
launching a project as it should be deferred optimally, i.e. 

1  and  0Ω = Ψ = .  On the other hand, forgone profits are 
defined as relinquished positive profits due to the actions of 
deferring a project as it should be taken optimally, i.e., 

0  and  1Ω = Ψ = .  Obviously, both realized losses and 
forgone profits are investment losses which accrue to Manager 
C due to the misspecification of the stochastic process 
assumption. 
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III. RESEARCH METHODOLOGY 
A. Simulation Procedure 

 Given the basic investment problem described in the 
preceding section, a numerical procedure based on Monte 
Carlo simulation is developed to investigate the trigger price 
effect and the misspecification effect of stochastic process on 
the distributions of corporate values.  As the first step of 
simulation, two different stochastic processes, a GBM and an 
alternative process, are simulated, given the same parameter 
values.  The former is what Manager C believes the underlying 
process is, while the latter is the actual process which is 
correctly identified by Manager B.  The specifications of 
stochastic processes of interest are discussed in the next 
section.  To make both processes look like a non-stationary 
random walk over the licensing period, the Augmented 
Dickey-Fuller (ADF) p test is conducted to test the null 
hypothesis that the value process is characterized by a random 
walk with a possible drift at the level of significance 5%.3  If 
any of the value process is rejected in the ADF test, the 
simulation procedure goes back to the beginning and 
re-simulates a new process according to the same parameter 
values until the null hypothesis is accepted.  Note that the ADF 
test is conducted only within the licensing period of τ such that 
both processes may locally resemble a random walk but 
globally are two different stochastic processes.   
 The next step is to compute optimal investment triggers 
based on an alternative process and a GBM, BV ∗  and CV ∗ , 
serving as investment decision-making tools.  Real options 
literature suggests that irreversibility and uncertainty 
complicate investment in that the closed-form solutions of 
trigger prices are mostly unavailable except those under the 
assumption of a GBM and a specific form of a mixed 
diffusion-jump process.  If the solution of investment trigger 
for an alternative process is not available, the general 
investment framework based on Monte Carlo simulation in [20] 
is applied to iteratively derive optimal investment trigger.   
 Once both BV ∗  and CV ∗  are derived, the terminal payoffs of 
both simulated stochastic processes over the waiting period are 
used to determine the optimal decision and the actual decision.  
In the meanwhile, the net terminal payoffs under an actual 
process, denoted by f , are also computed as a percentage of 
investment cost, given three types of investment behavior.  The 
net terminal payoffs of Manager A, B, and C, are measured by 
the following equations, respectively: 

 T
A

V I
f

I
−

=                   (1) 

 
3 Generally, there are two most commonly used tests for stationarity: the 

(Augmented) Dickey-Fuller test and the Phillips-Parron test.  The former is 
essentially a unit root test, where the null hypothesis is a unit root and the 
alternative is a stationary AR(p) process (the Augmented Dickey-Fuller test is 
used to test higher order AP process) while the latter is an extension of the 
Dickey-Fuller test allowing for non-white-noise errors.  The DF test is chosen 
for the reason of ease of computer programming.  Refer to [7]  for the procedure 
of hypothesis testing on a random walk. 

 
( )

,   = 0 or 1T
B

V I
f

I
Ψ −

= ∀Ψ           (2) 

 
( )

,   = 0 or 1T
C

V I
f

I
Ω −

= ∀Ω           (3) 

where TV  is the realized project value, according to the actual 
stochastic process. 

It is obvious that when 1Ω = , 0Ψ = , and TV I< , Manager 
C has a realized investment loss.  On the other hand, when 

0Ω = , 1Ψ = , and TV I> , Manager C has a forgone profit.  
By integrating the decision variables, the loss function of 
Manager C is given as follows:4  

 ( ) ( )( )
, , T

T

V I
V

I
π

Ω − Ψ −
Ω Ψ =           (4) 

where π  denotes the loss ratio of Manager C for a simulation 
trial.  

 It is important to point out that when there are no delays in 
collecting project payoffs, TV  is equal to Vτ .  The variables 
Ω , Ψ , and π  are recorded in each trial.  The preceding 
procedure is to be repeated until the pre-specified simulation 
trials are completed.  In Monte Carlo simulation, the results due 
to the misspecification of stochastic process are summarized 
with three performance measures.  Let m denote the number of 
total simulation trials and l be the number of total mistaken 
decisions within m trials.  Thus, if the underlying assumption of 
stochastic process is misspecified, the probability of making 
mistaken decisions can be calculated by 

 ( ) lP
m

Ω ≠ Ψ =                 (5) 

There are two types of loss ratios when the misspecification 
of stochastic process occurs, the unconditional expected loss 
ratio and the conditional expected loss ratio.  The unconditional 
expected loss ratio is defined as the average loss ratio out of 
total simulation trials, expressed as follows: 

 1

l

i
i

m

π
π ==

∑
                  (6) 

The conditional expected loss ratio is referred to as the 
average loss ratio out of the mistaken decisions, describing the 
expected value loss of each mistaken decision given that the 
mistaken decision is made.  Therefore, the unconditional 
expected loss ratio is ex ante and the conditional expected loss 
ratio is ex post.  The conditional expected loss ratio is 
mathematically expressed as follows: 

 1

l

i
i

l

π
π =

Ω≠Ψ =
∑

                (7) 

 
 

4 Refer to [13] for a similar form of loss function. 
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Fig. 1  The Simulation Procedure 

 

It is obvious that the conditional expected loss ratio can be 
alternatively derived from the unconditional expected loss ratio 
in Equation (6) divided by the probability of making the 
mistaken decisions in Equation (5), expressed as follows:    

 
( )P

ππ Ω≠Ψ =
Ω ≠ Ψ

              (8) 

The final output of simulation is the NPV distributions 
generated from realized project payoffs due to three different 
types of investment behavior.  Figure 1 illustrates the thorough 
simulation procedure. 

B. Stochastic Processes 

Since stochastic processes are regarded as major sources of 
uncertainty in the evaluation of capital investments, here we 
introduce a variety of stochastic processes for later 
applications.  The specifications of each stochastic process are 
presented both in continuous time and in discrete time.   

(A) Geometric Brownian Motion 

 The most widely applied stochastic process is GBM which 
accounts for a continuous form of random walk.  The main 
property of this class of stochastic process is that the rate of 
return is normally distributed, implying a lognormal 
distribution of the project value.  The continuous-time version 
of a GBM is given below: 

 dV Vdt Vdzα σ= +                (9) 

where α , σ , and dz  denote drift rate, instantaneous 
volatility, and an increment of a standard Wiener process, 
respectively. 

For the simulation purpose, the discrete-time version of 
GBM is expressed as follows: 

 lnV v t tσ εΔ = Δ + Δ 5            (10) 

where tΔ  and ε  represent a small interval of time and a 
random drawing from a standard normal distribution, 

respectively, and 21
2

v α σ= − . 

(B) Mean Reversion 

Another class of stochastic process is a mean-reverting 
process which is often used to describe the price behavior of 
commodity and natural resources.  The most prominent 
property of a mean-reverting process is that its growth rate is 
not a constant but instead a function of a difference between 
current value and long-run mean, suggesting that growth rate in 
effect responds to disequilibrium.  Dixit and Pindyck [3] 
examine the value of an investment opportunity whose value 
follows a mean-reverting process.  As there are many ways to 
specify a mean-reverting process, Dixit and Pindyck’s 
specification is somewhat arbitrary but convenient to find a 
“quasi-analytical” solution for the value of the project.  The 
formation of this specific mean-reverting process is given 
below: 

 ( )dV V V Vdt Vdzη σ= − +             (11) 

where η denotes a speed of mean reversion and V  is a 
long-run mean. 

Equation (11) can be discretized into the following equation: 

 ( ) 21ln
2

V V V t tη σ σ ε⎡ ⎤Δ = − − Δ + Δ⎢ ⎥⎣ ⎦
      (12) 

 
5 Since GBM is log-normally distributed, a more explicit form of Equation 

(10) is given below: 
( )tv t t

t t tV V e σ εΔ + Δ
+Δ

⎡ ⎤= ⎣ ⎦  
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(C) Mixed Diffusion-Jump 

 In general, a mixed diffusion-jump process consists of a 
GBM and a Poisson jump component.  There are a variety of 
forms of a mixed diffusion-jump process, one of which is 
proposed by [12] in the financial option pricing problem and 
then applied by [18] in the context of evaluating an investment 
opportunity with competitive arrivals.  A mixed diffusion-jump 
process in continuous time could be expressed as follows:  

 ( ) 3dV k Vdt Vdz Vdqα λ σ= − + +          (13) 

where 3dq  is an increment of a Poisson jump process with a 

mean arrival rate λ  such that 

3

    with a probability of 
0 with a probability of 1-

dt
dq

dt
ϕ λ

λ
⎧

= ⎨
⎩

        (14) 

where ( , )N k ϕϕ σ∼  denotes a proportional jump relative to V 
if a jump occurs. 

Note that the Poisson jump term 3dq  is assumed to be 
independent of dz such that ( )3 0E dq dz = .  Equation (14) also 
reveals that the actual growth rate of such a mixed 
diffusion-jump process is not α but instead α -λ k in order to 
adjust the influence of a Poisson event.  For the simulation 
purpose, the discrete-time version of the mixed diffusion-jump 
process is given as follows: 

 ( ) 3lnV v k t t Dλ σ εΔ = − Δ + Δ +          (15) 

where 3D  denotes an increment of a Poisson jump in discrete 
time with a mean arrival rate λ  such that 

3

    with a probability of 
0 with a probability of 1-

t
D

t
ϕ λ

λ
Δ⎧

= ⎨ Δ⎩
        (16) 

It is worth noting that [11] and [3] also propose a mixed 
diffusion-jump process with the sign of the jump term changed 
into negative to describe the situation in that the project 
becomes suddenly worthless when a major competitor of the 
same product enters the market.   

(D) Jump Amplitude Process 

 Another type of jump processes are jump amplitude 
processes which are suggested by [16] to describe the 
characteristics of R&D investments.  The jump amplitude 
process differs from other jump processes in that the impacts of 
information arrivals can not be foreseen such that jump 
direction and jump size are stochastic by nature.  A jump 
amplitude process can be mathematically expressed as follows: 

 4dV Vdt Vdqα= +     `           (17) 

where 4dq  an increment of a stochastic jump process.  The 
jump term, 4dq , is characterized by a parameter of jump 
intensity λ  such that 

4

   with a probability of 
0 with a probability of 1-

dt
dq

dt
ψ λ

λ
⎧

= ⎨
⎩

      (18) 

where ψ  denotes a proportional jump relative to V. 

By definition, Xψ = Γ  where ( )1 or 1, 1X P X p= − = = , 
and ( )~ , 2XX Wei γΓ .  The discrete-time version of a jump 

amplitude process is modeled as follows: 

 4lnV t DαΔ = Δ +                (19) 

where 4D  denotes an increment of a stochastic jump 

component in discrete time with a mean arrival rate λ , and 4D  
is expressed by 

4

    with a probability of 
0 with a probability of 1-

t
D

t
ψ λ

λ
Δ⎧

= ⎨ Δ⎩
       (20) 

Since a jump amplitude process allows both positive and 
negative jumps, the estimation of the probability of up-jumps 
and down-jumps is important in specifying the process.  By 
assuming P(X=1)=0.5, this means there is a 50-50 chance of 
up-jump and down-jump.   

IV. SIMULATION RESULTS 
To analyze the trigger price effect and the misspecification 

effect, a few parameter values are applied as the base case: the 
investment cost (I) are $100; the risk free rate (r) is 8%; the 
annual cost of waiting (δ ) is 4%; and the licensing period (τ ) 
lasts 5 years.  In addition, the initial project value (V0) is 
assumed to be $100 based on the idea that real options matter in 
investment decisions only when the NPV of the project is near 
zero.  The simulation is based on 10,000 trials.  The analysis 
then starts by assuming that there are no collection lags, i.e., 
T=0.   

A. Consequence of Adopting Optimal Investment Trigger When 
Project Payoffs are Collected Immediately 

The simulation result which summarizes the descriptive 
statistics of the distributions of Manager A and B is given in 
Table 2.  Also, Figure 2–5 display the histograms of the 
distributions of Manager A and B, which demonstrate the 
trigger price effect under a GBM, MR, MX, or JA process, 
respectively.  As mentioned, the distribution of Manager A 
basically reflects the realized project payoffs of an actual 
stochastic process, while the distributions of Manager B 
represent the realized project payoffs when the trigger price is 
adopted as the optimal investment rule.  Based on the parameter 
values of the base case, the trigger prices of interest, *

GBMV , 
*

MRV , *
MXV , and *

JAV , are given by 278.08, 120.91, 143.96, and 
217.50, respectively.  By comparing the value distributions of 
Manager A and Manager B, it is apparent to observe how the 
optimal investment rules influence the distributions of 
corporate value.   



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:6, 2010

683

 

 

According to Figure 2 – 5, the most obvious result is that the 
left side of the distributions of Manager B under all stochastic 
processes is truncated at the value of zero, indicating that the 
optimal investment policies effectively help management to 
prevent the downside risk of investment.  This finding can be 
alternatively observed from a comparison between the 
skewness coefficient of Manager B and that of Manager A.  As 
indicated in Table 2, the distributions of Manager B under any 
of the stochastic processes in general have higher coefficients 
of skewness and kurtosis than those of Manager A, hence 
suggesting that the adoption of optimal investment triggers 
leads to the fat-tailed, right-skewed distributions of corporate 
value.  This evidence suggests that the adoption of optimal 
investment triggers has a positive impact on project payoffs of 
investment. 

TABLE II  DESCRIPTIVE STATISTICS OF THE DISTRIBUTIONS OF MANAGER A 
AND B 

True 
Process 

Manage Min Max Mean STD 

GBM A -78.44 488.87 22.35 57.56
B 0.00 488.87 4.62 33.10 

Mean 
Reversion 

A -34.94 36.55 -2.16 9.96 
B 0.00 36.55 0.32 2.89 

Mixed 
Jump 

A -100 471.94 -54.03 70.24
B 0.00 471.94 10.29 34.97

Jump 
Amplitude 

A -60.53 255.00 26.00 33.96
B 0.00 255.00 3.08 21.73

Note: As a Percentage of Investment Cost 
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Fig. 2  The Effect of Adopting Optimal Investment Triggers, Given a 

GBM 

Table 2 also reveals that both the mean and the standard 
deviation of realized net payoffs of Manager B are in general 
lower than those of Manager A, thus implying that when the 
optimal investment trigger is applied as a decision-making tool, 
investment risk can be reduced at the expense of lowering the 
expected rate of return.  This is because the trigger price (V*) is 
in general much higher than the investment cost (I), and 
adopting the trigger price as the optimal investment policy may 
result in the consequence that most investment opportunities 
are rejected with zero-payoff, thus lowering the mean and the 
variation of realized payoffs.  
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Fig. 3  The Effect of Adopting Optimal Investment Triggers, Given an 

MR Process 
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Fig. 4  The Effect of Adopting Optimal Investment Triggers, Given an 

MX Process 
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 Fig. 5  The Effect of Adopting Optimal Investment Triggers, Given 

a JA Process 

To sum up, the adoption of optimal investment triggers has a 
major impact on investment by truncating the downside risk 
and skewing the value distributions rightward.  Furthermore, 
investment risk, in terms of the variation in project values, can 
be greatly reduced by the optimal investment policy, along with 
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a lower rate of return in consequence of rejecting most projects 
with zero-payoff.  This result is consistent across all the 
stochastic processes of interest. 

B. Misspecification Effect When Project Payoffs are Collected 
Immediately 

 By applying the same parameter values in the base case, the 
misspecification effect of stochastic process, i.e., mistaking an 
alternative process for a GBM, on investment is further 
explored.  In addition to the value distributions of Manager B 
and C, three performance measures, based on investment 
losses, are also reported to gauge the probability of making 
mistaken decisions and loss ratios.  The simulation results are 
given in Table 3, Table 4, and Figure 6–8: Table 3 summarizes 
the descriptive statistics of the distributions of Manager B and 
C; Table 4 provides three performance measures due to the 
misspecification effect; and Figure 6 – Figure 8 illustrate the 
histograms of the value distributions caused by the 
misspecification, given that the actual stochastic process is an 
MR, MX, and JA process, respectively.     
 There are several findings which can be generalized from the 
results.  Firstly, the misspecification of mistaking an alternative 
process for a GBM in general shifts the value distributions to 
the left.  This finding can be easily observed from the lower 
means and the negative skewness coefficients of Manager C in 
Table 3.  Similarly, the histograms in Figure 6–8 also illustrate 
that the value distributions of Manager C are left-skewed.   

Secondly, the probabilities of making the mistaken 
decisions, ( )P Ω ≠ Ψ , given the actual processes are an MR, 
MX, and JA, are 3.26%, 12.22% and 3.60%, respectively.  
Since the GBM trigger, *

GBMV , is much higher than the other 
triggers, , *

MRV , *
MXV , and *

JAV , ( )P Ω ≠ Ψ  mostly results from 
the mistaken decisions of 0Ω =  and 1Ψ = , i.e., mistakenly 
deferring the project while it should be taken on.  ( )P Ω ≠ Ψ  
under an MX process is higher than that under the other two 
processes.  The main reason is that ( )P Ω ≠ Ψ  under an MX 
process also includes a higher probability of 1Ω =  and 0Ψ = , 
i.e., mistakenly taking on the project while it should be 
deferred.  It is known that an MX process is identical to a GBM 
as Poisson jumps are not considered by management.  
Therefore, there is a positive probability that management takes 
on an investment opportunity that has already been 
appropriated by potential competitors. 

TABLE III  DESCRIPTIVE STATISTICS OF THE DISTRIBUTIONS OF MANAGER  
B AND C 

True 
Process 

Manager Min Max Mean STD 

Mean 
Reversion 

B 0.00 36.55 0.32 2.89 
C -36.55 20.54 -0.33 3.19 

Mixed 
Jump 

B 0.00 47.94 10.29 34.97 
C -100.00 111.43 -1.04 11.33 

Jump 
Amplitude 

B 0.00 255.00 3.08 21.73 
C -45.10 119.47 0.34 4.63 

Note: As a Percentage of Investment Cost 

Thirdly, Table 4 indicates that the conditional loss ratios, 
π Ω≠Ψ , for the MX and JA processes tend to be higher.  This is 
mainly because both MX and JA processes contain a jump 

component with an average jump size of 10%.  Our sensitivity 
analysis reveals that π Ω≠Ψ  increases with the jump size.   

 
TABLE IV  THREE PERFORMANCE MEASURES OF THE MISSPECIFICATION 

EFFECT 
True Process\ 

Measures 
( )P Ω ≠ Ψ  π  π Ω≠Ψ  

Mean Reversion 3.26% 0.47 14.39 
Mixed Jump 12.22% 11.53 94.37 

Jump Amplitude 3.60% 3.49 96.95 
Note: Loss ratios are expressed as a percentage of investment cost. 
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Fig. 6  The Effect of Misspecifying an MR for a GBM 
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Fig. 7  The Effect of Misspecifying an MX for a GBM 
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Fig. 8  The Effect of Misspecifying a JA for a GBM 

To sum up, the misspecification effect has a major impact on 
realized project payoffs of investment in the way of moving the 
value distributions leftward with a lower expected rate of 
return.  The misspecification effect also results in a positive 
probability of making mistaken decisions, depending on the 
actual stochastic process.  Finally, it is demonstrated that the 
GBM assumption may cause a greater loss in value in the 
misspecification of stochastic process where the actual 
stochastic process contains a jump component.   

C. Consequence of Adopting Optimal Investment Trigger When 
There are Collection Lags 

 Thus far, the analysis is based on the assumption that the 
project is delivered without time lags and thus project payoffs 
are immediately obtained after the decision to invest is made.  
However, capital investments, in reality, take time to build and 
to deliver, and are thus termed construction lags and delivery 
lags, respectively.[15]  In addition to these two types of 
investment lags, there is the third type of investment lags, 
collection lags, which describe the delays in collecting project 
payoffs.  Even where there are no construction lags and 
delivery lags, capital investments are still exposed to 
uncertainty due to collection lags.  In particular, the presence of 
collection lags is one of the major characteristics that 
distinguish real options from financial options.  Earlier studies 
on irreversible investments mostly center on the effect of 
construction lags and delivery lags on the value of options.  For 
example, Majd and Pindyck [10] find that the time-to-build 
effect tends to decrease the delay on investment due to waiting 
and increase the option value under uncertainty.  Bar-Ilan and 
Strange [1] demonstrate that construction lags may offset 
uncertainty and more uncertainty may speed up investment in 
the presence of long lags.   

While Majd and Pindyck [10], Bar-Ilan and Strange [1], and 
others focus on investigating the effects of construction lags 
and delivery lags on investment in terms of the value of options, 
few studies have addressed the issues of collection lags.  The 
analysis in the preceding subsections can be easily extended to 
investigate the trigger price effect and the misspecification 
effect on investment in the presence of collection lags.  For this 
purpose, the collection lags are assumed to be 5 years, i.e., T=5, 
after the investment decision is made. 

 The results of adopting optimal investment triggers in the 
presence of collection lags are summarized in Table 5 and 
Figures 9 – 12: Table 5 provides the descriptive statistics; and 
Figures 9 – 12 illustrate the histograms of the distributions of 
Manager A and B, given that the underlying process follows a 
GBM, MR, MX, or JA process, respectively.  It can be easily 
seen that the value distributions of Manager A in the existence 
of collection lags are justified by the optimal investment rules 
in a very similar way to that assumed no collection lags.  
Firstly, as shown in Table 5, the coefficients of skewness and 
kurtosis of Manager B are in general much higher than those of 
Manager A, hence suggesting that the distributions of corporate 
value are relatively right-skewed, fat-tailed when the optimal 
investment rules are applied.  This finding is consistent with the 
value distributions in Figure 9 – 12.  Secondly, optimal 
investment triggers also help management prevent the 
downside risk in the way of truncating the value distributions 
truncated with a lower rate of return and a lower variation in 
project returns, according to the means and standard deviations 
reported in Table 5.  However, when collection lags exist, the 
value distributions of Manager B are no longer truncated at 
zero, but instead there is a slight chance that the rate of project 
return may become negative.  The intuition underlying the 
result is that there is a positive probability that the project value 
may drop to a lower level after the project is triggered.  Thus, 
there is always uncertainty due to collection lags, i.e., the 
period between τ  and T, even though the investment decisions 

are made optimally at timeτ .  By comparing the standard 
deviations in Table 2 to those in Table 5, it becomes apparent 
that the variation in project returns increases in the presence of 
collection lags.  Our sensitivity analysis indicates that the 
longer the collections lags are, the higher the variation in 
project returns is.  

 To sum up, the adoption of optimal investment triggers, in 
the presence of collection lags, still has a major impact on 
investment by moving the value distributions to the right.  
However, the existence of collection lags may expose 
investment to higher uncertainty in terms of realized project 
payoffs, compared to the case of no collection lags.  

 
TABLE V  DESCRIPTIVE STATISTICS OF THE DISTRIBUTIONS OF MANAGER A 

AND B 
True 

Process 
Manager Min Max Mean STD 

GBM A -91.62 977.20 48.93 104.77 
B -11.25 977.20 9.38 62.77 

Mean 
Reversion 

A -40.06 33.65 -1.94 9.85 
B -40.06 31.54 -0.88 6.53 

Mixed 
Jump 

A -100 924.79 -44.70 96.24 
B -51.73 924.79 13.74 59.89 

Jump 
Amplitude 

A -85.46 868.31 55.69 88.21 
B -11.26 868.31 5.70 43.74 

Note: As a Percentage of Investment Cost 
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Fig.  9  The Effect of Adopting Optimal Investment Triggers When 

Collection Lags Exist, Given a GBM Process 
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Fig. 10  The Effect of Adopting Optimal Investment Triggers When 

Collection Lags Exist, Given an MR Process 
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Fig. 11  The Effect of Adopting Optimal Investment Triggers When 
Collection Lags Exist, Given a MX Process 

 
 
 
 

 

P
ro

ba
bi

lit
y

Manager A (JA)
Manager B (JA)

-500 0 500 1000
Project Payoffs (as a Percentage of I)

0

500

1000

1500

Fr
eq

ue
n c

y

0.0

0.1

0.2

0.3

P
ro

ba
bi

lit
y

Manager A (JA)
Manager B (JA)

-500 0 500 1000
Project Payoffs (as a Percentage of I)

0

500

1000

1500

Fr
eq

ue
n c

y

0.0

0.1

0.2

0.3

 
Fig. 12  The Effect of Adopting Optimal Investment Triggers When 

Collection Lags Exist, Given a JA Process 
D. Misspecification Effect When There are Collection Lags 

 In this subsection, the misspecification effect on investment 
is examined with collection lags allowed.  Table 6 reports the 
descriptive statistics and Table 7 exhibits the performance 
measures.  Since the histograms of the project payoffs of 
Manager C cannot illustrate the misspecification effect in an 
apparent way, the normalized density curves are demonstrated 
in Figure 13–15, given the actual process is MR, MX or JA, 
respectively.   

There are several findings revealed from the result.  Firstly, 
from the means reported in Table 6, the misspecification of 
stochastic process appears to have a relatively minor effect on 
lowering the expected rate of return.  When the actual process 
is an MR, the investment behavior of Manager B does not 
dominate that of Manager C in terms of the expected rate of 
return.  The density curves in Figures 13–15 also indicate a 
consistent result that the misspecification effect appears to have 
a relatively minor impact on the project values.  Secondly, in 
terms of the standard deviations of Manager C in Table 3 and 6, 
there is in general a greater variation in the realized project 
payoffs when the collection lags exist.  Thirdly, the coefficients 
of skewness indicate the misspecification effect, in the 
existence of collection lags, still has an influence on investment 
in a similar way of no collection lags by shifting the 
distributions of corporate value leftward, yet the moving of the 
distributions is less obvious than the case of no collection lags.  
Fourthly, there is still a positive ( )P Ω ≠ Ψ  in the three types of 
misspecification, while both π  and π Ω≠Ψ , in the presence of 
collection lags, are amplified in consequence of the uncertainty 
due to the collection lags.    
TABLE IX  DESCRIPTIVE STATISTICS OF THE DISTRIBUTIONS OF MANAGER B 

AND C 
True 

Process 
Manage Min Max Mean STD 

Mean 
Reversion 

B -36.41 37.91 0.04 10.12 
C -37.91 37.62 1.79 9.96 

Mixed 
Jump 

B -406.31 928.16 53.59 92.81 
C -928.16 594.72 43.05 98.14 

Jump 
Amplitude 

B -712.28 984.71 -43.94 95.05 
C -984.71 397.06 -52.72 91.00 

Note: As a Percentage of Investment Cost 
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To sum up, the misspecification of stochastic process, in the 
presence of collections lags, has an effect on shifting the 
distributions of corporate value leftward.  However, the 
shifting of the left-skewed distributions, in the existence of 
collection lags, is relatively minor, compared to the situations 
where the project payoffs are collected immediately after the 
decision is made.  In addition, collection lags appear to increase 
the loss ratios in consequence of uncertainty during the lag 
time.   

TABLE VII  THREE PERFORMANCE MEASURES OF THE MISSPECIFICATION 
EFFECT 

True Proc\Measure ( )P Ω ≠ Ψ  π  π Ω≠Ψ

Mean Reversion 3.84% 3.71 96.61 
Mixed Jump 12.34% 32.27 261.51 

Jump Amplitude 4.06% 8.58 172.98 
Note: Loss ratios are expressed as a percentage of investment cost. 
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Fig. 13  The Effect of Misspecifying an MR for a GBM (Collection 

Lags) 
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Fig. 14  The Effect of Misspecifying an MX for a GBM (Collection 

Lags) 
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Fig. 15  The Effect of Misspecifying a JA for a GBM (Collection 
Lags) 

V. CONCLUDING REMARKS 
This paper explores the consequence of adopting optimal 

investment triggers and the effect of misspecification of 
stochastic process on investment, particularly on the 
distributions of corporate values.  The general result is that 
adopting optimal investment triggers may increase corporate 
values by shifting the value distributions rightward, and the 
misspecification effect may decrease corporate values by 
shifting the value distributions leftward.  Specifically, the 
adoption of optimal investment triggers has a significant impact 
on investment to such an extent that the downside risk of 
investment is truncated at the project value of zero, thereby 
moving the value distributions rightward.  It has also been 
found that investment risk, in terms of the variation in project 
values, can be reduced by applying the optimal trigger, along 
with a lower rate of return in consequence of rejecting most 
projects with zero-payoff.  On the other hand, the effect of 
misspecification of stochastic process also has a major impact 
on investment in the way that it moves the value distributions 
leftward.  Furthermore, the misspecification effect causes a 
positive probability of making mistaken decisions and losses in 
value, depending on the actual stochastic process.  The losses in 
value become especially substantial when the actual stochastic 
process contains a jump component.   

Finally, by extending the analytical framework to the 
situations where collection lags are in place, we found that both 
the consequence of adopting optimal triggers and the effect of 
misspecification, in the presence of collection lags, still have an 
impact on investment.  However, since collection lags appears 
to bring about higher uncertainty during the collection period, 
the adoption of optimal triggers does not truncate the 
distributions at the value of zero, thus leading to a higher 
variation in project values.  In addition, the misspecification of 
stochastic process, in the presence of collections lags, has a 
relatively minor effect on shifting the distributions of corporate 
value leftward, compared to the case of no collection lags.  
However, collection lags increase the conditional and 
unconditional loss ratios in consequence of increased 
uncertainty.  Therefore, collection lags reduce the influence of 
adopting optimal investment triggers and the misspecification 
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effect on investment in a different way. 

REFERENCES   
[1]. Bar-Ilan, Avner and Strange, William C. “Investment Lags.” American 

Economic Review 86 (1996), 610-622. 
[2]. Corman, Linda. “To Wait or Not to Wait.” CFO Magazine 13, 5 (1997), 

91-94. 
[3]. Dixit, Avinash K. and Pindyck, Robert S. Investment under Uncertainty 

(1994). Princeton University Press, New Jersey, USA. 
[4]. Faulkner, Terrence W. “Applying ‘Option Thinking’ to R&D 

Valuation.” Research Technology Management 39, 3 (1996), 50-56. 
[5]. Geske, Robert. “The Valuation of Corporate Liabilities as Compound 

Options,” Journal of Financial and Quantitative Analysis 12 (1977), 
541-552. 

[6]. Geske, Robert. “The Valuation of Compound Options.” Journal of 
Financial Economics 7 (1979), 63-81. 

[7]. Hamilton, James D. Time Series Analysis. Princeton University Press 
(1994). New Jersey, USA. 

[8]. Jensen, Kjeld and Warren, Paul. “The Use of Options Theory to Value 
Research in the Service Sector.” R&D Management 31, 2 (2001), 
173-180. 

[9]. Lint, Onno and Pennings, Enrico. “An Option Approach to the New 
Product Development Process: a Case Study at Phillips Electronics.” 
R&D Management 31, 2 (2001), 163-172. 

[10]. Majd, Saman and Pindyck, Robert S. “Time to Build, Option Value, and 
Investment Decisions.” Journal of Financial Economics 18, 1 (1987), 
7-27. 

[11]. McDonald, Robert and Siegel, Daniel. “The Value of Waiting to Invest.” 
Quarterly Journal of Economics 101 (1986), 707-728. 

[12]. Merton, Robert C., “Option Pricing When Underlying Stock Returns are 
Discontinuous.” Journal of Financial Economics 3 (1976), 125-144. 

[13]. Morgan, M. Granger and Henrion, Max. Uncertainty. Cambridge 
University Press (1990). Cambridge, UK.  

[14]. Nichols, Nancy A. “Scientific Management at Merck: an Interview with 
CFO Judy Lewent.” Harvard Business Review 72 (1994), 88-99. 

[15]. Peeters, Marga. “Investment Gestation Lags: the Difference between 
Time-to-Build and Delivery Lags.” Applied Economics 28 (1996), 
203-208. 

[16]. Pennings, Enrico and Lint, Ono. “The Option Value of Advanced R&D.” 
European Journal of Operational Research 103, 1 (1997), 83-94. 

[17]. Sender, Gary L. “Option Analysis at Merck.” Harvard Business Review 
72 (1994), 92. 

[18]. Trigeorgis, Lenos. “Valuing the Impact of the Uncertain Competitive 
Arrivals on Deferrable Real Investment Opportunities.” Working Paper, 
Boston University (1990). 

[19]. Turvey, Calum G. “Mycogen as a Case Study in Real Options,” Review 
of Agricultural Economics 23, 1 (2001), 243-264.  

[20]. Wang, Yungchih G. “Topics in Investment Appraisal and Real Options” 
PhD Thesis, Imperial College, University of London (2004). 

 
 
 
Dr. George Yungchih Wang received his PhD in Finance and Economics from 
Imperial College, University of London, UK, and his MBA from University of 
Connecticut, USA.  He is currently an assistant professor at National Kaohsiung 
University of Applied Sciences, Taiwan, and is also a visiting professor at 
University of Wisconsin, La Crosse, USA.  His major research area is in 
corporate finance, investment appraisal, and corporate governance.  
. 


