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Abstract—With demand for primary energy continuously 

growing, search for renewable and efficient energy sources has been 
high on agenda of our society. One of the most promising energy 
sources is biogas technology. Residues coming from dairy industry 
and milk processing could be used in biogas production; however, 
low efficiency and high cost impede wide application of such 
technology. One of the main problems is management and conversion 
of organic residues through the anaerobic digestion process which is 
characterized by acidic environment due to the low whey pH (<6) 
whereas additional pH control system is required. Low buffering 
capacity of whey is responsible for the rapid acidification in 
biological treatments; therefore alkali activated material is a 
promising solution of this problem. Alkali activated material is 
formed using SiO2 and Al2O3 rich materials under highly alkaline 
solution. After material structure forming process is completed, free 
alkalis remain in the structure of materials which are available for 
leaching and could provide buffer capacity potential. In this research 
porous alkali activated material was investigated. Highly porous 
material structure ensures gradual leaching of alkalis during time 
which is important in biogas digestion process. Research of mixture 
composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test 
the buffer capacity potential of alkali activated material. This 
research has proved that by changing molar ratio of components it is 
possible to obtain a material with different buffer capacity, and this 
novel material was seen to have considerable potential for using it in 
processes where buffer capacity and pH control is vitally important.  
 

Keywords—Alkaline material, buffer capacity, biogas 
production. 

I. INTRODUCTION 

IOGAS technology provides an alternative source of 
energy to fossil fuels in many parts of the world. Using 

local resources such as agricultural crop remains, municipal 
solid wastes, market wastes and animal waste, biomass and 
manure are derived by anaerobic digestion. The hydrolysis 
process, where the complex insoluble organic materials are 
hydrolysed by extracellular enzymes, is a rate-limiting step for 
anaerobic digestion of high-solid organic wastes. 

To ensure maximum yield of methane gas, environment 
with optimum conditions for microorganisms must be 
provided in the biogas reactors. Anaerobic treatment of 
substrates has therefore frequently encountered difficulties in 
maintaining stable operation [1], [2]. It is characterised by a 
very high organic load and low buffer capacity; consequently, 
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the direct anaerobic treatment of substrate can lead to rapid 
acidification which results in low biogas productivity [3]. As 
most of the substrates have low bicarbonate alkalinity and tend 
to acidify rapidly, supplemental alkalinity is required so as to 
avoid anaerobic process failure. Most microorganisms grow 
within a fairly narrow pH range, therefore pH adjustment is 
necessary to increase the yield of methane [1]. Novel material 
described in this paper belongs to the group of alkali activated 
materials (AAM) and deals with the complex solution for 
biogas technology; simultaneously it obtains properties 
appropriate for immobilisation of microorganisms in 
anaerobic reactors and pH adjustment over some time. 

The initial results showed that the alkaline materials, which 
have been introduced in the biogas digestion processes, 
increased methane potential up to 1.9–2.5 times compared to 
the manual pH controlled digestion process [4]. 

AAM are made by mixing solid aluminosilicate powders 
such as fly ash, blast furnace slag, or metakaolin with an 
alkaline activating solution. The reaction product or gel have a 
network structure similar to those of organic thermoset 
polymers, and thus the binders are sometimes called 
“inorganic polymers” or “geopolymers” [5]. The detailed 
chemistry of alkali activation is still the subject of much 
discussion in the scientific literature and depends on the nature 
of both the solid precursor and the alkali activator selected –
namely, on aluminosilicate systems activated with alkali metal 
hydroxide, silicate or solutions from both of them. 

Traditionally nature of the binder gel is determined mainly 
by the level of calcium available for the reaction. For example, 
a high-calcium alkali-activated binder (made of blast furnace 
slag) usually forms a primary binder phase of C–(A)–S–H gel 
that is amorphous to partially crystalline, relatively highly 
cross-linked, with a moderate degree of Al substitution and a 
low C/S ratio [6], [7]. Whereas lower levels of calcium in 
solid precursor lead to the presence of what is widely referred 
to as a “geopolymer” gel, which is a highly cross-linked 
aluminosilicate gel bearing strong nanostructural rebalance to 
zeolite frameworks but is generally lacking in long-range 
crystalline order [5], [8], [9]. 

Many authors have found that the product of activated 
metakaolin (activated with NaOH solutions) is N–A–S–H gel 
with good durability and mechanical properties [10]-[12]. The 
general formula for the reaction product is 
2SiO2·Al2O3·Na2O·2H2O [6]. When the activator is a NaOH 
and waterglass mix, the material formed also is amorphous 
and cementitious, but its structure and composition are 
different from the product formed when NaOH alone is used: 
the amorphous N–A–S–H gel has thus similar chemical 
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composition as natural zeolite materials but without the 
extensive crystalline zeolite structure [13],[14]. 

It has been reported that the formation of geopolymer gel is 
greatly dependent on the pH of activator and Si/Al ratio of 
solid precursor [15]-[18]. 

Analysis showed that dissolution of metakaolin and 
formation of new minerals occurred faster in the hydroxide-
activated geopolymer system, probably due to the high pH. 
The silicate activating solution is of lower pH, leading to a 
slower rate of reaction, and shows a strong signal attributed to 
unreacted aluminium in metakaolin particles early in the 
reaction process [9]. 

The complicating factor in the geopolymerization process is 
the general decrease in aluminium content of the materials 
with high calcium content. It would be expected that 
tetrahedral aluminium would remove alkali cations from the 
pore solution and incorporate them into the gel, as has been 
previously observed for metakaolin-derived alkali 
aluminosilicate (geopolymer) gels and for calcium 
aluminosilicate hydrate (C–A–S–H) gels [19]-[21]. 
Consequently, a decrease in the aluminium content of the 
binder would be expected to increase the amount of alkali 
remaining in the pore solution [22]. However, none of the 
studies showed a particularly strong correlation between 
dissolved Al and Na concentrations. Similar, the alkali content 
in the pore solution increase with the increase of alkali content 
in the activating solution. The increase is approximately 
proportional, with the exception of samples with very low 
alkali content (3wt.% Na2O) [22].  

The composition of the binder clearly has an important 
effect on the diffusion of alkali from geopolymers; in 
particular, the absence of calcium was important for increasing 
alkali mobility. Geopolymers containing significantly lower 
levels of calcium (i.e. metakaolin) appear to have 
approximately 10-fold higher effective diffusion coefficients 
than their high-Ca counterparts. It is apparent that the pore 
solution of thermally cured low-calcium geopolymers contains 
a high concentration of alkali metal cations; typically more 
than 500mM and in several cases greater than 1M [22]. Given 
the low concentration of aluminate and silicate counter-ions, it 
may be concluded that neutrality is maintained primarily by 
hydroxyl ions. This would provide the pore solution with a 
high pH and would be expected to be used for pH adjustment 
in the biogas reactors. 

Effect of mixture composition of the AAM was studied in 
this research. By changing Al2O3, SiO2 and Na2O source, 
AAM with different SiO2/Al2O3 and SiO2/Na2O ratios can be 
created. Buffer capacity as CaCO3 equivalent, namely, in mg 
per L solution per g of material (CaCO3eq mg/l/g) was 
studied.  

II. MATERIALS AND METHODS 

A. Materials 

Alkali activating technology provides the possibility to use 
wide group of alumina and silica rich materials as raw 
materials to create AAM. This technology allows reutilizing 

production waste materials, which makes the technology 
environmentally friendly. Secondary raw materials were used 
to create AAM in this research: waste metakaolin (MK), 
nonmetallic residues (NMR) from the aluminium scrap 
recycling factory and lead-silica glass (LSG) from fluorescent 
lamp recycling process. 

MK was obtained from expanded glass granule production 
plant in Lithuania, where kaolinite clay is used as a substance 
for anti-agglutination in the final stage of expanded glass 
granule production. During production MK was calcined at 
850°C for about 40-50minutes and fraction <0.25mm was 
sieved as MK powder.  

NMR from the aluminium scrap recycling factory was used 
as Al2O3source and pore creating agent. The exact chemical 
and mineralogical composition as well as other properties of 
NMR are provided in the previously published papers [23], 
[24]. 

The lead-silica glass (LSG) was obtained from fluorescent 
lamp recycling process, which includes lamp classification, 
glass separation, cleaning from harmful components and glass 
grinding.  

In order to increase homogeneity and fineness of NMR and 
LSG, both materials were ground for 30 minutes by using 
planetary ball mill Retsch PM 400. The chemical composition 
of MK, NMR and LSG is given in Table I. 

 
TABLE I 

CHEMICAL COMPOSITION OF RAW MATERIALS, WT% 

Chemical component NMR MK LSG 

Al2O3 63.19 51.7 1.03 

SiO2 7.92 34.4 68.07 

CaO 2.57 0.09 1.39 

SO3 0.36 - - 

TiO2 0.53 0.55 - 

MgO 4.43 0.13 - 

Fe2O3 4.54 0.53 0.19 

PbO -   20.02 

Na2O 3.84 0.63 8.02 

K2O 3.81 0.01 1.17 

Other 2.6 - 0.11 

LOI, 1000oC 6.21 12.1 - 

 
The AAM were prepared by using alkali activator solution 

(AAS) with silica modulus Ms 1.67. Alkali activators were 
prepared by using commercially available sodium silicate 
solution characterized by the silica modulus Ms3.22. To 
obtain alkali activation solution with the required chemical 
composition, the modification with an addition of sodium 
hydroxide was done. Commercially available sodium 
hydroxide flakes with 97% purity were used. 

B. Methods 

Physical properties of AAM, such as density, water 
absorbtion, open and total porosity, were determined in 
accordance with EN 1097-6 and EN 1097-7.  

Alkalinity is defined as a measure of the buffering capacity 
of water to neutralize acid. This capacity is attributed to bases 
that are present in natural waters including OH-, HCO3

-, and 
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Physical properties were measured and results are given in 
Table III. AAM density was in range from 346±17 to 
484±15 kg/m3 for mixtures with AAS-solid ratio >0.45. By 
increasing AAS-solid ratio material density decreased from9 
to 21%due to increased NMR activity under high alkaline 
solution. Less porous AAM with increased density were 
obtained from the mixture designs with AAS-solid ratio 0.30; 
and the material density was in range from 675 to 
797±20 kg/m3due to the lower activity of NMR. This could be 
explained by decreasing alkalinity in AAM mixture during 
activation and material forming process which retarded gas 
emission from NMR.  

Water absorption was affected by SiO2/Na2O ratio. Due to 
increased density of AAM samples with AAS-solid ratio 0.3, 
water absorption and porosity was lower comparing to the 
samples with AAS-solid ratio 0.45-0.75 

For samples S0-0.30 water absorption was 45±2.3%, 
Al2S1-0.3 – 42±1.2%, S1-0.3 - 58±1.8%, respectively. Open 
and total porosity for samples with AAS-S ratio 0.3 was 
31±1.1% and 73±0.5% for S0-0.3, 28±0.7% and 74±0.6% for 
Al2S1-0.3 and 29±1.1% and 80±1.7% for S1-0.3. By 
increasing AAS-solid ratio material porosity increased and 
reached 84±0.4 to 86±0.7% with ratio 0.75. By increasing 
AAS-solid ratio above 0.45, the porosity level has reached its 
maximum, consequently the physical properties being more 
similar among mixtures, which can be explained with reaching 
alkalinity limit, where the gas release from NMR was 
enhanced to maximum.  

Water absorbtion of AAM increased with AAS-solid ratio 
increase for mixture S0 and Al2S0. By increasing AAS-solid 
ratio from 0.30 to 0.75, water absorbtion increased from 
42±1.2 to 77±1.4%; however, open porosity decreased from 
31±1.1 to 27±1.7% and total porosity increased from 73±0.5 
to 86±2.1%. For mixture composition S1 water absorbtion and 
open porosity decrease was observed. This could be explained 
by the specific “glassy” phase of material with high SiO2/Al2O 
and Na2O/Al2O3. The limit of total porosity for all mixtures 
was 84±0.4 to 86±0.8%.  

B. pH Dynamics 

After immersion of the prepared samples in deionized water 
batches, material capabilities to control pH over time were 
measured. The obtained pH curves are given in Fig. 2. Fig. 2 
(a) represents pH changes over time for AAM contained NMR 

and MK(S0). The initial pH level in the first day of immersion 
increased from pH 10.5 (S0-0.30) to pH 11.79 (S0-0.75) 
together with the AAS-solid ratio increase from 0.30 to 0.75. 
Samples with AAS-solid ratio 0.45 to 0.75 provided almost 
linear pH decrease while in samples with lowest ratio S0-0.30 
pH decrease was logarithmic with rapid initial decrease. 

The final pH on deionized water in the batches where 
samples were immersed at 30thday was between 7.1 and 7.4. 
Similar tendency was observed for samples S1 and Al2S1. 
The initial pH after first day immersion in deionized water 
was in the range from pH 10.8 to 11.9and was slightly higher 
comparing to the mixture composition S0 (Fig. 2 (b) and (c)).  

This could be explained by higher Na2O content in mixture 
composition. The decrease of pH at the 30th day reached pH 
7.1 for S1-0.3 and pH 8.1 to 8.4 for mixture with AAS-solid 
ratio 0.45-0.75. After 30 days decrease for Al2S1 to pH 6.8 for 
AAS-solid ratio 0.3 and pH 8.3 for 0.60 and 0.75 respectively 
was observed. For sample with ratio 0.45 pH decrease to 7.6 
was observed (Fig. 2 (c)). The initial pH and final pH level 
could be contributed to the Na2O ratio in the mixture 
composition. The higher content of Na2O (Al2S1 and S1) was 
in the mixture, the higher initial and final pH was obtained. 
The decrease of final pH level indicates that alkalinity of all 
AAM has decreased and pH control limit has been reached.  

Therefore pH curves could be divided in two groups. First 
group of pH curves could be described by the logarithmic 
curve which expresses the changes of pH for AAM with AAS-
solid ratio 0.3. The average equation describing pH decrease 
could be expressed with equation  

 
1.0580 0.0461 · ln 10.8413 0.1380      (7) 

 
This low ratio provides reduced amount of free alkalis, 

therefore the initial pH was lower and decrease was noticeable 
at early test stage. pH decrease in the other group could be 
described with linear curve with average equation: 

 
0.1168 0.0123 · 11.2120 0.2794       (8) 

 
The decrease of pH was gradual during 30 days. This trend 

was characteristic for mixture compositions with AAS-S ratio 
from 0.45 to 0.75.  

 
TABLE III 

PHYSICAL PROPERTIES AND LEACHING OF AAM 

Property 
Results 

S0 S1 Al2S1 
AAS-solid ratio 0.30 0.45 0.60 0.75 0.30 0.45 0.60 0.75 0.30 0.45 0.60 0.75 

Density 700 418 408 346 797 453 433 410 675 484 404 383 

Water absorbtion, Wt% 45 67 67 77 58 58 52 51 42 58 66 69 

Open porosity, % 31 28 28 27 29 26 23 21 28 27 27 27 

Total porosity, % 73 84 84 86 80 82 83 84 74 81 84 85 

Carbonate alkalinity,CaCO3 eq ml/L/g 134 307 371 526 182 532 761 932 178 477 819 899 

Bi-Carbonate alkalinity,CaCO3 eq ml/L/g 298 311 315 270 329 219 210 200 276 227 237 218 

Total alkalinity,CaCO3eq ml/L/g 433 618 686 796 511 751 971 1132 454 704 1056 1117 

Weight loss after leaching, 30 days, % 13.7 10.4 8.1 5.6 7.9 9.5 14.1 20.3 7.1 8.0 11.3 12.7 
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(a) 
 

 

(b) 
 

 

(c) 

Fig. 2 pH dynamic curves during leaching test of AAM 

C. AAM Buffer Capacity 

The total alkalinity (TA) curves up to day 30 are given in 
Fig. 3. The TA curves provide continuous alkalinity increase 
during time and the amount of leached CaCO3eq strongly 
depends from mixture composition and AAS-solid ratio. The 
TA curves increase in the first day was highest for all samples 
with AAS-solid ratio 0.75. For mixture composition S0 alkali 
leaching for the first day was 99, 172, 236 and 281 CaCO3eq 
mg/l/g with regard to AAS-solid ratio from 0.30 to 0.75. The 
alkalis leached in the first day contained 23-35% from the 
total amount of leached alkalis. After the first day leaching of 
alkalis stabilizes for all S0 samples and the final TA reached 
433, 618, 686, 796 CaCO3eq mg/l/g at the age of 30 days (Fig. 
3 (a)). 
 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 3 Total alkalinity (TA) curves of AAM 
 

The maximum TA leaching was observed for the mixture 
composition S1 with the increased amount of Na2O in 
composition. At the first day 125, 238, 365 and 379 mg/l/g 
CaCO3eq was obtained or 25 to 38% from the total 
respectively. The final TA value was 511, 751, 971, 
1132 mg/l/g CaCO3 eq. TA curve for samples S1 is given in 
(Fig. 3 (b)). TA leaching increased from 118 to 142% 
comparing to S0. 

The samples Al2S1 provided leaching of 123, 221, 356 and 
388 mg/l/g CaCO3eq during the first day (27 to 35% from 
total), which was very similar to mixture composition S1, and 
increase, comparing to S0, was 105 to 154%. For samples 
Al2S1 the final TA value at the 30th day was 454, 704, 1056 
and 1116 mg/l/g CaCO3eq (Fig. 3 (c)). 
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Comparing Al2S1 and S1, the difference of TA leaching 
was from 1-12% which leads to the conclusion that amount of 
NMR in mixture composition does not affect leaching of 
alkalis dramatically but the main factor impacting the leaching 
capacity is LSG and AAS-S ratio. 

The results of CA are given in Fig. 4. The CA provides high 
initial pH value and high level of alkalinity of the solution.  

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 4 Carbonate alkalinity (CA) curves of AAM 
 

The CA leaching duration in the solution was affected by 
the Na2O content in the mixture. The effective leaching of 
carbonate alkalis for mixture design S0 and with AAS-solid 
ratio lasted for 7 days reaching 122 from total 134 mg/l/g 
CaCO3 eq. (91%). By increasing the AAS-solid ratio, duration 
of CA leaching could be increased up to 14 days when 517.5 

from 526 mg/l/g CaCO3 eq. (98%) was leached in solution for 
samples with AAS-solid ratio 0.75(Fig. 4a)).Mixture 
composition S1 provided the highest CA. Leaching of 
carbonate alkalis up to 21 days reached 912 from 932 mg/l/g 
CaCO3 eq (98% leached). Dramatic decrease of CA leaching 
was observed for mixture with AAS-solid ratio 0.30 
comparing with 0.75 respectively (Fig. 4 (b)). 
 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 5 Bi-carbonate alkalinity (BCA) curves of AAM 
 
Al2S1 samples were with similar CA results as S1. CA 

could reach 899 mg/l/g CaCO3eq at day 30 with AAS-solid 
ratio 0.75 while with 0.30 – 178 mg/l/g CaCO3 eq respectively 
(Fig. 4 (c)). 

The BCA contrary to the CA leached evenly in all testing 
period up to 30 days for all samples. The final BCA value 
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leached from samples is given in Fig. 5. The highest BCA was 
for samples S0. During testing period BCA was from 270-
315 mg/l/g CaCO3eq (Fig. 5 (a)). Samples S1 with AAS-solid 
ratio from 0.45 to 0.75 provided BCA from 200-219 mg/l/g 
CaCO3 eq, while with 0.30 BCA was significantly higher - 329 
mg/l/g CaCO3eq respectively (Fig. 5 (b)). 

The weight changes after alkalinity test was measured. It 
was detected that mass decreased for all specimens (Table III). 
For mixture design S0 weight loss was from 5.6-13.7%. The 
highest loss was for samples with AAS-solid ratio 0.3. For 
samples S1 weight loss was from 7.9 to 20.3% and for Al2S1 
from 7.1 to 12.7%. Samples with higher AAS-solid ratio lost 
more weight– 0.75. This could be explained by relatively high 
amount of leaching alkalis.  

V. CONCLUSION 

The leaching of alkalis in water was mainly affected by the 
AAS-S ratio and LSG additive in mixture composition with 
high SiO2/Al2O3 and Na2O/Al2O3.A physical property of 
AAM, such as open porosity, was a secondary aspect of 
leaching effect. High SiO2 and Na2O content ensures maximal 
leaching of alkalis in solution, while increased quantity of 
Al2O3limits alkali leaching. This could be contributed to the 
AAM structure formation, where Al2O3 is one of the key 
factors of creating AAM.  

By changing the mixture composition, material with 
different pH values and alkalinity could be created, which 
would be useful in biogas reactors, where pH level must be 
controlled during the anaerobic digestion process. By 
choosing proper mixture proportions and amount of AAM, the 
necessary pH value could be obtained to achieve the most 
efficient biomethane potential. 
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