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 
Abstract—The purpose of this paper is to examine gas transport 

behavior of mixed matrix membranes (MMMs) combined with 
porous particles. Main existing models are categorized in two main 
groups; two-phase (ideal contact) and three-phase (non-ideal contact). 
A new coefficient, J, was obtained to express equations for estimating 
effect of the particle porosity in two-phase and three-phase models. 
Modified models evaluates with existing models and experimental 
data using Matlab software. Comparison of gas permeability of 
proposed modified models with existing models in different MMMs 
shows a better prediction of gas permeability in MMMs. 

 
Keywords—Mixed Matrix Membrane, Permeation Models, 

Porous particles, Porosity. 

I. INTRODUCTION 

N the recent years, membrane-based gas separation is one of 
the challenging industries in the world. The main 

membrane-based separations are H2/CO2 separation for 
hydrogen production in fuel cells, CO2/N2 separation in flue 
gas or lime oven exhaust gases, CO2/CH4 separation for 
natural gas treatment or for biogas upgrading, and O2/N2 
separation for production oxygen enriched air or pure 
nitrogen. Membranes are categorized based on their structure, 
material, modules, which indicate that material category is 
important. Membranes are fabricated by different materials 
such as polymer, ceramic, carbon, metal, and liquid [1]-[8]. 

Different kinds of membranes were studied for gas 
separation, but polymeric membranes are the most common 
types used for gas separation, due to proper mechanical 
stability, processing capability, ease of operation and 
importantly economical cost [1]-[6].  

The main criteria of polymeric membranes are selectivity 
and permeability in the membrane-based separation. In Fig. 1, 
as can be seen, the comparison of different kinds of 
membrane; in addition, some limitations were observed in 
trade-off between permeability and selectivity of polymeric 
membranes at Robesson graph [1], [3], [7], [8]. 

To overcome the problem of trade-off between permeability 
and selectivity, inorganic tiny fillers dispersed in polymeric 
membranes were applied to improve properties of polymeric 
membranes. This new membrane called Mixed Matrix 
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Membrane (MMM). Fig. 2 shows a schematic of mixed matrix 
membrane with different shape of particles [1]-[11]. 

 

 

Fig. 1 Robesson graphs to compare different kinds of membranes for 
gas separation [9] 

 

 

Fig. 2 Schematic of a mixed-matrix membrane [9] 
 
MMMs are fabricated with different kinds of particles such 

as Carbon Molecular Sieve (CMS), activated carbon, silica, 
zeolits, nanoparticles and Metal Organic Framework (MOF) 
[12].  

Regarding the literature [1]-[22], MMM models are 
categorized in two-phase and three-phase morphologies. Two-
phase models are the first models in prediction of gas 
behavior, with assumption of ideal contact between particle 
&polymer and three-phase models are recommended based on 
weak interaction between particles and polymer matrix. 

In this paper, the main existing permeation models of 
MMMs are reviewed. Then, the effect of porosity of particles 
in gas permeation through MMMs was studied. The porosity 
coefficient modifies existing models in two separate equations 
for two-phase and three-phase morphology. Gas relative 
permeability of modified models is validated with 
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experimental data and calculated gas relative permeability of 
existing models by least square error and Matlab software. 

II. MODEL REVIEW 

According to the literatures [1]-[6], [12], [16]-[21], there is 
a variety of permeation models for MMMs. As it was 
mentioned before, the main models categorized in two groups 
which are two-phase (particle-polymer) and three-phase 
(particle-interfacial layer-polymer in Table I. 

Two-phase models are based on ideal contact between 
polymer and dispersed phase. The two-phase models which 

were considered are Maxwell, Bruggeman, Lewis-Nielsen, 
Pal, Chiew-Galandt, Bottcher, and Higuchi. In Three-phase 
models is considered a non-ideal contact and poor adhesion 
between particle and polymer. It can cause three defects; 
formation of a rigidified polymer layer around inorganic 
fillers, pore blockage in porous particles or creation of voids 
between polymer and particle. Therefore, it was assumed to 
consider an interfacial layer between polymer matrix and 
dispersed phase in three-phase models [1]-[6], [14]. Models of 
Modified Maxwell, Felske, Modified Felske and modified Pal 
are in categorization of three-phase models.  

 
TABLE I 

SUMMARY OF MAIN EXISTING PERMEATION MODELS FOR MMMS [1]-[24] 

Model Base of model Morphology Authors  
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Electrical conductivity Three  Modified Maxwell [14],[23]  
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Thermal conductivity Three  Modified Pal [1],[3]  

 

III. INVESTIGATION OF PARTICLE POROSITY IN MMM 

MODELS 

MMMs fabricated of polymer matrix and inorganic 
particles for improvement polymeric membrane properties. 
Dispersed particles in polymeric matrix are categorized in two 
groups; porous and dense (non-porous) particles. In prediction 
of gas permeability in MMMs, Existing models has been 
proposed without considering particle porosity (J coefficient). 
J coefficient is a new factor which introduces to correct effect 
of loading particles in MMMs. According to the researches, 
MMMs fabricated with porous particles enhanced selectivity 
and permeability compare to the MMM with non-porous 
particles [1].The reason is that porosity in the gas transport not 
only decreases resistance through membrane, but also 
increases separation or selectivity of the gas based on porosity 
of the particles in the matrix [8], [22], [24]. 

Molecular sieving is the basis of separation in MMMs with 
porous particles. It should be notified that the number of 
particle pores is effective to calculate real gas permeability 
through membrane.  

J coefficient is studied to modify mathematical models for 
MMMs. J coefficient is defined based on particle porosity in 

two-phase and three-phase models in (1) and (2) respectively. 
(ε is porosity percentage of particles) 

 
                                      J=2-1/ε                                          (1)  

 
J=2-ε                                             (2) 

 
In two-phase models, no defect is presumed in contact 

between particle and polymer. This assumption leads to gas 
permeability with higher error against three-phase models. 
This coefficient applies the effect of the interfacial layer in 
calculations. There is some superiority for modifications of the 
existing models by this method. One of the most important 
privileged criteria is that estimating experimental parameters 
such as interfacial layer permeability, thickness, chain 
immobilization factor, and permeability reduction factor are 
not essential to calculate gas permeability. However, 
measurements or estimating of these parameters in three-phase 
models are needed. But, usage of J coefficient in (1) helps to 
estimate precisely gas permeability in existing two-phase 
models. Fast and easy estimations in industrial applications are 
another advantage of modification by this method. 
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Based on three-phase morphology the effects of three 
defects shall be considered in three-phase modeling. These 
three defects are sieve in a cage, rigidified polymer layer and 
pore blockage. However, permeability of interfacial layer in 
several three-phase models included Felske and modified 
Felske, is estimated based on the worst cases, i.e. 
regidification layer and pore blockage, and It is obvious the 
effect of sieve in a cage and leaky case is not investigated in 
these models. Therefore, gas permeability in mentioned 
existing three-phase models is calculated lower than 
experimental observations. In the modified models by 
applying the correction of filler loading percentage in (2), the 
effect of sieve in a cage and leakage in interphase considered.  

Modified models are reported in Table II. In this table all 
the existing permeation models modified with J coefficient. 

 
TABLE II 

 IMPROVEMENT OF EXISTING MODELS WITH J COEFFICIENT 

coefficient JModified Models with  Model  
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 Modified Felske [1]-[3]

This model considered influence of three status of 
non -ideal contact morphology in modeling MMM. 
Therefore,J coefficient factor is not essential to be 

used. 

Modified Maxwell [14], 
[23] 

This model considered influence of three status of 
non -ideal contact morphology in modeling MMM. 
Therefore,J coefficient factor is not essential to be 

used. 

Modified Pal [1], [3] 

IV. VALIDATION 

Validity of proposed Modified models has been evaluated 
by least square method and compared with experimental data 
and existing permeation models; Maxwell, Bruggeman, 
Lewis-Nielsen, Pal, Cheiw-Galandt, Bottcher, Felske and 
modified Felske. The experimental data of MMMs which are 
used in this paper [3] are Matrimid-5218 matrix filled with 
CMS for separation CO2/CH4 in 0.17, 0.19, 0.33, 0.36 filler 
loading percentage, Matrimid-5218 filled with CMS for 
separation O2 of O2/N2 in 0.19, 0.33, 0.36 filler loading 
percentage, BAPD-BPADA filled with Zeolit4A for 
separation O2 of O2/N2 in 0.15, 0.2, 0.3, 0.4 filler loading 
percentage, PVAC filled with Zeolit4A for separation O2 of 
O2/N2 , in 0.15, 0.25, 0.4 filler loading percentage . 

For an illustration for two-phase models, in Fig. 3, gas 
relative permeability of proposed modified model of Maxwell, 
Chiew-Galant, Lewis, Burggman and Pal have been compared 
with existing models. As can be seen in Fig. 3, modified 
models with considering particle porosity have better 

anticipation of gas relative permeability compare to existing 
models. 

 

  
Fig. 3 Comparison of relative permeability CO2 ofCO2/CH4 

composition at Matrimid/CMS of existing two-phase models and J-
modified models with 80% porosity  

 
In Fig. 4, it can be seen an instance for three-phase model. 

The gas relative permeability of proposed three-phase model 
of Felske has been compared with the relative permeability of 
existing model. It can be observed, the modified models with 
considering particle porosity in their formula has a better 
prediction of gas relative permeability compare to existing 
models. 

 

 
Fig. 4 Comparison of relative permeability O2 of O2/N2 composition 

at PVAC/Zeolit4A of existing three-phase models and J-modified 
models with 60% porosity 

 
In Fig. 5, proposed modified model have been compared to 

two-phase and three-phase existing models by least square 
error values. To be more specific, among the modified models 
Chiew-Galandt and modified Felske are the best models for 
prediction of gas behavior through this MMM.  

In Figs. 6-8 also proposed modified models were checked 
versus existing models and experimental data, the results are 
similar to the gas behavior observed in Fig. 5.  

Overall, not only relative permeability error of modified 
models are dramatically less than existing two-phase models, 
but also three-phase models have a better prediction compare 
to two-phase models. Consequently, with considering the 
influence of effective porosity of particles in gas permeability 
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j  counter 
m  polymer matrix 
r  relative 
S   inorganic phase in the combined inorganic and interphase phase 
1,2 penetrant gas through membrane 
c  refer to permeability of a penetrant in the continuous phase c 
d  refer to permeability of a penetrant in the disperse phase  
eff  refer to permeability in the composite membrane 
l  membrane thickness 
P   permeability 
δ  interphase thickness 
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