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The Effect of Correlated Service and
Inter-arrival Times on System Performance

Gang Uk Hwang

Abstract—In communication networks where communica-
tion nodes are connected with finite capacity transmission links,
the packet inter-arrival times are strongly correlated with the
packet length and the link capacity (or the packet service time).
Such correlation affects the system performance significantly,
but little attention has been paid to this issue. In this paper,
we propose a mathematical framework to study the impact of
the correlation between the packet service times and the packet
inter-arrival times on system performance. With our mathemat-
ical model, we analyze the system performance, e.g., the unfin-
ished work of the system, and show that the correlation affects
the system performance significantly. Some numerical exam-
ples are also provided.

Keywords—Performance analysis, Correlated queueing sys-
tem, Unfinished work, PH-type distribution, Communication
system.

I. INTRODUCTION

IN communication networks where communication nodes are
connected with finite transmission capacity links, the packet

inter-arrival times depend on both the packet length and the link
capacity. For instance, consider a link of transmission capac-
ity τ , connecting two nodes. The link can not send more than
τ ×T amount of packets during a time period of length T . Con-
sequently, large packets need more service times (i.e., transmis-
sion times) than short packets and the inter-arrival times of large
packets are longer than those of short packets. Such correla-
tion between the packet service times and the packet inter-arrival
times affects the system performance, but most studies have not
paid their attention to this issue.

To study the impact of the correlation between the packet ser-
vice times and the packet inter-arrival times on system perfor-
mance, we consider two nodes, say, node 1 and node 2, com-
municating with each other through a finite capacity link. Node
1 generates a packet and transmits the packet to node 2 after
its generation. So, the packet arrival process at node 2 can be
modelled by an alternating renewal process having two types of
periods, say packet generation times and packet service times.
Packet generation times capture the times needed for generat-
ing new packets at node 1 and packet service times capture the
packet transmission times at node 1 through the link. Since node
2 can service an arriving packet after it receives the last bit of
the packet, we assume that packet arrivals occur at node 2 at the
ends of packet service times. Since an inter-arrival time of two
consecutive packets consists of a packet generation time and a

G.U. Hwang is with Division of Applied Mathematics and Telecommuni-
cation Program, Korea Advanced Institute of Science and Technology, 373-
1 Kuseong-dong, Yuseong-gu, Taejon, 305-701, South Korea (E-mail: guh-
wang@amath.kaist.ac.kr)

packet transmission time, there is a positive correlation between
the packet inter-arrival times and the packet service times. In or-
der to attain the generality of our model, we assume that packet
generation times are according to a PH-type distribution and
packet service times are according to a general distribution. In
analysis, we consider a queue in node 2 which accommodates
packets from node 1 and has the same service capacity as the
link between node 1 and node 2 (i.e., node 1 and node 2 have
the same service capacity). We construct a discrete time Markov
chain and analyze the performance of the queue, e.g., the unfin-
ished work of the queueing system. Based on our analysis, we
provide some numerical results to see the impact of the corre-
lated service and inter-arrival times on system performance. Our
numerical results show that the correlation significantly affects
the system performance.

Earlier works related to this issue are found in [1], [2] and the
references therein. In [1] they considered a system with Poisson
arrivals, where the service time Bn of the nth packet is propor-
tional to the inter-arrival time An between the n − 1st and nth
packets, i.e., Bn = ζAn where ζ is a positive constant. They
obtained the LST (Laplace Stieltjes Transform) for the system
time, defined by the waiting time in the queue plus the service
time, by solving a linear functional equation [3] derived from
the evolution equation of the system time. However, they only
consider the case of ζ �= 1 due to the technical difficulties asso-
ciated with the solution of the functional equation.

There are some other earlier works [4], [5], [6], [7] based on
fluid flow models with regard to the issue, where they consid-
ered the correlation between inter-arrival and service times by
assuming that the work in the queue is continuously removed.
However, as illustrated in [1] fluid flow models do not account
for the granularity of the arrival and service processes and hence
result in inaccuracy in predicting the system performance.

Recently, Hwang and Sohraby [8] considered a correlated
queue in an ATM-based MPLS system where the packet gen-
eration times are according to a geometric distribution, and an-
alyzed the buffer size distribution of the system. They [9] also
analyzed a correlated queue which is an extension of the queue
considered in [1]. This paper is an extension of the correlated
queue considered in [8], where we use the PH-type distribution
for the packet generation time and a general distribution for the
packet service time. So, from the analysis of our model we see
that the effect of the packet generation time distribution as well
as the effect of the correlated service and the inter-arrival times
on system performance, which is a contribution of this paper.

The rest of the paper is organized as follows. In section II
we model our system mathematically and analyze it to see the
impact of the correlation between the packet service times and
the packet inter-arrival times on system performance, e.g., the
unfinished work. Some numerical examples are provided. We
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give conclusions in section III.

II. SYSTEM MODELLING AND ANALYSIS

For two communication nodes, say node 1 and node 2, com-
municating through a finite capacity link, we assume that node 1
generates packets and sends them to node 2 through the link. We
consider a queue in node 2 which accommodates packets from
node 1 and has the same service capacity as the link between
node 1 and node 2 (i.e., node 1 and node 2 have the same service
capacity). To model the queue mathematically, we assume the
following: Time axis is divided into slots of fixed size ∆t. The
packet arrival process is according to an alternating renewal pro-
cess having two types of periods, say, packet generation times
and packet service times. As mentioned before, packet genera-
tion times capture the times needed for generating new packets
at node 1 and packet service times capture the packet transmis-
sion times at node 1 through the link. So, a packet inter-arrival
time at our system consists of a packet generation time and a
packet service time and our system has a packet arrival at the
end of each packet service time.

Packet service times are assumed to be according to a general
distribution with Probability Generating Function (PGF) P (z)
as follows:

P (z) =
M∑
i=1

aiz
i,

where ai denotes the probability that a packet service time is of
length i (slots), 1 ≤ i ≤ M < ∞. Here, M is a fixed num-
ber. Even though we assume a discrete probability distribution
for the packet service times, a discrete probability distribution
can be used as an approximation of the continuous packet ser-
vice times by taking ∆t as small as possible. We further assume
that the packet service times are independent and identically dis-
tributed (i.i.d.).

Packet generation times are assumed to be according to a dis-
crete time Phase type distribution (PH type distribution) [10]. A
discrete time PH type distribution is defined by considering an
m + 1 state Markov chain with transition probability matrix of
the form ∣∣∣∣T T0

0 1

∣∣∣∣ , (1)

where T is a substochastic matrix, such that I−T is nonsingular,
and T0 is a column vector satisfying Te + T0 = e. Here, e is
a column vector all of whose elements are equal to 1.

The state space of the Markov chain is given by
{1, · · · , m,m + 1} and the first m states are called tran-
sient states and the last state m + 1 is called an absorbing
state. The initial probability vector is (α, αm+1) where α =
(α1, · · · , αm). Then, the discrete time PH type distribution is
defined by the distribution of time until absorption in the fi-
nite Markov chain defined in (1). For analysis, we assume that
αm+1 = 0 and T + T0α is an irreducible matrix for conve-
nience. We use J(t) to denote the state of the finite Markov
chain defined in (1) at time t. In addition, Tij and T 0

i denote
the (i, j)-th element and the i-th element of the matrix T and
the column vector T0, respectively. It is worthwhile to mention
that any general distribution can be approximated by a PH type
distribution arbitrarily closely. For more details, refer to [10].

To model our system mathematically, we further assume the
following:
i) state transitions of the Markov chain in (1) occur at slot
boundaries.
ii) Whenever the Markov chain in (1) visits the absorbing state
m + 1 at time, say, t1, it makes a transition to state i ∈
{1, · · · ,m} immediately with probability αi at time t1. That
is, we have J(t1) = m + 1 and J(t+1 ) = i. Moreover, the
current packet generation time ends at time t1 and the service
time of the generated packet begins at time t+1 . In this case, we
say that a packet service time with state i begins at time t+1 for
convenience.
iii) When a packet service time begins, the Markov chain in (1)
stops its evolution until the packet service time ends. That is,
there is no state change of the Markov chain in (1) during packet
service time periods.
iv) When a packet service time with state i ends at time, say t2,
the Markov chain in (1) evolves again, so that it takes either a
new transient state j (i.e., J(t2) = j) with probability Tij , 1 ≤
j ≤ m or the absorbing state m + 1 immediately (i.e., J(t2) =
m+1) with probability T 0

i . If the new state is one of the transient
states {1, · · · ,m}, then a new packet generation time (of length
greater than 0) begins at time t2. If the new state is the absorbing
state m + 1, then we assume that we have a packet generation
time of length 0. So, as described in ii) it makes a transition to
a new state j ∈ {1, · · · ,m} immediately (i.e., J(t+2 ) = j) with
probability αj at t2, and a new packet service time begins at t+2 .

Now we are ready to analyze our system to get the unfin-
ished work of the system in steady state. Here, the unfinished
work at time t is defined by the total amount of time needed
for the system to service all the packets in the system at time t.
In order to analyze our system, we first construct an embedded
Markov chain by taking the ends of the slots in packet genera-
tion times and the ends of packet arrival slots as our embedded
points. Here, the packet arrival slot denotes the last slot of the
packet service time. Refer to Fig. 1. We define the following
two random variables:
Xn := the unfinished work of the system at the n-th embedded

point
An := the service time of the packet arriving just before the

n-th embedded point.
We first obtain the evolution equation for the random variable

Xn. If there is no packet arrival just before the n-th embedded
point, i.e., the n-th embedded point is the end of a slot in a packet
generation time, we have An = 0. If there is a packet arrival just
before the n-th embedded point, i.e., the n-th embedded point is
the end of a packet arrival slot, the (conditional) PGF of An

is given by P (z). Note that, since we assume that the service
capacities of node 1 and node 2 are equal, the service time An

of a packet at node 2 also has P (z) as its PGF. Accordingly, it is
easy to show that {Xn} has the following evolution equations:

Xn+1 =

⎧⎨
⎩

An+1, if Xn < An+1 and An+1 > 0,
Xn, if Xn ≥ An+1 and An+1 > 0,

(Xn − 1)+, if An = 0.
(3)

Next, for analysis we introduce a discrete time embedded
Markov chain {Jn} with state space {1, · · · ,m}, defined by

Jn
∆= J(s+

n ) where sn is the n-th embedded point. Then, Jn
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Fig. 1 Packet arrival process

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T T0αa1 T0αa2 T0αa3 · · · T0αaM−1 T0αaM

T T0αa1 T0αa2 T0αa3 · · · T0αaM−1 T0αaM

0 T T0α
∑2

n=1 an T0αa3 · · · T0αaM−1 T0αaM

0 0 T T0α
∑3

n=1 an · · · T0αaM−1 T0αaM

...
...

...
...

. . .
...

...
0 0 0 0 · · · T0α

∑M−1
n=1 an T0αaM

0 0 0 0 · · · T T0α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

denotes the state of the Markov chain in (1) just after the n-th
embedded point sn. Note that the transition probability matrix
of {Jn } is given by the irreducible matrix T + T0α. Then, it is
easy to show that a sequence {(Xn, Jn)} is a Markov chain with
state space [0,M ] × [1,m] and it has the transition probability
matrix given in (2).

Since {(Xn, Jn)} is irreducible with a finite state space, the
steady state probability vector for the Markov chain {(Xn, Jn)}
exists [11]. Introduce vectors πk, 0 ≤ k ≤ M , defined by

πk = (πk1, · · · , πkm),
πkl = lim

n→∞P{Xn = k, Jn = l}, 1 ≤ l ≤ m.

From (2) we have the following balance equations:

π 0 = π0T + π1T (4)

πn = π0T0αan + π1T0αan + · · · + πn−1T0αan

+πnT0α
n∑

i=1

ai + πn+1T, 1 ≤ n ≤ M − 1, (5)

πM = π0T0αaM + π1T0αaM + · · ·
+πM−1T0αaM + πMT0α.

For analysis, we introduce qk, 0 ≤ k ≤ M , defined by

qk =
k∑

n=0

πn.

Then, from (4) and (5) we obtain, for 1 ≤ k ≤ M − 1

qk = π0T + π1T +
k∑

n=1

n−1∑
j=0

πjT0αan

+
k∑

n=1

πnT0α
n∑

i=1

ai +
k∑

n=1

πn+1T

=
k−1∑
j=0

k∑
n=j+1

πjT0αan +
k∑

n=1

πnT0α

n∑
i=1

ai

+
k+1∑
n=0

πnT

=
k∑

n=0

πn

(
T0α

k∑
i=1

ai + T

)
+ πk+1T

= qk

(
T0α

k∑
i=1

ai + T

)
+ πk+1T. (6)

Without loss of generality we may assume
∑k

i=1 ai < 1 for
1 ≤ k ≤ M − 1. Consequently, we have

0 ≤ T0α
k∑

i=1

ai + T < T0α + T.

By the irreducibility of the matrix T + T0α, the spectral radius
of T + T0α

∑k
i=1 ai is less than 1 (see Chapter II, Corollary

2.2 in [12]), which guarantees the invertibility of the matrix I−
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T − T0α
∑k

i=1 ai. Therefore, from (6) we obtain

qk = πk+1T

[
I − T − T0α

k∑
i=1

ai

]−1

, 1 ≤ k ≤ M−1. (7)

Observe that qM−1 + πM = z where the row vector z satisfies

z(T + T0α) = z, ze = 1. (8)

Then, we have

z = qM−1 + πM

= πMT

[
I − T − T0α

M−1∑
i=1

ai

]−1

+ πM

= πM

[
I − T0α

M−1∑
i=1

ai

][
I − T − T0α

k∑
i=1

ai

]−1

.(9)

By a similar argument given above, we can also show the
invertibility of the matrix I−T0α

∑k
i=1 ai for 1 ≤ k ≤ M −1.

Therefore, from (9) we obtain

πM = z

[
I − T − T0α

M1∑
i=1

ai

][
I − T0α

M−1∑
i=1

ai

]−1

. (10)

Since the probability vector z can be obtained from (8), we can
also obtain πM from the equation (10). In addition, From (5)
and the following equation

qM−1 = z − πM , (11)

we get, for 1 ≤ n ≤ M − 1,

πn =
n−1∑
k=0

πkT0αan + πnT0α

n∑
i=1

ai + πn+1T

= qnT0αan + πnT0α

n−1∑
i=1

ai + πn+1T.

Hence, we finally get

πn =
[
qnT0αan + πn+1T

]
×

[
I − T0α

n−1∑
i=1

ai

]−1

, (12)

qn−1 = qn − πn. (13)

Starting from πM and qM−1 given in (10) and (11), respec-
tively, we can compute πn and qn−1 from (12) and (13) itera-
tively for 1 ≤ n ≤ M − 1.

The next step is to find the distribution of the unfinished
work at a packet arrival slot in steady state. For doing this,
we introduce a random variable X to denote the unfinished
work in the system at an embedded point in steady state, i.e.,
P{X = n} = πne. Similarly, we introduce a random variable
U to denote the unfinished work in the system at a packet arrival

slot. Then, it is easy to show that the probability that U = n is
given by

P{U = n} =
πnT0∑M

k=0 πkT0
.

Now we compute the distribution of V , the unfinished work
in the system at a packet arrival slot, including the service time
of the newly arriving packet. Since U is the unfinished work in
the system seen by a newly arriving packet, the distribution of
V can be computed from

P{V = k} =
k−1∑
n=0

P{U = n}ak

+P{U = k}
k∑

i=1

ai, k ≥ 1. (14)

Note that we can determine the buffer size of the system with
certain level of packet loss probability based on the distribution
of V .

We end this section with some numerical results based on our
analysis. In the numerical study, we use actual measured data for
the packet service time, denoted by S. The data for the packet
size distribution was obtained from [13]. In [13] the packet size
data is given in bytes, so we should convert the packet size in
bytes into its corresponding service time. Here, we assume that
the link capacity is 48 × 8 Mbps and ∆t = 10−6, and conse-
quently, a segment of 48 bytes are serviced in each slot of length
∆t. The resulting distribution of the service time is given in Fig.
2.

To see the impact of the correlated service and inter-arrival
times on system performance, e.g., the unfinished work, we con-
sider a geometric distribution for the packet generation times,
denoted by G, as follows:

P{G = k} = (1 − p)kp, k ≥ 0.

In addition, for the comparison purpose we consider the corre-
sponding GI/GI/1 queue having inter-arrival time G+S and the
packet service time S. We compute the unfinished works for our
system and the corresponding GI/GI/1 queue in cases of p = 0.1
and p = 0.3, and plot the resulting complementary distributions
P{U > n} in Fig. 3 on a log scale. As seen in the figure, the
unfinished work distributions with and without the correlations
are far away from each other. Moreover, the means and vari-
ances are different for both systems: When p = 0.3 the mean
and variance of our system are 18.112 and 93.332, respectively,
while the mean and the variance of the corresponding GI/GI/1
queue are 37.050 and 2066.001, respectively. Therefore, from
our observation we see that the correlation plays an important
role in system performance.

To see the effect of the packet generation time distribution
on the performance of our correlated system, we consider the
following mixture of geometric distributions for the packet gen-
eration time:

P{G = k} =
m∑

i=1

ci(1 − qi)kqi, k ≥ 0,
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where 0 < qi < 1, 0 ≤ ci ≤ 1 and
∑m

i=1 ci = 1. Then PH type
representation of the distribution is as follows:

T =

⎛
⎜⎜⎜⎜⎜⎝

1 − q1 0 0 · · · 0 0
0 1 − q2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 − qm−1 0
0 0 0 0 · · · 1 − qm

⎞
⎟⎟⎟⎟⎟⎠ ,

T0 =

⎛
⎜⎜⎜⎜⎜⎝

q1

q2

...
qm−1

qm

⎞
⎟⎟⎟⎟⎟⎠ ,α = (c1, · · · , cm).

In the numerical computation, we change the mean E[G] of
the packet generation time distribution and examine the behav-
iors of the mean and the variance of the unfinished work at a
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Fig. 5. The effect of E[G] on the variance of the unfinished work

packet arrival slot. We use m = 2, q1 = 10/11, q2 = 1/11
and α̃ = (β, 1 − β). We change the value of β from 0.1 to
0.95, so that the value of E[G] changes from 9.01 to 0.595. The
results are given in Fig. 4 and Fig. 5. As seen in the figure,
the mean of the unfinished work is decreasing as the expected
packet generation time is increasing. On the other hand, the
variance of the unfinished work is increasing as the expected
packet generation time is increasing. Next, to see the effect of
the packet generation time distribution on the unfinished work,
we also plot the mean and the variance of the unfinished work
when we have a geometric distribution having the same mean
E[G] for the packet generation time distribution. The results are
also plotted in Fig. 4 and Fig. 5. As seen in the figures, the
distribution of the packet generation time also affects system
performance.
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III. CONCLUSION

The main contribution of this paper is to propose a mathemati-
cal framework to study the impact of the correlation between the
packet service times and the packet inter-arrival times on system
performance. In order to attain the generality of our mathemat-
ical model, we use the PH-type distribution for the packet gen-
eration times and a general distribution for the packet service
times.

With our framework we have analyzed the system perfor-
mance, e.g., the unfinished work of the system and have shown
that the correlation considered in this paper affects the system
performance significantly.

ACKNOWLEDGMENTS

The author would like to thank Prof. Khosrow Sohraby at
University of Missouri - Kansas City for his valuable comments
on the first draft of this paper. This work was supported by the
Korea Research Foundation Grant funded by the Korea Govern-
ment (MOEHRD) (KRF-2005-003-C00022).

REFERENCES

[1] I. Cidon, R. Guerin, A. Khamisy, and M. Sidi, “Analysis of a Correlated
Queue in a Communication System”, IEEE Transactions on Information
Theory, Vol. 39, No. 2, pp. 456–465, 1993.

[2] I. Cidon, R. Guerin, A. Khamisy, and M. Sidi, “On queues with interarrival
times proportional to service times”, Proceeding of INFOCOM ’93.

[3] M. Kuczma, B. Choczewski and R. Ger., Iterative Functional Equations,
Encyclopedia of Mathematics and its Applications, Cambridge University
Press, Cambridge, 1990.

[4] D. Anick, D. Mitra, and M.M. Sondhi, “Stochastic theory of a data-
handling system with multiple sources,” Bell System Tech. J., Vol. 61, pp.
1871-1894, 1982.

[5] A.I. Elwalid, D. Mitra, and T.E. Stern, “Statistical multiplexing of Markov
modulated sources: Theory and computational algorithms,” Proc. 13th Int.
Teletraffic Cong., Copenhagen, pp. 495–500, 1991.

[6] D. Mitra, “Stochastic theory of a fluid model of producers and consumers
coupled by a buffer,” Advances in Applied Probability, Vol. 20, pp. 646–
676, 1988.

[7] T.E. Stern and A.I. Elwalid, “Analysis of separable Markov-modulated
models for information-handling systems,” Advances in Applied Proba-
bility, Vol. 23, pp. 105–139, 1991.

[8] G.U. Hwang and K. Sohraby, “Modelling and Analysis of a Buffer in an
ATM-based MPLS LER System,” Proceeding of Globecom 2002, CQRS-
06-3, Taipei, Taiwan, 2002.

[9] G.U. Hwang and K. Sohraby, “Performance of Correlated Queues: The
Impact of Correlated Service and Inter-arrival Times,” Performance Eval-
uation, Vol. 55, No. 1-2, 129-145, 2004.

[10] M.F. Neuts, Matrix Geometric Solutions in Stochastic Models: An Algo-
rithmic Approach, Johns Hopkins University Press, 1981.

[11] S. Asmussen, Applied Probability and Queues, John Wiley and Sons,
1987.

[12] H. Minc, Nonnegative Matrices, John Wiley & Sons, Inc., 1988.
[13] WAN packet Size Distribution, [Online], Available WWW:

http://www.nlanr.net/NA/Learn/packetsizes.html.

Gang U. Hwang received the B.S., M.S., and Ph. D. de-
grees in Mathematics (Applied Probability) from KAIST, Tae-
jeon, Republic of Korea, in 1991, 1993 and 1997, respectively.

From February 1997 to March 2000, he joined Electronics
and Telecommunications Research Institute (ETRI), Taejeon,
Republic of Korea, where he was a senior member of research
staff. From March 2000 to February 2002, he was at the School
of Interdisciplinary Computing and Engineering in University of
Missouri - Kansas City as a visiting scholar. Since March 2002,
he has been with Division of Applied Mathematics at KAIST,

where he is an Associate Professor. His research interests in-
clude teletraffic theory and traffic engineering issues for next
generation communication networks.


