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The Dividend Payments for General Claim Size
Distributions under Interest Rate

Li-Li Li, Jinghai Feng and Lixin Song

Abstract— This paper evaluates the dividend payments for general
claim size distributions in the presence of a dividend barrier. The
surplus of a company is modeled using the classical risk process
perturbed by diffusion, and in addition, it is assumed to accrue interest
at a constant rate. After presenting the integro-differential equation
with initial conditions that dividend payments satisfies, the paper
derives a useful expression of the dividend payments by employing
the theory of Volterra equation. Furthermore, the optimal value of
dividend barrier is found. Finally, numerical examples illustrate the
optimality of optimal dividend barrier and the effects of parameters
on dividend payments.

Keywords— Dividend payout, Integro-differential equation, Jump-
diffusion model, Volterra equation

I. INTRODUCTION

In this paper, we assume an insurance company faces
two types of risk: one is a Poisson risk representing large
movements due to claims and the other is a Brownian risk
signifying the uncertainty to premium income or additional
uncertainty to aggregate claims. We describe the risk process
without dividends or investments as a classical risk process
perturbed by diffusion

Ut = x + μt + σWt −
N(t)∑
i=1

Yi, t ≥ 0.

Here x ≥ 0 is the initial surplus, μ > 0 is the rate at which
the premium is received and σ > 0 is the volatility of the cash
flow. {N(t)}t≥0 is a Poisson process with parameter λ > 0,
denoting the total number of claims up to time t. The claim
sizes Yi independent of {N(t)}t≥0 and the Brownian motion
{Wt}t≥0 are positive i.i.d. random variables with common
distribution function P (x), density function p(x), and finite
moment EY .

We now enrich the model. We allow the surplus to accrue
interest at a constant rate δ ≥ 0, and assume that dividends
are paid to the shareholders according to “barrier strategy”,
i.e., there is a horizontal barrier of level b ≥ 0 such that when
the surplus reaches level b, the “overflow” will be paid as
dividends. Let Xb(t) be the modified surplus process with
initial surplus Xb(0−) = x under the above barrier strategy,
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and given by

dXb(t) = (μ + δXt−) dt + σdWt − d
N(t)∑
i=1

Yi − dLt,

Xb(0−) = x,

(1)

where Lt is the cumulative amount of dividends paid by time
t. Then the total expected present value of dividends with
discount factor ρ ≥ 0 and initial surplus x equals

Vb(x) = E[
∫ τb

0

e−ρtdLt],

where τb := inf {t ≥ 0, Xb(t) ≤ 0} is the bankruptcy time.
To simplify notation we define Vb(x) = 0 for x < 0. It is
clear that Vb(x) is an increasing function of x.

Dividend payments provide an opportunity of profit par-
ticipation for the shareholders of an insurance company. The
barrier strategy considered in this paper was initially proposed
by De Finetti [4] for binomial models and more general barrier
strategies have been studied in many papers, e.g., [1], [3], [5],
[6], [7], [9].

Paulsen and Gjessing [11] obtained the formulation of
dividend payments using confluent hypergeometric function.
They got the formula in the special case that interest rate
is constant and surplus process is compound Poisson with
exponentially distributed claims. Li [8] studied the problem in
risk process (1) without interest rate. He got the explicit solu-
tion of dividend payments when claim sizes are exponentially
distributed. Although these elegant results on formulation
for special distributions have been obtained, few results for
general cases have been given in the past studies.

It is necessary to discuss the dividend payments for general
claim size distributions. Exponential distribution is only fit for
describing a kind of claim event. There are other distributions
for claim sizes in different insurance situations. For example,
Gamma distribution has been used on occasion for automobile
physical damage, and Pareto distribution is appropriate for
the fire insurance case. Unfortunately, both methods of [8]
and [11] do not apply to the case for general claim size
distributions with constant interest rate.

In this paper, our main goal is to evaluate the dividend
payments for general claim size distributions. We study the
problem in the classical risk process perturbed by diffusion
with constant interest rate. We first give initial conditions sat-
isfied by the dividend payments. Then we derive its transparent
formulation by employing the theory of Volterra equation.
Based on this fact, we find the optimal value of dividend
barrier. Numerical examples are given to illustrate the results
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and the effects of interest rate and diffusion volatility on
dividend payments.

II. INTEGRO-DIFFERENTIAL EQUATION AND INITIAL

CONDITIONS

In this section, we first give the integro-differential equation
for Vb(x) using the result of [11] directly, and then we trans-
form the boundary conditions to initial ones. The following
theorem is a special case of Theorem 2.1 in [11].

Theorem 2.1: Let g(x) be bounded and twice continuously
differentiable on (0, b) with bounded first derivative. If g(x)
solves

1
2
σ2g′′(x)+(μ+δx)g′(x)−(λ + ρ)g(x) +

λ

∫ x

0

g(x − y)p(y)dy = 0, 0 < x < b, (2)

together with the conditions

g(0) = 0, g′(b) = 1, (3)

g(x) = g(b) + x − b for x > b, (4)

then g(x) = E[
∫ τb

0
e−ρtdLt].

Theorem 2.1 provides a way to find the formulation of
Vb(x). But the integro-differential equation with boundary
conditions given by (3) are difficult to solve. In fact, we
can transform the problem to the one with initial conditions.
Now we consider V ′

b (0), which is proved to be finite by the
following lemma.

Lemma 2.2: The derivative of Vb(x) at x = 0 is a positive
number, that is, there exists a real number C ∈ (0, +∞) such
that V ′

b (0) = C.
Proof: Since Vb(x) is an increasing function which im-

plies V ′
b (x) ≥ 0 for x ≥ 0, we need only prove that V ′

b (0) �= 0
and V ′

b (0) �= ∞. It is clear that Vb(x) satisfies conditions of
Theorem 2.1.

Let M(r) =
∫ ∞
0 e−rxVb(x)dx and P̂ (r) =∫ ∞

0 e−rxp(x)dx. Taking Laplace transforms on both
sides of equation (2), we get

M ′(r) + M(r)
[1
r
− σ2

2δ
r − μ

δ
− λP̂ (r) − ρ − λ

rδ

]

= − σ2

2rδ
V ′

b (0). (5)

By introducing a new variable

a(r) =
∫ r

1

−σ2

2δ
s − μ

δ
− λP̂ (s) − ρ − λ

sδ
ds,

we can rewrite (5) as

rM ′(r) + M(r) + M(r)ra′(r) = −σ2

2δ
V ′

b (0).

Multiplying each term of the above equation by ea(r), we have

d
dr

(
M(r)rea(r)

)
= −σ2

2δ
V ′

b (0)ea(r).

Since limr→∞ M(r)rea(r) = 0, it follows

M(r)rea(r) = V ′
b (0)

∫ ∞

r

σ2

2δ
ea(s)ds,

which can be rewritten as

M(r)r = V ′
b (0)

σ2

2δ

∫ ∞

r

ea(s)−a(r)ds. (6)

Denoting I(r) =
∫ ∞

r
ea(s)−a(r)ds, we will prove that I(r) is

finite for enough large r. Noting that there exists r1 > 0 s.t.

−σ2

2δ
t − μ

δ
+

−λP̂ (t) + ρ + λ

tδ
≤ −σ2

2δ
t t ≥ r1,

we have

a(s) − a(r) ≤
∫ s

r

−σ2

2δ
tdt = −σ2

4δ
(s2 − r2) r ≥ r1.

Since there exists r2 > 0 s.t. e−
σ2
4δ s2 ≤ 1

σ2
4δ s2

for s ≥ r2, we

obtain

I(r) ≤ e
σ2
4δ r2

∫ ∞

r

e−
σ2
4δ s2

ds ≤ 4δ

σ2
e

σ2
4δ r2

∫ ∞

r

1
s2

ds

=
4δ

σ2
e

σ2
4δ r2 1

r
, r ≥ r1∨r2∨1.

This proves the finiteness of I(r).
If V ′

b (0) = 0 held, then we would have M(r) = 0 for all
r ≥ r1∨r2 ∨ 1 from the equation (6). This contradicts the
definition of M(r). If V ′

b (0) = ∞ held, then we would get
M(r)r = ∞ for all r > 1 as I(r) > 0, which is contrary to
the fact that

lim
r→∞M(r)r = lim

r→∞

∫ ∞

0

e−rxrVb(x)dx

≤ lim
r→∞

∫ ∞

0

r

erx
[Vb(b) + x]dx = 0,

where the second inequality holds from (4). We have thus
proved the theorem.

III. MAIN RESULTS

In this section, we first solve equation (2) on (0,∞) with
initial conditions g(0) = 0 and g ′(0) = C. Then we prove this
solution on (0, b) is just Vb(x), and give the optimal value of
dividend barrier.

Equation (2) is an integro-differential equation. Differenti-
ating equation and Laplace transforms are common tools to
solve such problems. However, they can not be applied to our
model. Differentiating equation can easily get rid of integral
operator only for special distributions, e.g., exponential dis-
tribution; Laplace transforms are suitable for the case of con-
stant coefficients. We instead transform the integro-differential
equation to an integral equation, which is a convenient and
practically useful way.

Integrating (2) over x twice and interchanging the order of
integration, we have

1
2
σ2g(x) =

1
2
σ2xg′(0) +

∫ x

0

g(t)k(x, t)dt, x ≥ 0, (7)

where

k(x, t) = μ + (2δ + λ + ρ)t + x(−δ − λ − ρ)

+λ

∫ x

t

p(y − t)(x − y)dy, 0 ≤ t ≤ x.
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Equation (7) is a linear Volterra equation of the second kind.
According to the theory on Volterra equation (e.g., [2], Section
2.1), equation (7) has a unique solution under initial conditions
g(0) = 0 and g′(0) = C. Using successive approximation
method, we obtain

g(x) = C
{
x +

∫ x

0

∞∑
n=1

(
−2
σ2

)
n

kn(x, t)tdt
}
, x ≥ 0, (8)

where

kn(x, t) =
∫ x

t

k(x, u)kn−1(u, t)du, 0 ≤ t ≤ x,

and we note that g(x) converge uniformly for any parameters.
We determine C by condition g ′(b) = 1. Taking derivatives

in (7), we get

g′(x) = C − C
2
σ2

(μ + δx)x

+ C

∫ x

0

∞∑
n=1

(
−2
σ2

)
n ∂kn

∂x
(x, t)tdt, x ≥ 0

where
∂k1

∂x
(x, t) = −δ − λ − ρ, 0 ≤ t ≤ x,

∂kn

∂x
(x, t) =(μ+δx)kn−1(x, t)

+
∫ x

t

[− δ− ρ −λ+λP (x− u)
]
kn−1(u, t)du

n ≥ 2, 0 ≤ t ≤ x.

Therefore, we have

C =
[
1− 2

σ2
(μ + δb)b+

∫ b

0

∞∑
n=1

(
−2
σ2

)
n ∂kn

∂x
(b, t)tdt

]−1

.

Now we can get the formula of the dividend payments.
Theorem 3.1: If the density function p(x) of the claim sizes

is continuous, the dividend payments Vb(x) has the following
structure:

Vb(x) =
{

g(x) 0 ≤ x < b,
x − b + g(b) x ≥ b.

where g(x) is given by (8).
Proof: The result will be proved if g(x) satisfies condi-

tions of Theorem 2.1. It is easy to check that g(x) satisfies
equation (2) and boundary conditions (3) on (0, b). In fact,
we can also see that g(x) is twice continuously differentiable
according to the theory on existence and uniqueness of integro-
differential equations (see, e.g., [10], Theorem 3.14) under the
continuity assumption on p(x). Furthermore, we know that
g(x) and g′(x) is bounded when x ∈ [0, b]. This completes
the proof.

Let

m(x) = x +
∫ x

0

∞∑
n=1

(
−2
σ2

)
n

kn(x, t)tdt, x ≥ 0,

C(x) =
[
1 − 2

σ2
(μ + δx)x +

∫ x

0

∞∑
n=1

(
−2
σ2

)
n ∂kn

∂x
(x, t)tdt

]−1

(9)

From Theorem 3.1 we can write Vb(x) as Vb(x) =
c(b)m(x), which means the dividend payments vary with
change of barriers even with the same initial surplus. From
this fact, we have the following corollary.

Corollary 3.2: The optimal value of dividend barrier b ∗ can
be obtained as a solution of the equation C ′(x) = 0, where
C(x) is given by (9).

Remark 1: Although formulations (8) and (9) are not on
closed form, they are still of important practical interest.
Since g(x) converges uniformly for any parameters, current
numerical methods of Volterra equation can work well for
approximate solution.

IV. NUMERICAL EXAMPLES

In the following, we consider two numerical examples,
which come from the two main classes of claim size dis-
tributions: exponentially decreasing tail and subexponential
distributions.

Example 1: For an exponential claim size distribution, we
assume that p(y) = βe−βy. Let ρ = 0.05, μ = 1.1, λ =
1, β = 1 and step size h = 0.005 be fixed. The results are
shown in Figure 1 and 2.

In Figure 1, we let σ = 0.5 and δ = 0. The optimal
value of dividend barrier after calculation is b∗ = 0.8305,
which is consistent with the result of [8]. We calculate the
value of dividend payments in the presence of dividend barrier
b∗ = 0.8305, b = 0.5 and b = 10 respectively. Figure 1
shows the comparison of the results, from which we can see
the optimality of the dividend barrier b∗, as the value of its
dividend payments is greater than the other two.

In Figure 2, we let σ = 1, and δ take values of
0, 0.01 and 0.02. The value of optimal dividend barriers
for three cases are b∗1 = 1.69375, b∗2 = 1.8225 and b∗3 =
2.03375. Figure 2 shows their corresponding optimal dividend
payments, from which we conclude that as interest rate rises,
the value of optimal dividend payments increases.

Example 2: For a Pareto claim size distribution, we assume
that p(y) = αβα

(x+β)α+1 . Let ρ = 0.05, μ = 1.2, λ = 1, α =
3, β = 2 and h = 0.005 be fixed. The results are shown in
Figure 3 and 4.

In Figure 3, we let σ = 1 and δ = 0.01. The optimal
value of dividend barrier after calculation is b∗ = 3.53. We
calculate the value of dividend payments in the presence of
dividend barrier b∗ = 3.53, b = 1 and b = 6 respectively.
Figure 3 shows the comparison of the results, from which the
optimality of the dividend barrier b∗ can be also seen.

In Figure 4, we let δ = 0.01, and σ take values of
0.6, 0.8 and 1. The value of optimal dividend barriers for three
cases are b∗4 = 3.0025, b∗5 = 3.24625 and b∗6 = 3.53. Figure
4 shows their corresponding optimal dividend payments, from
which we conclude that as volatility increases, the optimal
dividend payments deceases. One possible explanation is that
if volatility is larger, ruin occurs sooner in some sense.

V. CONCLUSIONS

In this paper, we consider a dividend problem for an
insurance company in the presence of a dividend barrier with
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Fig. 1. Dividend payments under barrier b, exponential claims
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Fig. 2. Impact of changing the interest rate δ

constant interest rate. We formulate the total expected present
value of dividends for general claim size distributions and
derive the optimal value of dividend barrier. Our numeri-
cal results show consistency with daily views that dividend
payments increase with interest rates, but decrease with the
volatility.

Compared to the existing formula of dividend payments,
our result has broader application as it can be used for general
claim size distributions. It would also be interesting to study
the case of stochastic return on interest rate. Although we
expect that the analysis would be similar, we speculate that
the solution structure would be more complicated.
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