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Abstract—The PH curve can be constructed by given parameters, 

but the shape of the curve is not so easy to image from the value of 
the parameters. On the contract, Bézier curve can be constructed by 
the control polygon, and from the control polygon, we can image the 
figure of the curve. In this paper, we want to use the hodograph of 
Bézier curve to construct PH curve by selecting part of the control 
vectors, and produce other control vectors, so the property of PH 
curve exists. 
 

Keywords—PH curve, hodograph, Bézier curve. 
 

I. INTRODUCTION 
HE curves and surfaces in computer-aided geometric 
design can be represented and designed in various ways. 

The curves and surfaces can be represented in parametric form, 
or in implicit form. Some of the curve, such as Bézier curve, 
can be represented by their control points. With smart graphic 
user interface, the design of the curve can be user friendly 
with pointer device, such as mouse, so that the control points 
and the curves can be display animatedly.  

The hodograph of a plane parametric curve r(t)=(x(t),y(t)) is 
the locus described by the first derivative r´(t)=(x´(t),y´(t)) of 
the curve. A polynomial parametric curve is said to have a 
Pythagorean hodograph if there exists a polynomial σ(t) such 
that x´2(t)+y´2(t)=σ2(t)[1]. With this property, the polynomial 
PH curve has rational offset [2,3,4,5,6].  

The polynomial PH curve can be represented in Bernstein-
Bézier form, so the control points of the polynomial PH curve 
can be displayed. However, we would like to preview the 
appearance of the curve before we design it. We know the 
polynomial PH curve must be a Bézier curve, and not vice 
versa. In this paper, we propose 3 algorithms to find 
polynomial PH curves by giving part of the control vectors of 
the hodographs, and analysis the number of the PH curves we 
find in each algorithms. 
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There are 5 sections in this paper. The first section gives the 
introduction of the polynomial PH curve and the contents of 
this paper. The second section defines the notation and 
Theorem used in this paper. The third section explains the 
degree of freedom analysis, gives more Theorems, and 
proposes 3 algorithms, the fourth section gives experiment 
results, and the final section concludes the result. 

 

II. DEFINITION AND NOTATION 
We follow the definitions and Theorems in the reference 

[1], and list below: 
 

Definition 1[1]:  
The hodograph r´(t)=(x´(t),y´(t)) of a planar PH curve satisfy 
x´(t)+y´(t)=σ(t), where σ (t) is a polynomial. 
 
Theorem 1(Kubota[7,1]) 
Three real polynomials a(t), b(t), and c(t), where max[deg(a), 
deg(b)]=deg(c)>0, satisfy the Pythagorean condition 
a2(t)+b2(t)=c2(t) if and only if they can be expressed in terms 
of real polynomials u(t), v(t), and w(t) in the form: 

a(t)=w(t)[u2(t)-v2(t)] 
b(t)=2w(t)u(t)v(t) 
c(t)=w(t) [u2(t)+v2(t)] 

 
Theorem 2[1]: The polynomial curve corresponding to the 
hodograph r´(t)=(x´(t),y´(t))=(w(t)[u2(t)-v2(t)],2w(t)u(t)v(t)), is 
of degree n=2μ+λ+1, where λ=deg(w) and μ= 
max(deg(u),deg(v)). Taking w(t)=1 and gcd(u(t),v(t))=1 gives 
a primitive polynomial PH curve. 
 

We are concerned primitive polynomial PH curves in this 
paper and denote the primitive polynomial PH curve as PPH 
curves. 

 
Let r(t)=(x(t),y(t)) be a PPH curve whose control points are 

pk=(xk,yk), k= 0,1,…, 2μ+1,  and whose hodograph has 
control vectors Δpk=pk+1-pk, k= 0,1,…, 2μ. This PPH curve is 
constructed by two polynomials u(t) and v(t) given in 

Bernstein-Bézier form as: u(t)= )(
0

tBu i
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 We denote ri=[ui,vi], N(i,j)=(Ii,j,Ji,j)= 

( )ijjijiji vuvuvvuu +− , , ( )
C
CC

k

ikiik μ

μμ

μϕ 2, −= , then we have the 

following Theorem: 
 
Theorem 3: The PPH curve constructed by two polynomials 
u(t) and v(t) given in Bernstein-Bézier form as: u(t)= 

)(
0

tBu i
i
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μ
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∑
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 and v(t)= )(
0

tBv i
i

i
μ

μ

∑
=

, then the relationship 

between ri and control vectors of the hodograph is: 
 

(2μ+1)Δpk= ),(
0

ik
k

i
∑

=
ϕ μ

(Ii,k-i,Ji,k-i), 0≤k≤2μ             (1) 
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From the definition of the hodograph of PPH curve, 
r´(t)=(x´(t),y´(t))=(u2(t)-v2(t), 2u(t)v(t)), we have 
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With similar approach, we derive: 
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Compare with the property that r´(t) has the control vectors at 
(2μ+1)Δpk, k=0,1, ,…,2μ, we prove this Theorem. 

♦ 

Notice that φμ(k,i)=φμ(k,k-i),N(i,j)=N(j,i),so we can simplify 
the Equation (1) into: 

 

(2μ+1)Δpk 
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     (2) 
 
From Theorem 1, the relation between ri =[ui,vi] and Δpk can 
be shown. For example, when μ= 3, we have 
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The control vectors can be found directly by u(t) and v(t). It 

is not easy to predict the geometric variation of the PH curve 
through u(t) and v(t). If we can construct the PH curve from 
the control vectors or the hodograph of the curve, we can 
establish a smart graphic user interface, request for control 
points or control vector for the PPH curve, and find one or 
more sets of ri=[ui,vi], i=0,1, .. , μ, it is helpful for us to design 
a PH curve. The problems are: (1) How many control points 
(of the hodograph) we need to construct a PH curve? (2) How 
to find at least one set of ri=[ui,vi], i=0,1, .. , μ, satisfied the 
requirement of PH curve. 
 

III. CONVERSION FROM PPH CURVE TO BÉZIER CURVE 
We analyze the degree of the freedom of the PPH curve 

first, and then give an algorithm to construct the associated 
PH curve in this section. 
 

A  Analysis of the Degree of Freedom 
We would like to know how many control vectors we need 

to construct the PPH curve. Consider equation (1), there are 
6μ+4 variables in the system of equations, including ri=[ui,vi], 
0≤i≤μ and Δpk=(Δxk, Δyk),0≤k≤2μ. So the degree of freedom 
for the system of equations is 6μ+4.There are 2μ+1 equations 
for Δxk, 0≤k≤2μ, and the other 2μ+1 equations for 
Δyk,0≤k≤2μ, so we have 4μ+2 constraints for this system of 
equations. Before we want find all solutions, we need to give 
values to (6μ+4)-(4μ+2)=2μ+2 variables. The natural 
selection for these 2μ+2 variables is ri=[ui,vi], 0≤i≤μ, it 
convert the PPH curve into Bézier curve. Or, we can select 
μ+1 control vectors among Δpk,=(Δxk, Δyk),0≤k≤2μ, and find 
other control vectors with ri=[ui,vi], 0≤i≤μ. 
 

B.  Theorems for the Node Value 
Theorem 4: The solutions for u2-v2=a, 2uv=c, (a,c)≠(0,0) is: 
 (u,v)   =± (0, a− ) if a<0, c=0 
  =± ( a , 0) if a>0, c=0 

  =± 2
1 (

aca

c

−+ 22 , aca −+ 22 ) if c≠0 

Proof: Trivial. 
 

Notice that we are working on the real number, so that there 
are two solutions for each case. These solutions are two 
couples not equal to (0,0) with different sign. We denote this 
two solutions as (u,v) and –(u,v). Notice that (u,v) ≠ (0,0). 
Notice further that when a=0, u=v=c=0. Both (u,v) and -(u,v) 
always produce the same (a,c). 
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Theorem 5: Let N(i,i)=(Ii,i, Ji,i)=(a,c) ≠(0,0), 
N(j,j)=(Ij,j,Jj,j)=(b,d)≠(0,0), then (Ii,j

2-Ji,j
2, 2Ii,jJi,j)=(ab-cd, 

ad+bc)≠(0,0). 
 
Proof: It is easy to prove ((Ii,j)2−(Ji,j)2, 2Ii,jJi,j)=(ab-cd, ad+bc) 
by carefully algebraic computation. Now, we need to prove 
(ab-cd, ad+bc)≠(0,0). Assume (ab-cd, ad+bc)=(0,0). Let’s 
treat b,d as variables, a,c as constants, the system of equation 

has solution (b,d)=( a
c

0
0 − / ac

ca −
, 0

0
c
a / ac

ca −
) =(0,0) if 

a2+c2≠0, which contradicts with (b,d)≠(0,0). If a2+c2=0, it 
contradicts (a,c) ≠(0,0). So we proved (ab-cd, ad+bc)≠(0,0). 

♦ 
Combine Theorem 4 and 5, we have the following corollary: 
 
Corollary 1: Given N(i,i) and N(j,j), the vectors associated to 
the solutions of N(i,j) are two couples with opposite sign. 
 
Theorem 6: Let N(i,i) =(a,c)≠(0,0), N(i,j)=(e,f) ≠(0,0), then 

N(j,j)=
ca 22

1
+

((a,c)⋅(e2-f2,2ef), (-c,a)⋅(e2-f2,2ef))≠(0,0). The 

notation ⋅ is the inner product of two vectors. 
 
Proof: assume N(j,j)=(b,d), from Theorem 5, we have  
ab-cd=e2-f2 and cb+ad=2ef, from these two equations with b,d 
unknown, we can easily find one solution for (b,d). 

Now we need to prove (b,d)≠(0,0). That is, ((a,c)⋅(x,y), 
(a,-c)⋅(y,x))≠(0,0) where x= e2-f2, y=2ef. Assume (b,d)=(0,0), 
we need to solve ax+cy=0 and –cx+ay=0. Because a2+c2≠0, 
the system of equations has solution (x,y)=(e2-f2, 2ef)=(0,0). It 
implies (e,f)=(0,0) and contradicts with (e,f)≠(0,0). So we 
proved N(j,j)=(b,d)≠(0,0). 

♦ 
Because N(i,j)=N(j,i), the Theorem can be easily modify as: 

 
Corollary 2: Let N(i,i) =(a,c)≠(0,0), N(j,i)=(e,f) ≠(0,0), then 

N(j,j)=
ca 22

1
+

((a,c)⋅(e2-f2,2ef), (-c,a)⋅(e2-f2,2ef))≠(0,0). 

 
Let’s give some graphs to denote the input/output node for 

our Theorems and corollaries. In corollary 1, we draw 
correspond graph in Fig. 1(a), using arrow to indicate input 
node N(i,i) and N(j,j) points to the output node N(i,j). The 
node N(i,j) in Fig. 1 is the output node for correspond 
Theorems and corollaries, and other nodes which has arrow 
point out are input nodes.  

The graphs for Theorem 6 and corollary 2 are shown in Fig. 
1(b) and (c) respectively. 

Currently, we use two input nodes to find one output node. 
The following Theorems and corollaries use three input nodes 
to find one output nodes. 
 
Theorem 7: Let N(k,k)=(e,f) ≠(0,0), N(k,i)=(a,c) ≠(0,0) and 
N(k,j)=(b,d) ≠(0,0), then  
 
N(i,j)= fe 22

1
+ ((e,f)⋅(ab-cd,ad+bc), (-f,e)⋅(ab-cd,ad+bc)≠(0,0). 

Proof: The proof is similar to Theorem 6. 
♦ 

 
From the fact that N(k,i)=N(i,k), N(k,j)=N(j,k), more 

combination can be generated. The value for N(i,j) can be 
generated from (1) N(k,k), N(i,k) and N(j,k), (2) N(k,k), N(k,i) 
and N(j,k), (3) N(k,k), N(i,k) and N(k,j). 

The graphs for the input/output nodes and number of 
solutions for Theorem 7 are shown in Fig. 1(d),(e),(f) 
respectively. 
 

 

      (a) corollary 1     (b) Theorem 6, i<j    (c) corollary 2, j<i 
 

  

(d) Theorem 7, k<i<j        (e) Theorem 7, i<j<k  
 

 

 (f)Theorem 7, i<k<j                 
Fig. 1 I/O nodes for Theorems and corollaries 

 
Notice that when k=i<j, Fig. 1(d) degenerate into Fig. 1(b), 

when i<j=k, Fig. 1(e) degenerate into Fig. 1(c).  
 

Theorem 7 can be extended by finding one node from other 
3 nodes. For example, we find N(i,j) from N(k,i), N(k,j) and 
N(k,k), as shown in Fig. 1(d). The other 3 cases are (1) 
finding N(k,i) from N(i,j), N(k,j) and N(k,k), (2) finding N(k,j) 
from other 3 nodes, (3) finding N(k,k) from other 3 nodes. So 
there are 4 cases associated to Fig. 1(d). The extension for Fig. 
1(e) and Fig. 1(f) are similar. Under these extensions, there 
are 12 cases for finding one node from other 3 nodes 
assuming these nodes are on the left upper side of the diagonal. 
That is, these nodes N(i,j) has the properties i≤j. we emphasis 
these 3 cases shown in Fig. 1(d)(e)(f) because they are the 
cases we used in our algorithms. 
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Now we start the algorithms for finding PPH curve from the 
control vectors of its hodographs. 

C.  Algorithms 

Given ri=[ui, vi], where 0≤i≤μ, we want to find the control 
vectors for associated Bézier Curve. The associated Bézier 
curve can be constructed from Equation (2) directly.  We can 
find all (Ii,j,Ji,j), 0≤i≤μ, 0≤j≤μ from ri=[ui, vi], and find the 
control vectors Δpk, 0≤k≤2μ, from Equation (2). With the 
reference point p0=(x0,y0), we can draw the Bézier curve. Now 
we would like to construct the PH curve in the other way. It is 
not so easy to preview the curve from ri, 0≤i≤μ, so we would 
like to construct the PPH curve by indicating part of the 
control vectors, and calculate the others. As mentioned in 
section A, we need to know μ+1 control vectors of the 
hodograph in order to find ri, 0≤i≤μ, so that other control 
vectors can be found through ri and the control vectors we 
found.  

Consider Equation (3) as an example. Given any four 
control vectors from Δpk, 0≤k≤6, we want to find other 
control vectors so that the curve can be drawn. Assume we 
know Δpk, 0≤k≤3, and want to find Δpk, 4≤k≤6, we can 
generate 8 degree 2 equations by the first 4 row of Equation 3, 
and there are 8 variables, [uk, vk], 0≤k≤3, among them. There 
are at most 28=256 solutions in the system of equation. The 
algorithms we proposed here try to reduce the number of 
solution with more efficient way. 

We illustrate three algorithms in this section. The first 
algorithm and second algorithm select the first μ+1 control 
vectors Δpk, 0≤k≤μ, and find others. The first algorithm finds 
ri, 0≤i≤μ, first, and then finds N(i,j)=(Ii,j,Ji,j)= 
( )ijjijiji vuvuvvuu +− , , the control vectors Δpk, 0≤k≤2μ, is 
produced by Equation (2) finally. The second algorithm finds 
N(i,j) directly, and then derives the other control vectors .The 
third algorithm selects both side of the control vectors, that is, 
Δpk, 0≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
3μ +1≤k≤2μ, and find others. All of these three 

algorithms use the Equation (2).  

We use Equation (3) to illustrate the idea of the first 
algorithm. In Equation (3), we can find two solutions for 
r0=[u0,v0] from Theorem 4 and the first row of Equation (3): 
7(Δx0, Δx0)=(u0

2-v0
2, 2u0v0). We further solve r1=[u1,v1] by 

solving system of linear equations in the second row of 
Equation (3): 7(Δx1, Δx1)=(u0u1-v0 v1, u0v1+u1v0). Repeat the 
process on the third row and fourth row of Equation (3), we 
can find single solution for [u2,v2] and [u3,v3], associated with 
each solution of r0. With all of the ri, i=0,1,2,3, we can find 
Δpk, 4≤k≤6 directly from Equation (2). We totally find two 
sets of control vectors and produce at most two curves. 
However, these two sets of ri produce the same curve. We list 

the idea in the following algorithm: (Let P ⎥
⎦

⎤
⎢
⎣

⎡

−
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Algorithm 1 // Given Δpk, 0≤k≤μ, find Δpk, μ+1≤k≤2μ 
1. Find r0=[u0, v0] from the equation: 

(2μ+1)Δpk= ⎟
⎠
⎞⎜

⎝
⎛ TT Qr0000 rPrr , =(u0

2-v0
2, 2u0v0) 

2. Select any solution for r0=[u0, v0]. 
3. For k=1 to μ 

Find rk=[uk, vk] from the equation: 

[uk, vk]= ))(0,(2
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                                       (4) 
4. For k=μ+1 to 2μ 

Find Δpk= ( Δxk, Δyk) from the equation: 

(Δxk, Δyk)= 12
1
+μ

( )∑
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i
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,μϕ ⎟
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The equation (4) can be derived from Equation (1) with  (Ii,k-

i,Ji,k-i)= ⎟
⎠
⎞⎜

⎝
⎛

−−
TT

ikik Qrii rPrr , . We can simplify this equation into:                  

2 ( )0,kμϕ ⎟
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ikik Qrii rPrr ,  

So, we can solve [uk, vk] via [u0, v0], [u1, v1],…, [uk-1, vk-1]. 
 

How many different solutions for this algorithm? From 
Theorem 2, there are two solutions for [u0, v0] in the first step 
of the algorithm, call them [u0, v0] and −[u0, v0]. The steps (2) 
gives single solution on each [u0, v0] and −[u0, v0] for [uk, vk], 
1≤k≤μ, and in the third step, we find unique control points 
(Δxk, Δyk), μ+1≤k≤2μ on each [u0, v0] and −[u0, v0]. Observe 
Equation (4), we find two sets of solutions, each [uk, vk] 
associated with the other solution  
−[uk, vk].  
 

We have two set of solutions, they are [uk, vk], 0≤k≤μ, and  
−[uk, vk], 0≤k≤μ. In step 3 of Algorithm 1, we found these two 
sets of solutions produce the same control vectors  
Δpk, μ+1≤k≤ 2μ, because: 
( )TT

ikiiki QrrPrr −− , =( )TT
ikiiki rQrrPr )()(,)()( −− −−−−  

So we conclude that the first algorithm produce single curve. 
 

In Algorithm 1, we find all ri=[ui, vi], 0≤i≤μ, so that all of 
the control vectors  Δpk, μ+1≤k≤2μ can be found. In fact, we 
can find all N(i,j) from Δpk, 0≤k≤μ and then find Δpk, 
μ+1≤k≤2μ directly from N(i,j) by the following algorithm: 
 
Algorithm 2: // Given Δpk, 0≤k≤μ, find Δpk, μ+1≤k≤2μ 
1. Find N(0,0) from Δp0.  // Equation (2) 
2. For j=1 to μ do { 

21 Find N(0,j) from Δpj // Equation (2) 
22  For i=1 to j-1 

Find N(i,j) from N(0,0), N(0,i), N(0,j) //Thm 7 
23  Find N(j,j) from N(0,0) and N(0,j) }         // Thm 6 

3 For k=μ+1 to 2μ do 

Δpk= 12
1
+μ

( )∑
=

k

i
ik

0
,μϕ N(i,k-i) 
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(a) Example for Algorithm 2   (b) Strategy for Algorithm 2 
Fig. 2 Diagrams for Algorithm 2 

  
Let’s use an example to explain Algorithm 2. We draw Fig. 

2(a) to illustrate the idea of Algorithm 2. In Fig. 2(b), the 
arrow from upper left to the lower right indicates the vector at 
the beginning of the arrow is an input vectors  the arrow from 
lower right to the upper left indicates the vector at the end of 
the arrow is an input vectors. We select μ=5 as the example. 
In Algorithm 2, the step 1 find the initial node N(0,0) from 
Δp0. In the first iteration of step 2 (j=1), we find N(0,1) from 
Δp1 first (step 21),  and skip the step 22 because the for loop 
has initial value i=1 to the value j-1=0, Now we know N(0,0) 
and N(0,1), we can find N(1,1) via Theorem 6. In the second 
iteration of step 2(j=2), we find N(0,2) from Equation (2) 
(step 21), and find N(1,2)(step 22) from N(0,0), N(0,1), N(0,2) 
via Theorem 7, and Find N(2,2)(step 23) from N(0,0) and 
N(0,2) via Theorem 6. Now we know all of the node N(i,j), 
where j≤2, i≤j. Repeat step 2, we can find all N(i,j). 

Generally, in beginning iterations in step 21, we assume 
that the value of the node j≤k-1 is known, as marked the area 
(1) in the Fig. 2(b). With the new input value Δpk, we can find 
the single value of new node N(0,k) from Equation (2). Notice 
that all of the nodes used in this step is known except N(0,k). 
We further find the single value of N(i,k), 1≤i≤k-1 from 
N(0,0), N(0,i) and N(0,k) by Theorem 7 in step 22, and find 
the single value for N(k,k) from N(0,0) and N(0,k) by 
Theorem 6 in step 23. Repeat this process, we can find all 
value of N(i,j), 1≤i≤μ,1≤j≤μ. After we find all node value, 
0≤i≤μ,0≤j≤μ, other control vectors can be easily found in step 
3 by Equation (2).  

Notice that we find single value for all control vectors. That 
is, we construct single curve in this algorithm. 
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⎥
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2

3(N μμ
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2

3p
+

Δ μ

⎣ ⎦2
p μΔ

 

(a) algorithm 2                (b) algorithm 3 
Fig. 3 I/O control vectors for algorithm 2 and 3 

 
In the second algorithm, we try to find the last μ control 

vectors (Δpk,μ+1≤k≤2μ) from the first μ+1 control 
vectors(Δpk,0≤k≤μ). We use Fig. 3(a) to represent the input 
and output of the control vectors for this algorithm. The 
disadvantage of the algorithm is that the final part of the curve 

is not easy to predict. So, we change our approach to find the 
control vectors in the middle by giving two sides of the 
control vectors, which produce the third algorithm. Fig. 3(b) 
represents the input and output of the control polygon for the 
following algorithm: 
 
Algorithm 3: Given the control victors Δpk, 0≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ  and 

⎥⎦
⎥

⎢⎣
⎢

2
3μ +1≤k≤2μ, find the control vectors Δpk, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
3μ .  

 
1. Find N(i,j), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , 0≤j≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , i≤j by Algorithm 1 using 

Δpk, k=0≤k≤ ⎥⎦
⎥

⎢⎣
⎢

2
μ  as input vectors. 

2. Find N(i,j), ⎥⎦
⎥

⎢⎣
⎢

2
μ +1≤i≤μ, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1≤j≤μ, i≤j by modifying 

Algorithm 1 using Δpk, ⎥⎦
⎥

⎢⎣
⎢

2
3μ +1≤k≤2μ as input vectors. 

3. Find N( ⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) by Theorem 5. 

4. For j= ⎥⎦
⎥

⎢⎣
⎢

2
μ +1 to μ 

For i=0 to ⎥⎦
⎥

⎢⎣
⎢

2
μ  

Find N(i,j) by Theorem 7 using N(i,j-1), N(j-1,j-1), 
and N(j-1,j) as input.      // Theorem 7 

5. For k= ⎥⎦
⎥

⎢⎣
⎢

2
μ +1 to ⎥⎦

⎥
⎢⎣
⎢

2
3μ , find Δpk.     // Equation (2). 
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                     (a) Step 3                          (b) Step 4, 1st iteration 
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(c) Step 4, after 1st iteration 
Fig. 4 Diagrams for Algorithm 3 

 
In algorithm 3, the first step find N(i,j), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , 0≤j≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , 

i≤j, marked in area (1) in Fig. 4(a), using the idea in algorithm 
1. With simple modification, we can easily find N(i,j), 

⎥⎦
⎥

⎢⎣
⎢

2
μ +1≤i≤μ, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1≤j≤μ, i≤j, marked in area (2) in Fig. 3(a). 

These two nodes N( ⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ ), and N( ⎥⎦

⎥
⎢⎣
⎢

2
μ +1, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), as mark 

solid circle in Fig. 4(a), are find at the first and second steps 
respectively. The value of nodes we did not find yet is in area 
(3). Notice that all N(i,i), 0≤i≤μ is found already. In this 
situation, all N(i,j) can be derived by corollary 1. However, 
we find 2 solutions in corollary 1 for all nodes in area (3), 
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which makes the final Δpk, ⎥⎦
⎥

⎢⎣
⎢

2
μ +1≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
3μ , are hard to select, 

because the selection of correct value for each node is hard. 
So, we try to use corollary 1 as few as possible. 

In step 3, we find the node N( ⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) in the lower right 

corner of area (3) by using corollary 1, as marked square in 
Fig. 4(a), which produce two couples with different sign. 
Let’s select one value for N( ⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), and continue the 

algorithm, consider the first iteration of step 4(j= ⎥⎦
⎥

⎢⎣
⎢

2
μ +1), the 

node N(i, ⎥⎦
⎥

⎢⎣
⎢

2
μ +1), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , as marked triangle in Fig. 4(b), can 

be found by Theorem 7, using N(i, ⎥⎦
⎥

⎢⎣
⎢

2
μ ), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , 

N( ⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ )(solid circle), and N( ⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1)(square) as input. 

Notice that each node produce single value for each value of 
N( ⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) we found in step 3. There are two sets of values 

for nodes in area (3). 
Start from the second iteration (j> ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) of step 4, assume 

all nodes N(i,j), 0≤i≤ ⎥⎦
⎥

⎢⎣
⎢

2
μ ,0≤j<j´, shown in the area (31) in Fig. 

4(c), produce single value if we select one value for 
N( ⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), we want to produce the value N(i,j´), 

0≤i≤ ⎥⎦
⎥

⎢⎣
⎢

2
μ by Theorem 7, using N(i,j´-1), N(j´-1,j´-1), N(j´-1,j´) 

as input. Notice that N(i,j´-1) in area (31) has single value, 
N(j´-1,j´-1) on the diagonal has single value, and N(j´-1,j´) in 
area (2) also has single value. From the observation, we know 
N(i,j), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ ,0≤j≤j´ has single value. At the end of iteration, 

we find single value for all nodes, which produce single 
control vectors, which produce single curve. 

With the second value in N( ⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), we can find the 

second set of values for all node in area (3) in Fig. 4(a), which 
produce the second curve. So, this algorithm produces at most 
2 curves. 

All 3 algorithm3 takes O(μ) times, where μ is the maximum 
degree of u(t) and v(t).  
 

IV. EXPERIMENTAL RESULT 
We implement all three algorithms using Maple 10. These 

programs works on PC with Pentium D 2.8GHz CPU and 
1GB RAM. These examples in 3 algorithms takes very shout 
time to compute output vectors (about 0.015 seconds for each 
algorithm). 
 
Example 1: 
Given the control points p0=(0,0), p1=(1,2), p2=(2,3.6), 
p3=(3,4.7), p4=(4,5.3), as shown in Fig. 5(a), both the 
algorithm 1 and algorithm 2 produce the same curve, as 
shown in Fig. 5(b). In algorithm 1, we find the value 
(u0,v0)=(3.365,2.080),(u1,v1)=(2.993,1.478),(u2,v2)=(2.372,0.3
10)and(u3,v3)=(2.478,−0.911). Both algorithms find the value 
for Δp4=[0.975,0.180], Δp5=[0.881,-0.199] and Δp6=[0.759,-

0.645]. This result produces p5=(4.975,5.480), 
p6=(5.855,5.281), p7=(6.614,4.636). The output curve is 
shown in Fig. 5(b).  
 

 

 
(a) input                                    (b) result 

Fig. 5 I/O vectors and result curves for example 1 
 

Example 2:  
Given the control vectors Δp0=[1,2], Δp1=[1,1.2] with 
reference point at the origin, so that the control points p0=(0,0), 
p1=(1,2), p2=(2,3.2), the front part of the control polygon is 
shown in Fig. 6(a). Given the control vectors Δp5=[-1.2,-1], 
Δp6=[-1.2,-0.5], with a reference point p5 at the origin, the end 
part of the control polygon is shown in Fig. 6(b). With 
algorithm 3, we find two solutions. The first solution is Δp2=[-
0.188,0.801], Δp3=[-1.058,1.004], and Δp4=[-0.850,-0.531], 
and its associated curve is shown in Fig. 6(c). The second 
solution is Δp2=[1.234,-0.013], Δp3=[1.058,-1.004], and 
Δp4=[-0.377,-1.358], and its associated curve is shown in Fig. 
6(d). 
 

 

(a) input from left                    (b) input from right    
 

 

(c) the first result                      (d) the second result 
Fig. 6 I/O vectors and result curves for example 2 
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V. CONCLUSION 
The PPH curve is a Bézier curve but not vice versa. When 

we want design PPH curve from control points of Bézier 
curve, only part of control vectors we need, and produce the 
other parts of control vectors.  Various ways we can select the 
input control vectors. If we select one side of the control 
vectors, we can find single curve which has PPH properties. 
This selection makes the algorithm simple and straight 
forward. However, the end part of the curve and the output 
control vector is sensitive and unpredictable. If we select both 
side of the control vectors, the associated algorithm find two 
curves which have PPH properties. Using these two selections, 
all of the algorithms proposed in this paper take very short 
time to construct the PPH curves.  
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