
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

536

Abstract—The PH curve can be constructed by given parameters,

but the shape of the curve is not so easy to image from the value of
the parameters. On the contract, Bézier curve can be constructed by
the control polygon, and from the control polygon, we can image the
figure of the curve. In this paper, we want to use the hodograph of
Bézier curve to construct PH curve by selecting part of the control
vectors, and produce other control vectors, so the property of PH
curve exists.

Keywords—PH curve, hodograph, Bézier curve.

I. INTRODUCTION
HE curves and surfaces in computer-aided geometric
design can be represented and designed in various ways.

The curves and surfaces can be represented in parametric form,
or in implicit form. Some of the curve, such as Bézier curve,
can be represented by their control points. With smart graphic
user interface, the design of the curve can be user friendly
with pointer device, such as mouse, so that the control points
and the curves can be display animatedly.

The hodograph of a plane parametric curve r(t)=(x(t),y(t)) is
the locus described by the first derivative r´(t)=(x´(t),y´(t)) of
the curve. A polynomial parametric curve is said to have a
Pythagorean hodograph if there exists a polynomial σ(t) such
that x´2(t)+y´2(t)=σ2(t)[1]. With this property, the polynomial
PH curve has rational offset [2,3,4,5,6].

The polynomial PH curve can be represented in Bernstein-
Bézier form, so the control points of the polynomial PH curve
can be displayed. However, we would like to preview the
appearance of the curve before we design it. We know the
polynomial PH curve must be a Bézier curve, and not vice
versa. In this paper, we propose 3 algorithms to find
polynomial PH curves by giving part of the control vectors of
the hodographs, and analysis the number of the PH curves we
find in each algorithms.

Manuscript received March 10, 2007. This work was supported in part by

the NSC in Taiwan Grant NSC 95-2221-E-031-003-MY2.
C. S. Chiang is a professor in the Department of Computer and Information

Science, Soochow University, Taiwan (phone: 011-886-2-23111531 ext. 2230;
e-mail: chiang@cis.scu.edu.tw).

S. H. Tsai is a graduate student in the Department of Computer and
Information Science, Soochow University, Taiwan.

James C. Chen is an Associate Professor in the Department of Industrial
Engineering at Chung Yuan University, Taiwan.

There are 5 sections in this paper. The first section gives the
introduction of the polynomial PH curve and the contents of
this paper. The second section defines the notation and
Theorem used in this paper. The third section explains the
degree of freedom analysis, gives more Theorems, and
proposes 3 algorithms, the fourth section gives experiment
results, and the final section concludes the result.

II. DEFINITION AND NOTATION
We follow the definitions and Theorems in the reference

[1], and list below:

Definition 1[1]:
The hodograph r´(t)=(x´(t),y´(t)) of a planar PH curve satisfy
x´(t)+y´(t)=σ(t), where σ (t) is a polynomial.

Theorem 1(Kubota[7,1])
Three real polynomials a(t), b(t), and c(t), where max[deg(a),
deg(b)]=deg(c)>0, satisfy the Pythagorean condition
a2(t)+b2(t)=c2(t) if and only if they can be expressed in terms
of real polynomials u(t), v(t), and w(t) in the form:

a(t)=w(t)[u2(t)-v2(t)]
b(t)=2w(t)u(t)v(t)
c(t)=w(t) [u2(t)+v2(t)]

Theorem 2[1]: The polynomial curve corresponding to the
hodograph r´(t)=(x´(t),y´(t))=(w(t)[u2(t)-v2(t)],2w(t)u(t)v(t)), is
of degree n=2μ+λ+1, where λ=deg(w) and μ=
max(deg(u),deg(v)). Taking w(t)=1 and gcd(u(t),v(t))=1 gives
a primitive polynomial PH curve.

We are concerned primitive polynomial PH curves in this
paper and denote the primitive polynomial PH curve as PPH
curves.

Let r(t)=(x(t),y(t)) be a PPH curve whose control points are

pk=(xk,yk), k= 0,1,…, 2μ+1, and whose hodograph has
control vectors Δpk=pk+1-pk, k= 0,1,…, 2μ. This PPH curve is
constructed by two polynomials u(t) and v(t) given in

Bernstein-Bézier form as: u(t)=)(
0

tBu i
i

i

μ
μ

∑
=

 and v(t) =

)(
0

tBv i
i

i

μ
μ

∑
=

, where)(tBi
μ = μ

iC ti(1-t)µ-i, Ci

μ =
)!(!

!
ii −μ

μ
.

The Control Vector Scheme for Design of
Planar Primitive PH curves

Ching-Shoei Chiang, Sheng-Hsin Tsai, and James Chen

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

537

 We denote ri=[ui,vi], N(i,j)=(Ii,j,Ji,j)=

()ijjijiji vuvuvvuu +− , , ()
C
CC

k

ikiik μ

μμ

μϕ 2, −= , then we have the

following Theorem:

Theorem 3: The PPH curve constructed by two polynomials
u(t) and v(t) given in Bernstein-Bézier form as: u(t)=

)(
0

tBu i
i

i

μ
μ

∑
=

 and v(t)=)(
0

tBv i
i

i
μ

μ

∑
=

, then the relationship

between ri and control vectors of the hodograph is:

(2μ+1)Δpk=),(
0

ik
k

i
∑

=
ϕ μ

(Ii,k-i,Ji,k-i), 0≤k≤2μ (1)

Proof:

From the equation)()()(ttt BC
CCBB nm

jinm

ji

n

j

m

in
j

m
i

+

++

+

= , we derive:

)(

)(

)()()(

2
2

0
2

0

2
2

0 0

00

2

tB
C

CCuu

tB
C

CC
uu

tButButu

k
k k

iki
ik

k

i
i

ji
ji

ji
j

i j
i

n
j

j
j

n
i

i
i

μ
μ

μ

μμ

μ
μ

μμμ μ

μμ

∑ ⎟
⎠

⎞
⎜
⎝

⎛
∑=

∑ ∑=

⎟
⎠
⎞

⎜
⎝
⎛

∑⎟
⎠
⎞

⎜
⎝
⎛ ∑=

=

−
−

=

+
+= =

==

From the definition of the hodograph of PPH curve,
r´(t)=(x´(t),y´(t))=(u2(t)-v2(t), 2u(t)v(t)), we have

())(22 2
2

0
2

0
)()()(' tBC

CCvvuutvtutx k
k k

iki
k

i
ikiiki

μ
μ

μ

μμ

∑ ∑−=
=

−

=
−− ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

With similar approach, we derive:

())()()(2)(' 2
2

0 0
2 tBC

CCvuvutvtuty k
k

k

i k

iki
iikiki

μ
μ

μ

μμ

∑ ⎟
⎠
⎞

⎜
⎝
⎛∑ +==

= =

−
−− .

Compare with the property that r´(t) has the control vectors at
(2μ+1)Δpk, k=0,1, ,…,2μ, we prove this Theorem.

♦

Notice that φμ(k,i)=φμ(k,k-i),N(i,j)=N(j,i),so we can simplify
the Equation (1) into:

(2μ+1)Δpk

2),(
2/

0
ik

k

i
∑

=
ϕμ

N(i,k-i)+φμ(k,k/2)N(k/2,k/2) if k is even
=
 2),(

2/)1(

0
ik

k

i
∑
−

=
ϕμ

N(i,k-i) if k is odd.

 (2)

From Theorem 1, the relation between ri =[ui,vi] and Δpk can
be shown. For example, when μ= 3, we have

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+−
++−+−

+++−+−

++−+−

+−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ
Δ
Δ
Δ
Δ
Δ
Δ

=

)332,2
3

2
3(

)2332,3232

))22(5
6)1331(5

2),2
2

2
2(5

3)3131(5
2(

)))1221((10
9)0330(10

1),2121(10
9)3030(10

1(

))11(5
6)0220(5

2),2
1

2
1(5

3)2020(5
2(

)0110,1010(
)002,2

0
2
0(

6
5
4
3
2
1
0

7)('

vuvu

vuvuvvuu
vuvuvuvuvvuu

vuvuvuvuvvuuvvuu

vuvuvuvuvvuu

vuvuvvuu
vuvu

p
p
p
p
p
p
p

tC (3)

The control vectors can be found directly by u(t) and v(t). It

is not easy to predict the geometric variation of the PH curve
through u(t) and v(t). If we can construct the PH curve from
the control vectors or the hodograph of the curve, we can
establish a smart graphic user interface, request for control
points or control vector for the PPH curve, and find one or
more sets of ri=[ui,vi], i=0,1, .. , μ, it is helpful for us to design
a PH curve. The problems are: (1) How many control points
(of the hodograph) we need to construct a PH curve? (2) How
to find at least one set of ri=[ui,vi], i=0,1, .. , μ, satisfied the
requirement of PH curve.

III. CONVERSION FROM PPH CURVE TO BÉZIER CURVE
We analyze the degree of the freedom of the PPH curve

first, and then give an algorithm to construct the associated
PH curve in this section.

A Analysis of the Degree of Freedom
We would like to know how many control vectors we need

to construct the PPH curve. Consider equation (1), there are
6μ+4 variables in the system of equations, including ri=[ui,vi],
0≤i≤μ and Δpk=(Δxk, Δyk),0≤k≤2μ. So the degree of freedom
for the system of equations is 6μ+4.There are 2μ+1 equations
for Δxk, 0≤k≤2μ, and the other 2μ+1 equations for
Δyk,0≤k≤2μ, so we have 4μ+2 constraints for this system of
equations. Before we want find all solutions, we need to give
values to (6μ+4)-(4μ+2)=2μ+2 variables. The natural
selection for these 2μ+2 variables is ri=[ui,vi], 0≤i≤μ, it
convert the PPH curve into Bézier curve. Or, we can select
μ+1 control vectors among Δpk,=(Δxk, Δyk),0≤k≤2μ, and find
other control vectors with ri=[ui,vi], 0≤i≤μ.

B. Theorems for the Node Value
Theorem 4: The solutions for u2-v2=a, 2uv=c, (a,c)≠(0,0) is:
 (u,v) =± (0, a−) if a<0, c=0
 =± (a , 0) if a>0, c=0

 =± 2
1 (

aca

c

−+ 22 , aca −+ 22) if c≠0

Proof: Trivial.

Notice that we are working on the real number, so that there
are two solutions for each case. These solutions are two
couples not equal to (0,0) with different sign. We denote this
two solutions as (u,v) and –(u,v). Notice that (u,v) ≠ (0,0).
Notice further that when a=0, u=v=c=0. Both (u,v) and -(u,v)
always produce the same (a,c).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

538

Theorem 5: Let N(i,i)=(Ii,i, Ji,i)=(a,c) ≠(0,0),
N(j,j)=(Ij,j,Jj,j)=(b,d)≠(0,0), then (Ii,j

2-Ji,j
2, 2Ii,jJi,j)=(ab-cd,

ad+bc)≠(0,0).

Proof: It is easy to prove ((Ii,j)2−(Ji,j)2, 2Ii,jJi,j)=(ab-cd, ad+bc)
by carefully algebraic computation. Now, we need to prove
(ab-cd, ad+bc)≠(0,0). Assume (ab-cd, ad+bc)=(0,0). Let’s
treat b,d as variables, a,c as constants, the system of equation

has solution (b,d)=(a
c

0
0 − / ac

ca −
, 0

0
c
a / ac

ca −
) =(0,0) if

a2+c2≠0, which contradicts with (b,d)≠(0,0). If a2+c2=0, it
contradicts (a,c) ≠(0,0). So we proved (ab-cd, ad+bc)≠(0,0).

♦
Combine Theorem 4 and 5, we have the following corollary:

Corollary 1: Given N(i,i) and N(j,j), the vectors associated to
the solutions of N(i,j) are two couples with opposite sign.

Theorem 6: Let N(i,i) =(a,c)≠(0,0), N(i,j)=(e,f) ≠(0,0), then

N(j,j)=
ca 22

1
+

((a,c)⋅(e2-f2,2ef), (-c,a)⋅(e2-f2,2ef))≠(0,0). The

notation ⋅ is the inner product of two vectors.

Proof: assume N(j,j)=(b,d), from Theorem 5, we have
ab-cd=e2-f2 and cb+ad=2ef, from these two equations with b,d
unknown, we can easily find one solution for (b,d).

Now we need to prove (b,d)≠(0,0). That is, ((a,c)⋅(x,y),
(a,-c)⋅(y,x))≠(0,0) where x= e2-f2, y=2ef. Assume (b,d)=(0,0),
we need to solve ax+cy=0 and –cx+ay=0. Because a2+c2≠0,
the system of equations has solution (x,y)=(e2-f2, 2ef)=(0,0). It
implies (e,f)=(0,0) and contradicts with (e,f)≠(0,0). So we
proved N(j,j)=(b,d)≠(0,0).

♦
Because N(i,j)=N(j,i), the Theorem can be easily modify as:

Corollary 2: Let N(i,i) =(a,c)≠(0,0), N(j,i)=(e,f) ≠(0,0), then

N(j,j)=
ca 22

1
+

((a,c)⋅(e2-f2,2ef), (-c,a)⋅(e2-f2,2ef))≠(0,0).

Let’s give some graphs to denote the input/output node for

our Theorems and corollaries. In corollary 1, we draw
correspond graph in Fig. 1(a), using arrow to indicate input
node N(i,i) and N(j,j) points to the output node N(i,j). The
node N(i,j) in Fig. 1 is the output node for correspond
Theorems and corollaries, and other nodes which has arrow
point out are input nodes.

The graphs for Theorem 6 and corollary 2 are shown in Fig.
1(b) and (c) respectively.

Currently, we use two input nodes to find one output node.
The following Theorems and corollaries use three input nodes
to find one output nodes.

Theorem 7: Let N(k,k)=(e,f) ≠(0,0), N(k,i)=(a,c) ≠(0,0) and
N(k,j)=(b,d) ≠(0,0), then

N(i,j)= fe 22

1
+ ((e,f)⋅(ab-cd,ad+bc), (-f,e)⋅(ab-cd,ad+bc)≠(0,0).

Proof: The proof is similar to Theorem 6.
♦

From the fact that N(k,i)=N(i,k), N(k,j)=N(j,k), more

combination can be generated. The value for N(i,j) can be
generated from (1) N(k,k), N(i,k) and N(j,k), (2) N(k,k), N(k,i)
and N(j,k), (3) N(k,k), N(i,k) and N(k,j).

The graphs for the input/output nodes and number of
solutions for Theorem 7 are shown in Fig. 1(d),(e),(f)
respectively.

 (a) corollary 1 (b) Theorem 6, i<j (c) corollary 2, j<i

(d) Theorem 7, k<i<j (e) Theorem 7, i<j<k

 (f)Theorem 7, i<k<j
Fig. 1 I/O nodes for Theorems and corollaries

Notice that when k=i<j, Fig. 1(d) degenerate into Fig. 1(b),

when i<j=k, Fig. 1(e) degenerate into Fig. 1(c).

Theorem 7 can be extended by finding one node from other
3 nodes. For example, we find N(i,j) from N(k,i), N(k,j) and
N(k,k), as shown in Fig. 1(d). The other 3 cases are (1)
finding N(k,i) from N(i,j), N(k,j) and N(k,k), (2) finding N(k,j)
from other 3 nodes, (3) finding N(k,k) from other 3 nodes. So
there are 4 cases associated to Fig. 1(d). The extension for Fig.
1(e) and Fig. 1(f) are similar. Under these extensions, there
are 12 cases for finding one node from other 3 nodes
assuming these nodes are on the left upper side of the diagonal.
That is, these nodes N(i,j) has the properties i≤j. we emphasis
these 3 cases shown in Fig. 1(d)(e)(f) because they are the
cases we used in our algorithms.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

539

Now we start the algorithms for finding PPH curve from the
control vectors of its hodographs.

C. Algorithms

Given ri=[ui, vi], where 0≤i≤μ, we want to find the control
vectors for associated Bézier Curve. The associated Bézier
curve can be constructed from Equation (2) directly. We can
find all (Ii,j,Ji,j), 0≤i≤μ, 0≤j≤μ from ri=[ui, vi], and find the
control vectors Δpk, 0≤k≤2μ, from Equation (2). With the
reference point p0=(x0,y0), we can draw the Bézier curve. Now
we would like to construct the PH curve in the other way. It is
not so easy to preview the curve from ri, 0≤i≤μ, so we would
like to construct the PPH curve by indicating part of the
control vectors, and calculate the others. As mentioned in
section A, we need to know μ+1 control vectors of the
hodograph in order to find ri, 0≤i≤μ, so that other control
vectors can be found through ri and the control vectors we
found.

Consider Equation (3) as an example. Given any four
control vectors from Δpk, 0≤k≤6, we want to find other
control vectors so that the curve can be drawn. Assume we
know Δpk, 0≤k≤3, and want to find Δpk, 4≤k≤6, we can
generate 8 degree 2 equations by the first 4 row of Equation 3,
and there are 8 variables, [uk, vk], 0≤k≤3, among them. There
are at most 28=256 solutions in the system of equation. The
algorithms we proposed here try to reduce the number of
solution with more efficient way.

We illustrate three algorithms in this section. The first
algorithm and second algorithm select the first μ+1 control
vectors Δpk, 0≤k≤μ, and find others. The first algorithm finds
ri, 0≤i≤μ, first, and then finds N(i,j)=(Ii,j,Ji,j)=
()ijjijiji vuvuvvuu +− , , the control vectors Δpk, 0≤k≤2μ, is
produced by Equation (2) finally. The second algorithm finds
N(i,j) directly, and then derives the other control vectors .The
third algorithm selects both side of the control vectors, that is,
Δpk, 0≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
3μ +1≤k≤2μ, and find others. All of these three

algorithms use the Equation (2).

We use Equation (3) to illustrate the idea of the first
algorithm. In Equation (3), we can find two solutions for
r0=[u0,v0] from Theorem 4 and the first row of Equation (3):
7(Δx0, Δx0)=(u0

2-v0
2, 2u0v0). We further solve r1=[u1,v1] by

solving system of linear equations in the second row of
Equation (3): 7(Δx1, Δx1)=(u0u1-v0 v1, u0v1+u1v0). Repeat the
process on the third row and fourth row of Equation (3), we
can find single solution for [u2,v2] and [u3,v3], associated with
each solution of r0. With all of the ri, i=0,1,2,3, we can find
Δpk, 4≤k≤6 directly from Equation (2). We totally find two
sets of control vectors and produce at most two curves.
However, these two sets of ri produce the same curve. We list

the idea in the following algorithm: (Let P ⎥
⎦

⎤
⎢
⎣

⎡

−
=

10

01
,Q ⎥

⎦

⎤
⎢
⎣

⎡
=

01
10

)

Algorithm 1 // Given Δpk, 0≤k≤μ, find Δpk, μ+1≤k≤2μ
1. Find r0=[u0, v0] from the equation:

(2μ+1)Δpk= ⎟
⎠
⎞⎜

⎝
⎛ TT Qr0000 rPrr , =(u0

2-v0
2, 2u0v0)

2. Select any solution for r0=[u0, v0].
3. For k=1 to μ

Find rk=[uk, vk] from the equation:

[uk, vk]=))(0,(2
12

2
0

2
0 vuk +

+

μϕ
μ

[Δxk, Δyk] ⎥
⎦

⎤
⎢
⎣

⎡ −
uv
vu

00

00

- ()∑
−

=+

1

1
2
0

2
0

,
))(0,(2

1 k

i
ik

vuk μ
μ

ϕ
ϕ ⎥⎦

⎤
⎢⎣
⎡

−−
TT

ikik Qrii rPrr , ⎥
⎦

⎤
⎢
⎣

⎡ −
uv
vu

00

00

 (4)
4. For k=μ+1 to 2μ

Find Δpk= (Δxk, Δyk) from the equation:

(Δxk, Δyk)= 12
1
+μ

()∑
=

k

i
ik

0
,μϕ ⎟

⎠
⎞⎜

⎝
⎛

−−
TT

ikik Qrii rPrr ,

The equation (4) can be derived from Equation (1) with (Ii,k-

i,Ji,k-i)= ⎟
⎠
⎞⎜

⎝
⎛

−−
TT

ikik Qrii rPrr , . We can simplify this equation into:

2 ()0,kμϕ ⎟
⎠
⎞⎜

⎝
⎛ TT

kk Qr00 rPrr ,

=(2μ+1)(Δxk,Δyk)- ()∑
−

=

1

1
,

k

i
ikμϕ ⎟

⎠
⎞⎜

⎝
⎛

−−
TT

ikik Qrii rPrr ,

So, we can solve [uk, vk] via [u0, v0], [u1, v1],…, [uk-1, vk-1].

How many different solutions for this algorithm? From
Theorem 2, there are two solutions for [u0, v0] in the first step
of the algorithm, call them [u0, v0] and −[u0, v0]. The steps (2)
gives single solution on each [u0, v0] and −[u0, v0] for [uk, vk],
1≤k≤μ, and in the third step, we find unique control points
(Δxk, Δyk), μ+1≤k≤2μ on each [u0, v0] and −[u0, v0]. Observe
Equation (4), we find two sets of solutions, each [uk, vk]
associated with the other solution
−[uk, vk].

We have two set of solutions, they are [uk, vk], 0≤k≤μ, and
−[uk, vk], 0≤k≤μ. In step 3 of Algorithm 1, we found these two
sets of solutions produce the same control vectors
Δpk, μ+1≤k≤ 2μ, because:
()TT

ikiiki QrrPrr −− , =()TT
ikiiki rQrrPr)()(,)()(−− −−−−

So we conclude that the first algorithm produce single curve.

In Algorithm 1, we find all ri=[ui, vi], 0≤i≤μ, so that all of
the control vectors Δpk, μ+1≤k≤2μ can be found. In fact, we
can find all N(i,j) from Δpk, 0≤k≤μ and then find Δpk,
μ+1≤k≤2μ directly from N(i,j) by the following algorithm:

Algorithm 2: // Given Δpk, 0≤k≤μ, find Δpk, μ+1≤k≤2μ
1. Find N(0,0) from Δp0. // Equation (2)
2. For j=1 to μ do {

21 Find N(0,j) from Δpj // Equation (2)
22 For i=1 to j-1

Find N(i,j) from N(0,0), N(0,i), N(0,j) //Thm 7
23 Find N(j,j) from N(0,0) and N(0,j) } // Thm 6

3 For k=μ+1 to 2μ do

Δpk= 12
1
+μ

()∑
=

k

i
ik

0
,μϕ N(i,k-i)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

540

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=10k=9

k=7

k=8

(a) Example for Algorithm 2 (b) Strategy for Algorithm 2
Fig. 2 Diagrams for Algorithm 2

Let’s use an example to explain Algorithm 2. We draw Fig.

2(a) to illustrate the idea of Algorithm 2. In Fig. 2(b), the
arrow from upper left to the lower right indicates the vector at
the beginning of the arrow is an input vectors the arrow from
lower right to the upper left indicates the vector at the end of
the arrow is an input vectors. We select μ=5 as the example.
In Algorithm 2, the step 1 find the initial node N(0,0) from
Δp0. In the first iteration of step 2 (j=1), we find N(0,1) from
Δp1 first (step 21), and skip the step 22 because the for loop
has initial value i=1 to the value j-1=0, Now we know N(0,0)
and N(0,1), we can find N(1,1) via Theorem 6. In the second
iteration of step 2(j=2), we find N(0,2) from Equation (2)
(step 21), and find N(1,2)(step 22) from N(0,0), N(0,1), N(0,2)
via Theorem 7, and Find N(2,2)(step 23) from N(0,0) and
N(0,2) via Theorem 6. Now we know all of the node N(i,j),
where j≤2, i≤j. Repeat step 2, we can find all N(i,j).

Generally, in beginning iterations in step 21, we assume
that the value of the node j≤k-1 is known, as marked the area
(1) in the Fig. 2(b). With the new input value Δpk, we can find
the single value of new node N(0,k) from Equation (2). Notice
that all of the nodes used in this step is known except N(0,k).
We further find the single value of N(i,k), 1≤i≤k-1 from
N(0,0), N(0,i) and N(0,k) by Theorem 7 in step 22, and find
the single value for N(k,k) from N(0,0) and N(0,k) by
Theorem 6 in step 23. Repeat this process, we can find all
value of N(i,j), 1≤i≤μ,1≤j≤μ. After we find all node value,
0≤i≤μ,0≤j≤μ, other control vectors can be easily found in step
3 by Equation (2).

Notice that we find single value for all control vectors. That
is, we construct single curve in this algorithm.

)
2

,0(N ⎥⎦
⎥

⎢⎣
⎢μ

),
2

3(N μμ
⎥⎦
⎥

⎢⎣
⎢

⎣ ⎦ 1
2

3p
+

Δ μ

⎣ ⎦2
p μΔ

(a) algorithm 2 (b) algorithm 3
Fig. 3 I/O control vectors for algorithm 2 and 3

In the second algorithm, we try to find the last μ control

vectors (Δpk,μ+1≤k≤2μ) from the first μ+1 control
vectors(Δpk,0≤k≤μ). We use Fig. 3(a) to represent the input
and output of the control vectors for this algorithm. The
disadvantage of the algorithm is that the final part of the curve

is not easy to predict. So, we change our approach to find the
control vectors in the middle by giving two sides of the
control vectors, which produce the third algorithm. Fig. 3(b)
represents the input and output of the control polygon for the
following algorithm:

Algorithm 3: Given the control victors Δpk, 0≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ and

⎥⎦
⎥

⎢⎣
⎢

2
3μ +1≤k≤2μ, find the control vectors Δpk, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
3μ .

1. Find N(i,j), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , 0≤j≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , i≤j by Algorithm 1 using

Δpk, k=0≤k≤ ⎥⎦
⎥

⎢⎣
⎢

2
μ as input vectors.

2. Find N(i,j), ⎥⎦
⎥

⎢⎣
⎢

2
μ +1≤i≤μ, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1≤j≤μ, i≤j by modifying

Algorithm 1 using Δpk, ⎥⎦
⎥

⎢⎣
⎢

2
3μ +1≤k≤2μ as input vectors.

3. Find N(⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) by Theorem 5.

4. For j= ⎥⎦
⎥

⎢⎣
⎢

2
μ +1 to μ

For i=0 to ⎥⎦
⎥

⎢⎣
⎢

2
μ

Find N(i,j) by Theorem 7 using N(i,j-1), N(j-1,j-1),
and N(j-1,j) as input. // Theorem 7

5. For k= ⎥⎦
⎥

⎢⎣
⎢

2
μ +1 to ⎥⎦

⎥
⎢⎣
⎢

2
3μ , find Δpk. // Equation (2).

)
2

,0(N ⎥⎦
⎥

⎢⎣
⎢μ

⎣ ⎦ 1
2

3p
+

Δ μ

⎣ ⎦2
p μΔ

)
2

,
2

(N ⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢ μμ

)1
2

,1
2

(N +⎥⎦
⎥

⎢⎣
⎢+⎥⎦

⎥
⎢⎣
⎢ μμ)

2
,0(N ⎥⎦

⎥
⎢⎣
⎢μ

)
2

,
2

(N ⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢ μμ

)1
2

,1
2

(N +⎥⎦
⎥

⎢⎣
⎢+⎥⎦

⎥
⎢⎣
⎢ μμ

 (a) Step 3 (b) Step 4, 1st iteration

)
2

,0(N ⎥⎦
⎥

⎢⎣
⎢μ

)
2

,
2

(N ⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢ μμ

)1
2

,1
2

(N +⎥⎦
⎥

⎢⎣
⎢+⎥⎦

⎥
⎢⎣
⎢ μμ

(c) Step 4, after 1st iteration
Fig. 4 Diagrams for Algorithm 3

In algorithm 3, the first step find N(i,j), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , 0≤j≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ ,

i≤j, marked in area (1) in Fig. 4(a), using the idea in algorithm
1. With simple modification, we can easily find N(i,j),

⎥⎦
⎥

⎢⎣
⎢

2
μ +1≤i≤μ, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1≤j≤μ, i≤j, marked in area (2) in Fig. 3(a).

These two nodes N(⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ), and N(⎥⎦

⎥
⎢⎣
⎢

2
μ +1, ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), as mark

solid circle in Fig. 4(a), are find at the first and second steps
respectively. The value of nodes we did not find yet is in area
(3). Notice that all N(i,i), 0≤i≤μ is found already. In this
situation, all N(i,j) can be derived by corollary 1. However,
we find 2 solutions in corollary 1 for all nodes in area (3),

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

541

which makes the final Δpk, ⎥⎦
⎥

⎢⎣
⎢

2
μ +1≤k≤ ⎥⎦

⎥
⎢⎣
⎢

2
3μ , are hard to select,

because the selection of correct value for each node is hard.
So, we try to use corollary 1 as few as possible.

In step 3, we find the node N(⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) in the lower right

corner of area (3) by using corollary 1, as marked square in
Fig. 4(a), which produce two couples with different sign.
Let’s select one value for N(⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), and continue the

algorithm, consider the first iteration of step 4(j= ⎥⎦
⎥

⎢⎣
⎢

2
μ +1), the

node N(i, ⎥⎦
⎥

⎢⎣
⎢

2
μ +1), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ , as marked triangle in Fig. 4(b), can

be found by Theorem 7, using N(i, ⎥⎦
⎥

⎢⎣
⎢

2
μ), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ ,

N(⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ)(solid circle), and N(⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1)(square) as input.

Notice that each node produce single value for each value of
N(⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) we found in step 3. There are two sets of values

for nodes in area (3).
Start from the second iteration (j> ⎥⎦

⎥
⎢⎣
⎢

2
μ +1) of step 4, assume

all nodes N(i,j), 0≤i≤ ⎥⎦
⎥

⎢⎣
⎢

2
μ ,0≤j<j´, shown in the area (31) in Fig.

4(c), produce single value if we select one value for
N(⎥⎦

⎥
⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), we want to produce the value N(i,j´),

0≤i≤ ⎥⎦
⎥

⎢⎣
⎢

2
μ by Theorem 7, using N(i,j´-1), N(j´-1,j´-1), N(j´-1,j´)

as input. Notice that N(i,j´-1) in area (31) has single value,
N(j´-1,j´-1) on the diagonal has single value, and N(j´-1,j´) in
area (2) also has single value. From the observation, we know
N(i,j), 0≤i≤ ⎥⎦

⎥
⎢⎣
⎢

2
μ ,0≤j≤j´ has single value. At the end of iteration,

we find single value for all nodes, which produce single
control vectors, which produce single curve.

With the second value in N(⎥⎦
⎥

⎢⎣
⎢

2
μ , ⎥⎦

⎥
⎢⎣
⎢

2
μ +1), we can find the

second set of values for all node in area (3) in Fig. 4(a), which
produce the second curve. So, this algorithm produces at most
2 curves.

All 3 algorithm3 takes O(μ) times, where μ is the maximum
degree of u(t) and v(t).

IV. EXPERIMENTAL RESULT
We implement all three algorithms using Maple 10. These

programs works on PC with Pentium D 2.8GHz CPU and
1GB RAM. These examples in 3 algorithms takes very shout
time to compute output vectors (about 0.015 seconds for each
algorithm).

Example 1:
Given the control points p0=(0,0), p1=(1,2), p2=(2,3.6),
p3=(3,4.7), p4=(4,5.3), as shown in Fig. 5(a), both the
algorithm 1 and algorithm 2 produce the same curve, as
shown in Fig. 5(b). In algorithm 1, we find the value
(u0,v0)=(3.365,2.080),(u1,v1)=(2.993,1.478),(u2,v2)=(2.372,0.3
10)and(u3,v3)=(2.478,−0.911). Both algorithms find the value
for Δp4=[0.975,0.180], Δp5=[0.881,-0.199] and Δp6=[0.759,-

0.645]. This result produces p5=(4.975,5.480),
p6=(5.855,5.281), p7=(6.614,4.636). The output curve is
shown in Fig. 5(b).

(a) input (b) result

Fig. 5 I/O vectors and result curves for example 1

Example 2:
Given the control vectors Δp0=[1,2], Δp1=[1,1.2] with
reference point at the origin, so that the control points p0=(0,0),
p1=(1,2), p2=(2,3.2), the front part of the control polygon is
shown in Fig. 6(a). Given the control vectors Δp5=[-1.2,-1],
Δp6=[-1.2,-0.5], with a reference point p5 at the origin, the end
part of the control polygon is shown in Fig. 6(b). With
algorithm 3, we find two solutions. The first solution is Δp2=[-
0.188,0.801], Δp3=[-1.058,1.004], and Δp4=[-0.850,-0.531],
and its associated curve is shown in Fig. 6(c). The second
solution is Δp2=[1.234,-0.013], Δp3=[1.058,-1.004], and
Δp4=[-0.377,-1.358], and its associated curve is shown in Fig.
6(d).

(a) input from left (b) input from right

(c) the first result (d) the second result
Fig. 6 I/O vectors and result curves for example 2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

542

V. CONCLUSION
The PPH curve is a Bézier curve but not vice versa. When

we want design PPH curve from control points of Bézier
curve, only part of control vectors we need, and produce the
other parts of control vectors. Various ways we can select the
input control vectors. If we select one side of the control
vectors, we can find single curve which has PPH properties.
This selection makes the algorithm simple and straight
forward. However, the end part of the curve and the output
control vector is sensitive and unpredictable. If we select both
side of the control vectors, the associated algorithm find two
curves which have PPH properties. Using these two selections,
all of the algorithms proposed in this paper take very short
time to construct the PPH curves.

REFERENCES
[1] R.T. Farouki, T. Sakkalis, “Pythagrorean Hodographs” IBM J. RES.

DEVELOP. VOL 34, No. 5, September 1990.
[2] Farouki,R.T.,1992.Pythagorean-hodograph Curves in Practical Use.

In:Barnhill,R.E. (Ed.), Geometry Processing For Design and
Manufacturing. SIAM, Philadelphia, p.3-33.

[3] Farouki,R.T.,Neff,1990.Analytic properties of plane offset
curves.Computer Aided Geometric Design,7(1-4):83-99.

[4] Moon, H.P., Farouki, R.T., “Construction and shape analysis of PH
quintic Hermite interpolants”, Computer Aided Geometric Design, 2001,
18, 93-115.

[5] W. Lü “Rationality of the offsets to algebraic curves and surfaces”,
Applied Mathematics, 9 (Ser. B), 265-278.

[6] W. Lü, “Offset-rational parametric plane curves”, Computer-Aided
Geometric Design, 12, 601-616, 1995.

[7] K.K.Kubota, “Pythagorean triples in unique factorization domains”,
American Mathematical Monthly, 79, 503-506, 1972.

