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Abstract—The simulation of extrusion process is studied widely 

in order to both increase products and improve quality, with broad 
application in wire coating. The annular tube-tooling extrusion was 
set up by a model that is termed as Navier-Stokes equation in 
addition to a rheological model of differential form based on single-
mode exponential Phan-Thien/Tanner constitutive equation in a two-
dimensional cylindrical coordinate system for predicting the 
contraction point of the polymer melt beyond the die. Numerical 
solutions are sought through semi-implicit Taylor-Galerkin pressure-
correction finite element scheme. The investigation was focused on 
incompressible creeping flow with long relaxation time in terms of 
Weissenberg numbers up to 200. The isothermal case was considered 
with surface tension effect on free surface in extrudate flow and no 
slip at die wall. The Stream Line Upwind Petrov-Galerkin has been 
proposed to stabilize solution. The structure of mesh after die exit 
was adjusted following prediction of both top and bottom free 
surfaces so as to keep the location of contraction point around one 
unit length which is close to experimental results. The simulation of 
extrusion process is studied widely in order to both increase products 
and improve quality, with broad application in wire coating. The 
annular tube-tooling extrusion was set up by a model that is termed 
as Navier-Stokes equation in addition to a rheological model of 
differential form based on single-mode exponential Phan-
Thien/Tanner constitutive equation in a two-dimensional cylindrical 
coordinate system for predicting the contraction point of the polymer 
melt beyond the die. Numerical solutions are sought through semi-
implicit Taylor-Galerkin pressure-correction finite element scheme. 
The investigation was focused on incompressible creeping flow with 
long relaxation time in terms of Weissenberg numbers up to 200. The 
isothermal case was considered with surface tension effect on free 
surface in extrudate flow and no slip at die wall. The Stream Line 
Upwind Petrov-Galerkin has been proposed to stabilize solution. The 
structure of mesh after die exit was adjusted following prediction of 
both top and bottom free surfaces so as to keep the location of 
contraction point around one unit length which is close to 
experimental results. 
 
Keywords—wire coating, free surface, tube-tooling, extrudate swell, 

surface tension, finite element method.  

I. INTRODUCTION 
IMULATION of wire coating problem is a way to deal 
with real problems especially for difficulties that might be 
encountered experimentally in extrusion processes of 
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polymeric solutions. The technique can have vast applications 
in the industry of wires, cables, fiber optics and numerous 
types and sizes of containers that are widely used in houses, 
factories and vehicles around the world. 

In general, wire coating process modeling consists of two 
particular dies: pressure tooling within which the wire coating 
process begins coating the die cast, and tube tooling in which 
wire is coated by polymer melt outside the die. For the second 
die, the location where the polymer melt flows to contact the 
wire at the beginning of coating is called the contraction point. 
The factors influential to the contraction point are pressure, 
velocity, viscosity, surface tension of polymer melt, and wire 
speed. These are considered under the following assumptions: 
incompressible, laminar, isothermal flow and no gravity. In 
addition, surface tension has been considered in extrudate 
swell with no slip condition at die wall. 

 Computational studies for wire coating flows are abound in 
literature with industry-related concerns. For two dimensional 
axisymmetric incompressible fluid employing finite element 
method (FEM) under isothermal condition, Caswell and 
Tanner[1] have designed wire coating die for low speed non-
Newtonian fluid through power law model. Han and Rao[2] 
studied wire coating extrusion in theory and experiment for 
pressure-tooling die using the materials of low density 
polyethylene (LDPE) and high density polyethylene (HDPE) 
via applying the same model. In 1986, Mitsoulis[3] simulated 
the creeping flow of Newtonian and Power law fluid for wire 
coating problem in axisymmetric system. Binding et al.[4] 
studied high speed wire coating process for inelastic 
constitutive model. They varied viscosity models and 
commented on the limitation of modeling approach. Then, 
Mutlu et al.[5] employed  tube-tooling die for coating 
problem. In their work, viscoelastic coating flows were 
simulated and solved by FEM technique for the PTT model 
due to the past work of Ngamaramaramvaranggul and 
Webster [6,7] made us know that PTT model can be fit well 
for viscoelastic fluid better than other models because it can 
be predict the properties of high elastics for comparison curve 
shown in Tanner’s book [8]. Stability was attained by mean of 
coupled and decoupled schemes for single mode. Recently, 
Matallah et al.[9]  considered with tube-tooling wire coating 
flow for HDPE applying FEM technique for the multi-mode 
Phan-Thien/Tanner (PTT) constitutive model. In another 
research, Ngamaramvaranggul and Webster[7] have focused 
on  wire coating problem for  LDPE. They publish a paper of 
two dimensional annular pressure-tooling wire coating flow 
using FEM to solve an isothermal and free surface flow for 
single-mode PTT model. 
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 In the present article, tube-tooling wire coating flow has 
been studied under the influence of surface tension to adjust 
free surface shape according to the study of Anastasiadis[10] 
about effect of surface tension on polymer melts so in 1998 he 
used the sessile drop method to predict a free surface curve. 
Later on a numerical method how to solve his work has been 
shown by Neumann and Spelt [11]. An exponential PTT 
constitutive and momentum equations have been solved by 
semi-implicit Taylor-Galerkin scheme under treatment of 
streamline upwind Petrov-Galerkin (SUPG), which was used 
by Hughes and Brooks [12] for its strong consistent 
stabilization nature. the past work of 
Ngamaramaramvaranggul and Webster [6,7] made us know 
that PTT model can be fit well for viscoelastic fluid better 
than other models because it can be predict the properties of 
high elastics for comparison curve shown in Tanner’s book 
[8]. Stability was attained by mean of coupled and decoupled 
schemes for single mode. Recently, Matallah et al.[9]  
considered with tube-tooling wire coating flow for HDPE 
applying FEM technique for the multi-mode Phan-
Thien/Tanner (PTT) constitutive model. In another research, 
Ngamaramvaranggul and Webster[7] have focused on  wire 
coating problem for  LDPE. They publish a paper of two 
dimensional annular pressure-tooling wire coating flow using 
FEM to solve an isothermal and free surface flow for single-
mode PTT model. 

In the present article, tube-tooling wire coating flow has 
been studied under the influence of surface tension to adjust 
free surface shape according to the study of Anastasiadis[10] 
about effect of surface tension on polymer melts so in 1998 he 
used the sessile drop method to predict a free surface curve. 
Later on a numerical method how to solve his work has been 
shown by Neumann and Spelt [11]. An exponential PTT 
constitutive and momentum equations have been solved by 
semi-implicit Taylor-Galerkin scheme under treatment of 
streamline upwind Petrov-Galerkin (SUPG), which was used 
by Hughes and Brooks [12] for its strong consistent 
stabilization nature. 

II. GOVERNING EQUATIONS 
For incompressible isothermal fluid with no gravity, the 

continuity equation is obtained from the conservation of mass 
in terms of velocity gradient. The Navier-Stokes equations 
from the conservation of momentum contain viscous term, 
convective acceleration and pressure gradient. Both non-
dimensional equations are expressed in the forms:  

                             0=⋅U∇                   (1) 

pt ∇∇∇ −⋅−⋅=∂∂ UUTU/ Re)Re(                          (2) 

Here, U is fluid velocity vector, T is stress tensor, p is 
isotropic fluid pressure, ∇  is differential operator and Re is 
non-dimensional Reynolds number 

0
Re

μ
ρUR

=  

In this problem,  ρ  is fluid density, U is characteristic 
velocity in term of wire speed, R is characteristic length in 
term of die radius and 0μ  is the zero-shear viscosity which 

combines a polymeric solute viscosity 1μ  and a solvent 2μ  

as 210 μμμ += . Further information regarding non-
dimensionalization is available in Ngamaramaramvaranggul 
and Webster [6].  

    The equation of viscoelastic fluid for exponential Phan-
Thien/Tanner (EPTT) model [7] has considered below. 

})([-(e{Wf-2 ††
1t ])We τττττττ ⋅+⋅+⋅⋅+⋅+= DDUUUD ∇ξ∇∇∇μ

                                                                                 (3) 
Where  

    a nondimensional Weissenberg number is 
L
U

We 1λ
= , 

 a derivative of extra stress tensor with respect to time is �τ t   

 the deformation rate tensor D is defined as )( †
2
1 UUD ∇∇ += , 

 a constant valueξ , 
 the extra stress tensor   τ    is then  

                       defined by    D11 2μλ =+
∇
ττf , 

 
 the exponential Phan-Thien/Tanner function is    
          

                      ⎥
⎦
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Where   †)()( UτUτU ∇⋅−∇⋅−∇⋅+∂∂= ττ/τ
∇

t  

and  DT 22μ+= τ  

III. NUMERICAL DISCRETIZATION AND PROBLEM 
SPECIFICATION 

Numerical method is used to solve differential forms of 
equations (1), (2) and (3) by transforming the continuous form 
of differential equations to discrete set of linear equations as 
following scheme. 

 
a. Fractional step 

In this paper, the fractional step is used to solve non-linear 
partial differential equations (2) and (3) with semi-implicit 
time step Taylor expansion termed as Taylor-Galerkin 
algorithm [7]. The discretization stages are as follows,  

Stage 1a: 

This stage is related to updating both stress and non-
solenoidal velocity fields. The half time step of velocities and 
stresses can be derived from the equations below: 

)(]Re)2([)Re
2
1

2
1

22
nnnn p(

t
DDUUDUU n −⋅∇+∇−∇⋅−+⋅∇=−

Δ
++ μμ2 τ  
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This stage is used for solving half time step of velocity and 
stress by a method of Jacobi iterative solver. Solutions of this 
stage are the input for stage 1b as below.  

Stage 1b: 

The transient stage of intermediate velocities and a full time 
step of stresses are updated as in the following equations: 

)(]Re[]2([)Re *
22

* 2
1

nnnn p(
t

DDUUDUU −⋅∇+∇⋅−⋅∇+∇−⋅∇=−
Δ

+ μμ τ  

2
1

]})([{ †1 ++ ⋅∇−⋅∇−⋅−−=−
Δ

nnn Wef
t

We ττττττ UUUD ∇μ2)( 1
 

Having obtained the results from previous stage, the 
intermediate velocities and a full time step of stresses are 
calculated by the same method of stage 1a; namely, Jacobi 
iteration. When stresses have converged at this stage the 
velocities yet have not; therefore, velocity quantities at this 
stage are applied to compute pressure in stage 2 and then full 
time step of velocities at the final stage.     

Stage 2: 
 

Full time step of pressure is related to velocity according to 
the equation: 

*1 )(
Re2

U⋅∇=−
Δ + nn ppt 2∇  

Pressure is computed through Cholesky decomposition after 
intermediate velocity values from stage 1b are computed. 
Hence, the full time step pressure is conducted to correct the 
full time step velocity in next stage. 
 
Stage 3: 

)-()Re n1*1 pp
t

nn ++ −∇=−
Δ

UU(2
 

Solve full time step velocities by Jacobi iterative method.  
   After time expansion by finite difference method, the weight 
residual of Galerkin method has been used to discretise space 
in order to set up the equations of stages 1-3 as the system of 
algebraic linear equations therefore the complex non-linear 
differential equations become to simple linear equations.        

b. Surface tension 

 In 1998, Anastasiadis[10] has studied the effect of surface 
tension on two types of polymer melts, linear low-density 
polyethylene (LLDPE) and high-density polyethylene (HDPE) 
by applying the sessile drop method to find a free surface 
curve as shown in figure 1. Further details have been provided 
by Neumann and Spelt [11]. 

 
Fig. 1. Schema of the sessile drop 

 
The relationship between coordinates x and z in 

dimensionless form is given by the Bashforth–Adams in 1882 
[13]. The free surface shape of a pendant/sessile drop as 
shown in figure 1 can be constructed based on the following 
equations: 

x
z

BdS
d φφ sin2

−+=            (4) 

φcos=
dS
dX

 (5) 

φsin=
dS
dZ

 (6) 

0)0()0()0( === φZX  

LV

gaB
γ
δρ

=  

where  the dimensionless variables, X, Z, and S are 
                     defined as cxX = ,  

             φ  is angle between the tangent and the profile 
                                at point (x,z) 
              (x,z) is a coordinate of point in drop profile  

 S is distance from the drop apex to coordinate (x,z) 
 a  is radius of curvature at the drop apex 
 g  is gravitational acceleration constant (m/s2)(LT-2) 
 ρ  is polymer density (kg.m-3)(ML-3) 

 LVγ  is the interfacial tension between the liquid and   
                    its vapor 

Anastasiadis [10] has calculated all parameters and used 
them to predict the shape of pendant/sessile drop for polymer 
melt at temperatures up to 300°C. Free surface shape has been 
calculated by varying B values at B ={ -2.429, -1.5539, -
0.989, -0.779, -0.680, -0.649, -0.570, -0.440} and an optimum 
B value for HDPE of -0.680 has been used to modify 
streamline path for free surface location, which has already 
been explained by Ngamaramvaranggul and Webster [14,15]. 
After the calculation of free surface path without surface 
tension, the approximation of first position is a bit higher so 
we have obtained condition of surface tension to adjust the 
free surface path.  The coordinate (x,z) for free surface shape 
of sessile drop that appearing in equations (4)-(6) has been 
solved by predictor-corrector method of Runge-Kutta up to 
four order [16]. The approximation of second free surface 
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curve for coordinate (x,z) is a bit lower than the first curve at 
the beginning and growth up to near the position of first curve 
for a while then dropped immediately so the second position 
has been determined from the beginning position until the 
highest position and cut the last part when it dropped. The 
average path from both locations has been calculated to be 
proper position. 
 
c. Flowchart 

 The easy way to depict the schema for solving a numerical 
finite element method through 3 fractional steps explained 
above can be outlined schematically in figure 2. The basis 
algorithm shows the simulation of isothermal flow for single-
mode with couple scheme as following explanation.  First, 
generate finite mesh for input file that is used for setting up 
shape functions and matrices in order to formulate the system 
of linear equations then solve the equations by fractional steps 
at the same time of applying the stream line upwind Petrov-
Galerkin to maintain the stability and accuracy. After solution 
is computed, calculate free surface location and adding 
surface tension for die swell. Adjusting mesh according to 
new location and modify solution that is belong to new 
position. Check the final solution whether it is going to 
converge. Repeat the beginning step if the solution is too far 
from the acceptable result until it is less than the small amount 
that we set to 10-5.  At the end of the process, save the 
converge solution in file and analyse the result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 2. Flowchart for wire coating flow program 

IV. PROBLEM SPECIFICATION  
A schema of tube-tooling die is shown in figure 3 and the 

considered domain is displayed as simple finite element mesh 
in figure 4. For this problem, the fine mesh has been generated 
with 4,714 elements; 9,755 nodes and 61,015 degrees of 
freedom (DOF).  
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. Schema of tube-tooling die 
 

 
 
 
 
 
 
 

Fig. 4. Simple Mesh pattern 
 

Schema of boundary domain is shown in figure 5. At inlet 
boundary (AA/), 0=== θθττ rrru  , )(rfvz =  , 

)(rhrz =τ  and  )(rgzz =τ .  At die walls (ABCD, A/ B/ 

C/D/), there is no slip so 0== zr vu . For top and bottom 
free surfaces (D/ E/F/, DE), 0=p  

 
Fig. 5. Schema of boundary domain 

V. RESULTS AND DISCUSSION RESULTS AND DISCUSSION 
     As shown in Figure 6, the velocity vector is in annular flow 
at the inlet and plug flow at the outlet. The color contours are 
exhibited for Weissenberg number equals 200 (We=200) in 
Figure 7a-g with the highest value of radial velocity at the die 
exit (Figure 7a) due to swell but no considerable change in the 
velocity value. Axial velocity almost vanishes at the inlet 
whilst it is maximized in section DCDC ′′  as indicated in 

Flowchart 
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Figure 7b according to conservation of flow rate the entrance 
has larger area and smaller velocity when compared against 
section DCDC ′′ . 

Development of the annular flow at the inlet to the plug 
flow at the outlet is shown in Figure 6 with the maximum set 
at about 1.62 units. Pressure varies linearly in a descending 
manner from maximum to minimum with a gradient 
equivalent to seventeen units as shown in Figure 7c at die exit. 
The flow is deformed when passing a corner leading to a high 
shear rate as displayed in Figure 7d at every corner when 
direction changes especially in the corner of smaller 
section DCDC ′′ .  It has been observed that extension rate of 
Figure 7(e) at small part of die geometry is a big value 
because the flow has been squeezed. 

 

 
 

Fig.  6. Velocity vector 
 
 

 
 

 (a) Radial velocity ru      (b) Axial velocity zv  
 
 

 
  
 (c) Pressure P                      (d) Shear stress Trz 
 

 
(e) shear rate,                  (f) extension rate 

 
Fig. 7. Color contour of We=200 for 

              (a) radial velocity ru ,       (b) axial velocity zv , 
              (c) pressure P,                     (d) shear stress Trz 
    (e) Shear rate                       (f) Extension rate 
                                             
 At various Weissenberg numbers, line contours for top 
surfaces are compared and nearly the same trend is detected 
for every We; therefore, every figure is displayed for the 
largest We of 200 in Figures 8(a)-(d).  

Fig. 8a displays the value of shear rate at top surface, which 
rises sharply at point C ′  and the die exit to 241.84 units 
because of sharp corner and swell.  The extension rate is high 
at die exit and oscillated beyond die as shown in Fig. 8(b). 
The flow is deformed at corner C ′  and the die exit causing 
shear stress to increase to 2.29 units as can be seen in Figure 
8c. Normal stress of figure 8d indicates a sharp rise of 3.71 at 
point C ′ . 
 

            
(a) Shear rate at top surface 
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(b) Extension rate at top surface 

 

            
(c) Shear stress Trz at top surface 

 

            
(d) Normal stress Tzz at top surface 

 
Fig.  8. Line contour for  
              (a) shear rate, (b) extension rate, 
              (c) shear stress Trz, (d) normal stress Tzz  
              at top surface 

 
 Line contours for the bottom surfaces reflect similar 
behavior to their counterparts for the top surface so the 
explanation holds for Figures 9(a)-(d). Shear rate of Figure 
9(a) rise suddenly at every corner especially at the die exit at 
the value around 200 units consistent with the swell after the 
die.  Figure 9(b) shows extension rate with a high peak value 
of 0.6 at the die exit which corroborates Figure 7(e) with an 
oscillation range from 0 to 0.5. 

 In Fig. 9(c), shear stress Trz demonstrates dual peaks at 
points 1−=z  and 0=z .  The curve is oscillated slightly 
before 1−=z  and beyond die.  Normal stress Tzz trend is 
displayed in Fig. 9(d) and the figure bears close resemblance 

to that of the shear rate with the value only one third of the 
shear rate. 

 

 
(a) Shear rate at bottom surface 

 

 
(b) Extension rate at bottom surface 

 

        
(c) Shear stress Trz at bottom surface 

       
(d) Normal stress Tzz at bottom surface 

Fig. 9. Line contours for  

                (a) extension rate (b) shear rate, 
                (c) shear stress Trz, (d) normal stress Tzz  
                      at bottom surface 
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 The flow after die exit is swelled at top and bottom free 
surface as shown in Figure 10 and it draws down to coat the 
wire after die as is observable in Figure 7. 
 

 
(a) Top surface 

 

 
(b) Bottom surface 

 
Fig. 10. Swell for (a) top surface and (b) bottom surface 

VI. CONCLUSION 
 In case of large Weissenberg number (We) that presents the 

high elastic property, the curves from many figures are very 
oscillatory and it concerns to the ability of program 
computing. In the current work, the contraction point has been 
calculated for high We via imposition of surface tension effect 
on the whole process of computing. After the solution has 
converged, the contraction point shifts to the point (0.09, 
0.98), which indicates close agreement to the value disclosed 
by the cable factory. Consideration of surface tension effect is 
useful for the die swell, which draws down whilst surface 
tension is absent for die swell problem along horizontal case. 
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