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The Bipartite Ramsey Numbers b(Cs,; Ca,)

Rui Zhang,Yongqi Sun,and Yali Wu,

Abstract—Given bipartite graphs H1 and Ho, the bipartite Ramsey
number b(H1; H2) is the smallest integer b such that any subgraph G
of the complete bipartite graph Ky p, either G contains a copy of Hi
or its complement relative to K, contains a copy of Ha. It is known
that b(Kz?Q; szg) = 5,b(K2,3;K2,3) = 9,b(K274; K2,4) = 14 and
b(K3,3; K3,3) = 17. In this paper we study the case that both H;
and H are even cycles, prove that b(C2m; Can) > m +n — 1 for
m # n, and b(Cam; Cs) = m + 2 for m > 4.
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I. INTRODUCTION

E consider only finite undirected graphs without loops
W or multiple edges. For a graph G with vertex-set V(G)
and edge-set E'(G), we denote the order and the size of G by
p(G) = |V(G)] and ¢(G) = |E(G)|. 6(G) and A(G) are the
minimum degree and the maximum degree of G respectively.

Let K, be a complete m by n bipartite graph, that is,
K, consists of m + n vertices, partitioned into sets of size
m and n, and the mn edges between them. Py is a path on
k vertices, and C}, is a cycle of length k. Let H; and H> be
bipartite graphs, the bipartite Ramsey number b(Hy; Hs) is
the smallest integer b such that given any subgraph G of the
complete bipartite graph K3 3, either G contains a copy of H;
or there exists a copy of Hy in the complement of G relative
to K p. Obviously, we have b(Hy; Ho) = b(Ha; Hy).

Beineke and Schwenk!l! showed that b(Ky92;Ko9) =
5,b(K274;K2y4) = 13,b(K3y3;K3_’3) =17. In particular, they
proved that b(K3 ,; K3 ,,) = 4n — 3 for n odd and less than
100 except n = 59 or n = 95. Carnielli and CarmelolZ!
proved that b(Ks,,; K2 ,) = 4n — 3 if 4n — 3 is a prime
power. They also showed that b(K30; K1,) = n + ¢ for
¢> —q+1<n<q?, where ¢ is a prime power. Irving[6]
showed that b(K44;K44) < 48. Hattingh and Henning[4]
proved that b(K272;K3,3) = 9,b(K2’2;K474) = 14. They
also determined the values of b(Pm;Klm)[S]. Faudree and
Schelp proved the values of b(Hj; Hy) when both H; and
H, are two paths[3]. It was shown that b(Cy; K2,2) = 5 and
b(CQ»m; K‘Z’Q) =m+1form > 4 in [7]

Let G; be the subgraph of G whose edges are in the i-th
color in an r-coloring of the edges of G. If there exists an
r-coloring of the edges of G such that H; ¢ G; for all 1 <
i < r, then G is said to be r-colorable to (Hy, Ho, ..., H;).
The neighborhood of a vertex v € V(G) are denoted by
N(w) ={u e V(GQ)|luv € E(G)}, and let d(v) = |N(v)|. G¢
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denotes the complement of G relative to Kj . G(W) denotes
the subgraph of G induced by W C V(G). Let GU H denote
a disjoint sum of G and H, and nG is a disjoint sum of n
copies of G.

Obviously, if H; and H» are cycles, then they are both even
cycles. In this paper we study the case that both H; and Hs are
even cycles. Firstly, we prove that b(Cay,; Cap) > m+n —1
for m # n and b(Capm;Com) > 2m. Then setting n = 3,
we prove that b(Cg; Cs) = 6 and b(Cay,; Cs) = m + 2 for
m > 4. For the sake of convenience, let V (K, ,) = X UY,
where X = {z;]1 < i < m}, Y = {y;|]1 <j < n}, and
E(Kmn) ={zy;]l <i<m,1<j<n}

II. THE LOWER BOUNDS OF b(Cay,; C)

Theorem 1: b(Capy; Cay) zi m+n—1, m#n,

2m, m =n.

Proof: If m # n, let G; and G5 be subgraphs of
Kytn—2,m+4n—2, Where G is a complete m —1 by m+n —2
bipartite graph, and G2 is a complete n — 1 by m +n — 2
bipartite graph. And let V(G;) = X;UY, whereX; = {z;|1 <
i<m-—1}ad Y = {y]l <i<m+n-2}5V(Gs) =
XoUY, whereXy = {a;jm <i<m+n—-2} YV ={y|1 <
i < m+mn — 2}. Then we have E(G1) N E(G3) = @ and
E(Gl) U E(Gg) = E(Ker,,L,Q‘ern,Q). Note that C,, ,,(Z
Gy and Co, € Go. S0 Kipgn—2.min—2 is 2-colorable to
(sz, Ozn), that iS, b(CQW, an) Z m-+n— 1.

If m = n, let G; and G2 be the spanning subgraphs of
K2m71,2m71- And let E(Gl) = {miyj|1 <ij<m-— 1} U
{myslm < 4,5 < 2m — 2} U {momays]l < j < 2m —
1L E(Gs) = {ziyjll <i<m—-1m < j<2m—2} U
{ziyjim <i<2m—-2,1<j<m—-1}U{zyom-1]1 < <
2m — 2}. Then we have E(G1) N E(G2) = () and E(G1) U
E(Gg) = E(KZm—l,2m—l)- Note that Cgm g G1 and Cgm g
G32. S0 Kop—1,2m—1 is 2-colorable to (Capm, Cap,), that is,
b(CQm; Cgm) > 2m. |

Setting n = 3 in Theorem 1, we have

+2, 3,
Corollary 1: b(c2m,; CG) 2 { g’l 2 ?:é 3.

III. THE UPPER BOUNDS OF b(Clay,; Cg)(m > 3)

Lemma 1: Let G be a spanning subgraph of K3 3, if Cs €
G*©, then P; C G.

Proof: If P; ¢ G, then G is isomorphic to one graph
of {6P;,4P, U Py,2P; U 2P,,3P,}. In any case, we have
Cs C G°. |

Lemma 2: b(Cg; Cg) < 6.

Proof: By contradiction, we assume that b(Cg; Cs) > 6,
that is, K¢ is 2-colorable to Cgs. Let V(K5 5)=V (K¢6) —
{z6,y6}. By Theorem 1, K55 is 2-colorable to Cs, and
E(G1(V(K55))) = {wiy;[1 <4, < 2} U{aiy;|3 < 4,5 <
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Z5 Zq ZT2 €3 Ty

Ys Y1 Y2 Y3 Ya

(a) GY{V(K5,5))

Ys Ys Y4 Y1 Y2
(b) Go(V (Ks,5))

Fig. 1. The graphs G’ (V(K5,5)) and G5(V (K5,5))

4} U{asy|l < j < 5HE(G2(V(Ks5)) = {aiys[l <
i <23 < j < 4fU{zyl3 < i <41 <5<
2} U{z;ys|1 <14 < 4}. Besides this, there is one coloring way
without resulting monosubgraph Cs in the 2-coloring edges
of K575, namely G/1<V(K575)> = G1<V(K5,5)> — XT5Y4 and
GHL(V(K55)) = Go(V(K55)) + x5ya(see Figure 1). Now we
consider the vertices x¢ and yg. Since Cs ¢ Ga(or Gb), s
is adjacent to at most one vertex of {y1,y2,ys,ys}. Hence zg
has to be adjacent to at least three vertices of {y1,v2,y3, Y4}
in Gy(or G'), we have Cs C G;(or G}), a contradiction. So,
Kg 6 is not 2-colorable to Cs, that is, b(Cs; Cs) < 6. [ ]

In order to prove Lemma 3, we need the following claims.
Let Hog4s and Hogyy denote the two graphs as shown in
Figure 2, and G be a spanning subgraph of Kj 33 for
k > 3 such that Cy41y) € G and Cs € G°, then we have

(b) Hapa

Fig. 2. The graphs Hoy 3 and Hopyg

Claim 1: H2k+3 g G.
Proof: By contradiction, we assume that Hori3 C G,
and label the vertices of Hapis as shown in Fig. 2(a).

Let xgi2, xrys3 and yiy3 be the remaining vertices of
V(G). Since Cs ¢ G°, by Lemma 1, we have P; C
G{Tht1, Thr2, Thi3, Yh—1, Yk, Y t3}). Since Cypy1) € G,
ZTk4+1 1s nonadjacent to yr_1 Or yi. By symmetry, it
is sufficient to consider the five cases. We may assume
ThioYk—1, ThroYh+3 € B(G), yh—1Try2, Y17k 43 € E(G),
Trr2Yk—1, Thr2Yk € E(G), Yr43Tht1, Yr3Tht2 € E(G) or
Yk+3Th+2, Yet+3Tk+3 € E(G).

Case 1. Suppose TiioUk—1,Zrt+2Yk+s € FE(G). Since
Coth1) ¢ G, each vertex of {yxi1,Ykt2} is nonadjacent
to any vertex of {z1,2k_1,%r+2}, and yxy3 is nonadjacent
to zx_1. And since Cjg ;(_ G°, by Lemma 1, we have
Py C G{{z1, Th—1, Thr2, Yht1, Yut2, Yur3)). Hence ypy3 has
to be adjacent to xy. Since Cy(pi1) ¢ G, yi is nonadjacent
to any vertex of {zy_1,xp4+2}. Hence we have we have
Py & G({z1, k-1, Tht2, Uk Ykt1, Yk+2}). By Lemma 1, we
have Cg C G¢, a contradiction.

Case 2. Suppose y,—1Tk+2, Ys—1Tk+3 € E(G). Since Cg €
G¢, by Lemma 1, we have P3 C G{({Zk—1, Tk+2, Tht3, Ykt+1,
Yr+2, Yk+3})- Since Copy1y € G, each vertex of {yp41,
Yr+2) is nonadjacent to any vertex of {@p_1,Tr12, Tkis}
Hence yr43 has to be adjacent to at least one vertex of
{Zk+2,Zr+3}. The proof is same as Case 1.

Case 3. Suppose T 12Yk—1, Zr+2yk € E(G). Since Co(j11) ¢
G, each vertex of {yx+1, Yk+2} is nonadjacent to any vertex of
{@1,Tx—1,Tk42}. And since Cs € G, by Lemma 1, we have
P3 € G({z1,Th—1,Thr2; Yrr1, Yet2, Yers)). Hence yp 3 is
adjacent to at least two vertices of {1, xg_1, g2 }. Therefore
since Cy (1) Q G, we have yj43 has to be adjacent to x;
and xg_1. Similarly, since Cg g G¢, by Lemma 1, we have
Py C G{{ap, Try1, Tha3, Y1, Yk Ykts})- Since Cogorny € G,
xk is nonadjacent to y; or Y3, and xk41 iS nonadjacent to
any vertex of {y1, Yk, Yk+3}- If 243 is adjacent to yy, the
proof is same as Case 2. If 43 is adjacent to both y; and
Yr+3, we have Cy(;,11) € G, a contradiction.

Case 4. Suppose Yri3Tk+1,Yk+3Tk+2 € F(G). Since
Comkt1y € G, each vertex of {x1, 2,1} is nonadjacent to
any vertex of {yri1,Yk+2,Yk+3}. And since Cs € G©, by
Lemma 1, we have P3 C G{{x1, Tk—1, Tk+2, Yk+1, Yk+2,
Yr+3}). Hence xpio is adjacent to at least one vertex of
{Urs1, Yrs2}, say @pioyry1 € E(G) as shown in Fig.
3. And since Cg ¢ G by Lemma 1, we have P3 C
G{x1, k-1, Tk3, Yk+1, Yk+2, Yk+3 ). Hence we have 3
is adjacent to at least two vertices of {ykt1, Yk+2, Yk+3}- In
any case, since Cy(x11) € G, Tx43 is nonadjacent to any ver-
tex of {yr—2,Yk—1, Yk} And each vertex of {xyi1,Tgyo} is
nonadjacent to any vertex of {yx—_2,yr—1, yx }- Hence we have
Py & G{{zkt1, Tht2, Thts, Yo—2, Yk—1, Yk }). By Lemma 1,
we have Cg C G¢, a contradiction.

Case 5. Suppose Yr+3Tk+2,Uk+3Tk+3 € F(G). Since
Cok+1) g G, wp4+1 is nonadjacent to yi_1 or yg. Since
Cs € G¢, by Lemma 1, we have P; C G{{Zk41, Trt2, Tht3,
Yk—1, Yk, Yk+1})- If there is one edge between {xyi2,Tr43}
and {yr—1,yr}, the proof is same as Case 2. Hence yj1
has to be adjacent to at least one vertex of {zji2,Tki3},
say Yr41Thi2 € E(G). And since Coy1)y € G, w1 is
nonadjacent to xjio Or xj4s. Therefore we have Pj ;(_
G{Tk+1,Trt2, Th+3, Y1, Yk—1, Yk t)- By Lemma 1, we have
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Fig. 3. 4o being adjacent to yp41

Cs C G°, a contradiction.
By Cases 1-5, we have Hopt3 ¢ G. [ |
Claim 2: H2k+4 g G.

Proof: By contradiction, we assume that Hoy14 C G, and
label the vertices of Hog 4 as shown in Fig. 2(b). Let x4 and
43 be the remaining vertices of V(G). Since Co11) € G,
Zp+1 1S nonadjacent to any vertex of {yx_1,yx}t. If Zpiq
is adjacent to ypis3, then we have Hory3 C G, a con-
tradiction to Claim 1. And since Cs ¢ G° by Lemma
1, we have P3 C G({®it1, Th2s Tht3s Yh—1, Yhs Yt 1)) If
Tpto(or xpy3) is adjacent to both yi_1 and yiy3, we have
Cok+1) € G, a contradiction. By symmetry, we may assume
Thy2Yh—1, Tht2Uk € E(G), Yp—1Tk42, Yr—12k+3 € E(G) or
Yk+3Th+2, Ye+3Tk43 € E(G).

Case 1. Suppose TiioUk—1,Tk+2yx € FE(G). Since
Coks+1y € G, each vertex of {ypi1,yrts} is nonad-
jacent to any vertex of {x1,Zp_1,Zgi2}, and yrio is
nonadjacent to any vertex of {zi,zi_1}. Then P; ¢
G{x1,TK—1, Tht2, Yb+1, Yk+2, Yet+3}). By Lemma 1, we
have Cg C G¢, a contradiction.
Case 2. Suppose Yr_1Tki2,Yk—1Zr+3 € FE(G). Since
Coms1y € G, each vertex of {yii1,yr+3} is nonadjacent
to any vertex of {zjyo2,Zkr+s3}, and y, is nonadjacent to
Zpt1. If yg is adjacent to one vertex of {zjio2,Tkis)
the proof is same as Case 1. If xpi1yp+s € E(G), then
Hokts C G, a contradiction to Claim 1. Hence P g
G{Tt1, Ths2s o3, Ykr Ykt 1, Yk43}). By Lemma 1, we
have Cg C G¢, a contradiction.
Case 3. Suppose Yr+3Tk+t2,Yk+3Tk+3 € F(G). Since
Cowry1y € G, each vertex of {y_1,yx} is nonadjacent to any
vertex Of {Z 11, Trt2, T3} And since Cg € G¢, by Lemma
I, we have P3 C G{{Zpt1,Tha2s Tht3s Yo—1s Yk Yk411)-
Hence yy1 is adjacent to at least one vertex of {xg2, Txt3}-
In any case, we have Ha,3 C G, a contradiction to Claim 1.

By Cases 1-3, we have Hoja € G. ]

By an argument similar to the above proofs, we can prove
Claim 3 and 4. However, their proofs are more complicated
than Claim 2.

Claim 3: (Cgk U C4) 1¢_ G.

Claim 4: (Cgk; U P5) 7¢_ G.

Lemma 3: Let G be a spanning subgraph of Kj 3 ;43 for
k>3.1If Cop € G and Cs € G°, then Cyi11) C G.

Proof: We may assume that Cy(;,4.1) € G. Without loss of
generality, let E(Car) = {191, y122, T2Y2, - - -, ThYk, Y£T1 }-
Since C ¢ G¢, by Lemma 1, we have Py C G{{Zx41, Tp12,
Thi 3, Yk 1, Yht2> Yh+31)» SAY Thy1¥ht1, Thi1¥rre € E(G).

Similarly, since Cs ¢ G¢, we have Py C G{{zk, Trt2, Tii3,
Yk+1, Yk+2, Yk+3})- If @ is adjacent to both yi41 and yy42,
then Horis C G, a contradiction to Claim 1. If zy is
adjacent to both yx1 and yy3(or both yx12 and yx3), then
Hoi1q € G, a contradiction to Claim 2. If there exists one
vertex of {zj2, Tk43} being adjacent to both Y41 and Y42,
then (Cy, U Cy) C G, a contradiction to Claim 3. If there
exists one vertex of {2, Ti+3} being adjacent to both yy1
and yxy3(or both yii2 and yr43), then (Cop U Ps) C G, a
contradiction to Claim 4. So, by symmetry, it is sufficient to
consider the four cases as follows.

Case 1. Suppose Yr+1%k, Yr+1Zk+2 € F(G). Since Cg € G€,
by Lemma 1, we have Ps C G{{Zk 41, Tkt2; Tht3s Yk—1, Yks
Yrs2}). Since Cogqry € G, each vertex of {q1, zpqo} is
nonadjacent to any vertex of {yx_1,yx }. If 512 is adjacent to
Yr+2, then we have (Cq, UCy) C G, a contradiction to Claim
3. If x4 3 is adjacent to yy42, then we have (Ca U Ps) C G,
a contradiction to Claim 4. Hence zj3 has to be adjacent
to both y;_1 and yj. Similarly since Cs ¢ G, by Lemma
I, we have P3 C G({%1,Tr—1, Tk+3, Yk+1, Yk+2, Yk+3))-
Since Cy(x41) ¢ G, yr+1 is nonadjacent to any vertex
of {z1,Zk—1,Tk+3}, Yk+o is nonadjacent to any vertex of
{z1, 261} If yriowpys € E(G), we have (Cop U P5) C G,
a contradiction to Claim 4. If y; 3 is adjacent to both z; and
T43(or both w1 and x4 3), we have Cy(;41) € G, a con-
tradiction too. Hence we have yr1321, yr132x—1 € E(G) as
shown in Fig. 4. However, since Cy(41) Q G, each vertex of
{Zk+1,Zr42} is nonadjacent to any vertex of {y1, Yx—1, Yk+3}
and zj43 is nonadjacent to any vertex of {y1,yk+3}. So,
we have P3 & G{{Zpi1,Tri2, Tris Y1, Ye—1,Yet3}). BY
Lemma 1, we have Cg C G¢, a contradiction.

Fig. 4. yp+3 being adjacent to both x1 and 231

Case 2. Suppose Yx+1Tk+2, Ye+12k+3 € E(G). Since Cg ¢
G¢, by Lemma 1, we have P; C G{{Zkt1, Tkt2, Tht3, Yks

Yk+2, Yk+3))- If T4 is adjacent to yy, the proof is same as
Case 1. If there exists one vertex of {xj42,Zk+3} being ad-
jacent to Yo, then we have (Co, UC4) C G, a contradiction
to Claim 3. If there exists one vertex of {zji2, 43} being
adjacent to 3, then we have (Cq,UPs) C G, a contradiction
to Claim 4. If y;, is adjacent to both x; 2 and z3, we have
Hyi13 C G, a contradiction to Claim 1. Hence yy3 has to
be adjacent to xy1. Similarly, since Cg Q G¢, by Lemma 1,
we have P3 C G{{z1, %k, Tkt2, Yk+1, Yk+2, Yk+3})- If there
exists one vertex of {x1, z } being adjacent to yy1, the proof
is same as Case 1. If there exists one vertex of {z1,z;} being
adjacent to both yj4o and yj43, then we have Hopi3 C G, a
contradiction to Claim 1. If x5 is adjacent to Y2 Or Y+3,
then we have (Cy, U Cy) C G, a contradiction to Claim 3. If
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there exists one vertex of {yx+2, yr+3} being adjacent to both
x1 and xy, the proof is same as Case 1.

Case 3. Suppose Yii3Tk,Yk+3Te+2 € F(G). And since
Cs ¢ G¢, by Lemma 1, we have P3 C G{{zk, Tp+2, T+3,
Yk—1, Yk+1, Ykt2 ). If o) is adjacent to yr41 OF Yk42, then
we have Hopy4 C G, a contradiction to Claim 2. If x40 is
adjacent t0 yr41 Or Ykt2, then we have (Cop U P5) C G,
a contradiction to Claim 4. If x4 is adjacent to both
Yr+1 and yrio, then we have (Cop U Cy) C G, a con-
tradiction to Claim 3. Since Co(jq41) ¢ G, yk—1 is non-
adjacent to xy1o. Hence xj43 has to be adjacent to yj_.
Similarly, we have yyzris € E(G), since otherwise P; ¢
G({ ks Thr2s Thi3s Yy Ykt 1, Yrt2))-

Since Cs ¢ G¢, by Lemma 1, we have P; C G{{z1, k42,
Th+3, Yk+1, Yk+2, Yk+3}). If there exists one vertex of
{z1,zk+3} being adjacent to both yxi1 and ygi2, then we
have Hsry3 C G, a contradiction to Claim 1. If 249 is
adjacent to yr41 Or Ygi2, then we have (Cop U P5) C G,
a contradiction to Claim 4. Since Co(jy1) Q G, Ypys 18
nonadjacent to z; or xpi3. If there exists one vertex of
{Yk+1, Yrt2} being adjacent to both 1 and xj,3, we have
Cok+1) € G, a contradiction.

Case 4. Suppose Yr+3Tk+2, Y+3Th+3 € E(G). Since Cg ¢
G¢, by Lemma 1, we have P; C G{{x, Tg+2, Tk3, Yk, Yk+1,
Yr+2}). If there exists one edge between {zji2,2kt3} and
{Yk+1, Ykt2}, we have (Cor U P5) C G, a contradiction to
Claim 4. If zy, is adjacent to Y41 Or Yit2, the proof is same
as Case 3. If yy, is adjacent to x4o Or Ty43, the proof is also
same as Case 3.

By Cases 1-4, we have Ca,41 C G. |

Let G be a spanning subgraph of Kgg¢. If Cs € G°, by
Lemma 2, we have Cs C G. Hence we have the following
corollary by Lemma 3.

Corollary 2: b(Cs; Cg) < 6.

Lemma 4: If m > 4, we have b(Ca,,; Cg) < m + 2.

Proof: We will prove it by induction.

(1) For m = 4, the lemma holds by Corollary 2.

(2) Suppose that b(Coy; Cs) < k + 2 for k > 5. We assume
that b(Co(r41);Cs) > k + 3 for k > 5. Since Cs € G°,
we have Cy, € G. By Lemma 3, we have Cyq1y) C G,
a contradiction. So the assumption does not hold, that is,
b(Co(k+1); Cs) < k 4 3. This completes the induction step,
and the proof is finished. ]

IV. CONCLUSION

Setting m = 3 in Corollary 1, we have b(Cs; Cg) > 6. By
Theorem 1, Lemma 2 and Lemma 4, we obtain the values of
b(Capm; Cs) as follows.

6, m =3,

Theorem 2: b(Cap,; Cg) = m42, m> A
Furthermore, we have the following conjecture,

Conjecture 1: b(Cap; Cop) =m +n — 1 for m > n.

By the results in [7] and Theorem 2, it is true for n = 2 and
3.
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