The Bipartite Ramsey Numbers $b(C_{2m}; C_{2n})$

Rui Zhang, Yongqi Sun, and Yali Wu,

Abstract—Given bipartite graphs H_1 and H_2 , the bipartite Ramsey number $b(H_1;H_2)$ is the smallest integer b such that any subgraph G of the complete bipartite graph $K_{b,b}$, either G contains a copy of H_1 or its complement relative to $K_{b,b}$ contains a copy of H_2 . It is known that $b(K_{2,2};K_{2,2})=5, b(K_{2,3};K_{2,3})=9, b(K_{2,4};K_{2,4})=14$ and $b(K_{3,3};K_{3,3})=17$. In this paper we study the case that both H_1 and H_2 are even cycles, prove that $b(C_{2m};C_{2n})\geq m+n-1$ for $m\neq n$, and $b(C_{2m};C_6)=m+2$ for $m\geq 4$.

Keywords-bipartite graph; Ramsey number; even cycle

I. Introduction

E consider only finite undirected graphs without loops or multiple edges. For a graph G with vertex-set V(G) and edge-set E(G), we denote the order and the size of G by p(G) = |V(G)| and q(G) = |E(G)|. $\delta(G)$ and $\Delta(G)$ are the minimum degree and the maximum degree of G respectively.

Let $K_{m,n}$ be a complete m by n bipartite graph, that is, $K_{m,n}$ consists of m+n vertices, partitioned into sets of size m and n, and the mn edges between them. P_k is a path on k vertices, and C_k is a cycle of length k. Let H_1 and H_2 be bipartite graphs, the bipartite Ramsey number $b(H_1; H_2)$ is the smallest integer b such that given any subgraph G of the complete bipartite graph $K_{b,b}$, either G contains a copy of H_1 or there exists a copy of H_2 in the complement of G relative to $K_{b,b}$. Obviously, we have $b(H_1; H_2) = b(H_2; H_1)$.

Beineke and Schwenk^[1] showed that $b(K_{2,2};K_{2,2})=5, b(K_{2,4};K_{2,4})=13, b(K_{3,3};K_{3,3})=17.$ In particular, they proved that $b(K_{2,n};K_{2,n})=4n-3$ for n odd and less than 100 except n=59 or n=95. Carnielli and Carmelo^[2] proved that $b(K_{2,n};K_{2,n})=4n-3$ if 4n-3 is a prime power. They also showed that $b(K_{2,2};K_{1,n})=n+q$ for $q^2-q+1\leq n\leq q^2$, where q is a prime power. Irving^[6] showed that $b(K_{4,4};K_{4,4})\leq 48.$ Hattingh and Henning^[4] proved that $b(K_{2,2};K_{3,3})=9,b(K_{2,2};K_{4,4})=14.$ They also determined the values of $b(P_m;K_{1,n})^{[5]}$. Faudree and Schelp proved the values of $b(H_1;H_2)$ when both H_1 and H_2 are two paths^[3]. It was shown that $b(C_6;K_{2,2})=5$ and $b(C_{2m};K_{2,2})=m+1$ for $m\geq 4$ in [7].

Let G_i be the subgraph of G whose edges are in the i-th color in an r-coloring of the edges of G. If there exists an r-coloring of the edges of G such that $H_i \nsubseteq G_i$ for all $1 \le i \le r$, then G is said to be r-colorable to (H_1, H_2, \ldots, H_r) . The neighborhood of a vertex $v \in V(G)$ are denoted by $N(v) = \{u \in V(G) | uv \in E(G)\}$, and let d(v) = |N(v)|. G^c

Yongqi Sun is with the School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China, e-mail: yqsun@bjtu.edu.cn.

Rui Zhang and Yali Wu are doctoral students of the School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China

denotes the complement of G relative to $K_{b,b}$. $G\langle W \rangle$ denotes the subgraph of G induced by $W \subseteq V(G)$. Let $G \cup H$ denote a disjoint sum of G and H, and nG is a disjoint sum of n copies of G.

Obviously, if H_1 and H_2 are cycles, then they are both even cycles. In this paper we study the case that both H_1 and H_2 are even cycles. Firstly, we prove that $b(C_{2m};C_{2n})\geq m+n-1$ for $m\neq n$ and $b(C_{2m};C_{2m})\geq 2m$. Then setting n=3, we prove that $b(C_6;C_6)=6$ and $b(C_{2m};C_6)=m+2$ for $m\geq 4$. For the sake of convenience, let $V(K_{m,n})=X\cup Y$, where $X=\{x_i|1\leq i\leq m\},\ Y=\{y_j|1\leq j\leq n\}$, and $E(K_{m,n})=\{x_iy_j|1\leq i\leq m,1\leq j\leq n\}$.

II. The lower bounds of $b(C_{2m}; C_6)$

Theorem 1:
$$b(C_{2m}; C_{2n}) \geq \left\{ \begin{array}{ll} m+n-1, & m \neq n, \\ 2m, & m=n. \end{array} \right.$$
Proof: If $m \neq n$, let G_1 and G_2 be subgraphs of

Proof: If $m \neq n$, let G_1 and G_2 be subgraphs of $K_{m+n-2,m+n-2}$, where G_1 is a complete m-1 by m+n-2 bipartite graph, and G_2 is a complete n-1 by m+n-2 bipartite graph. And let $V(G_1)=X_1\cup Y$, where $X_1=\{x_i|1\leq i\leq m-1\}$ and $Y=\{y_i|1\leq i\leq m+n-2\}; V(G_2)=X_2\cup Y$, where $X_2=\{x_i|m\leq i\leq m+n-2\}, \ Y=\{y_i|1\leq i\leq m+n-2\}$. Then we have $E(G_1)\cap E(G_2)=\emptyset$ and $E(G_1)\cup E(G_2)=E(K_{m+n-2,m+n-2})$. Note that $C_{2m}\nsubseteq G_1$ and $C_{2n}\nsubseteq G_2$. So $K_{m+n-2,m+n-2}$ is 2-colorable to (C_{2m},C_{2n}) , that is, $b(C_{2m};C_{2n})\geq m+n-1$.

If m=n, let G_1 and G_2 be the spanning subgraphs of $K_{2m-1,2m-1}$. And let $E(G_1)=\{x_iy_j|1\leq i,j\leq m-1\}\cup\{x_iy_j|m\leq i,j\leq 2m-2\}\cup\{x_{2m-1}y_j|1\leq j\leq 2m-1\}; E(G_2)=\{x_iy_j|1\leq i\leq m-1,m\leq j\leq 2m-2\}\cup\{x_iy_j|m\leq i\leq 2m-2,1\leq j\leq m-1\}\cup\{x_iy_{2m-1}|1\leq i\leq 2m-2\}.$ Then we have $E(G_1)\cap E(G_2)=\emptyset$ and $E(G_1)\cup E(G_2)=E(K_{2m-1,2m-1}).$ Note that $C_{2m}\nsubseteq G_1$ and $C_{2m}\nsubseteq G_2.$ So $K_{2m-1,2m-1}$ is 2-colorable to $(C_{2m},C_{2m}),$ that is, $b(C_{2m};C_{2m})\geq 2m.$

Setting n=3 in Theorem 1, we have Corollary 1: $b(C_{2m}; C_6) \ge \begin{cases} m+2, & m \ne 3, \\ 6, & m=3. \end{cases}$

III. The upper bounds of $b(C_{2m}; C_6) (m \ge 3)$

Lemma 1: Let G be a spanning subgraph of $K_{3,3}$, if $C_6 \nsubseteq G^c$, then $P_3 \subseteq G$.

Proof: If $P_3 \nsubseteq G$, then G is isomorphic to one graph of $\{6P_1,4P_1 \cup P_2,2P_1 \cup 2P_2,3P_2\}$. In any case, we have $C_6 \subseteq G^c$.

Lemma 2: $b(C_6; C_6) \le 6$.

Proof: By contradiction, we assume that $b(C_6; C_6) > 6$, that is, $K_{6,6}$ is 2-colorable to C_6 . Let $V(K_{5,5}) = V(K_{6,6}) - \{x_6, y_6\}$. By Theorem 1, $K_{5,5}$ is 2-colorable to C_6 , and $E(G_1\langle V(K_{5,5})\rangle) = \{x_iy_j|1 \le i,j \le 2\} \cup \{x_iy_j|3 \le i,j \le 3\}$

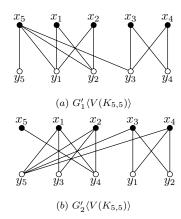


Fig. 1. The graphs $G'_1\langle V(K_{5,5})\rangle$ and $G'_2\langle V(K_{5,5})\rangle$

 $4\} \cup \{x_5y_j|1\leq j\leq 5\}; E(G_2\langle V(K_{5,5})\rangle) = \{x_iy_j|1\leq i\leq 2,3\leq j\leq 4\} \cup \{x_iy_j|3\leq i\leq 4,1\leq j\leq 2\} \cup \{x_iy_5|1\leq i\leq 4\}.$ Besides this, there is one coloring way without resulting monosubgraph C_6 in the 2-coloring edges of $K_{5,5}$, namely $G_1'\langle V(K_{5,5})\rangle\cong G_1\langle V(K_{5,5})\rangle-x_5y_4$ and $G_2'\langle V(K_{5,5})\rangle\cong G_2\langle V(K_{5,5})\rangle+x_5y_4$ (see Figure 1). Now we consider the vertices x_6 and y_6 . Since $C_6\nsubseteq G_2$ (or G_2'), x_6 is adjacent to at most one vertex of $\{y_1,y_2,y_3,y_4\}$. Hence x_6 has to be adjacent to at least three vertices of $\{y_1,y_2,y_3,y_4\}$ in G_1 (or G_1'), we have $C_6\subseteq G_1$ (or G_1'), a contradiction. So, $K_{6,6}$ is not 2-colorable to C_6 , that is, $b(C_6;C_6)\leq 6$.

In order to prove Lemma 3, we need the following claims. Let H_{2k+3} and H_{2k+4} denote the two graphs as shown in Figure 2, and G be a spanning subgraph of $K_{k+3,k+3}$ for $k \geq 3$ such that $C_{2(k+1)} \nsubseteq G$ and $C_6 \nsubseteq G^c$, then we have

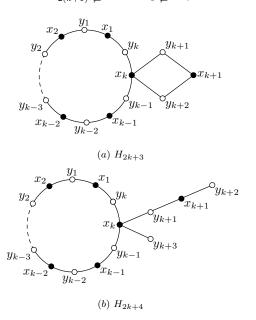


Fig. 2. The graphs H_{2k+3} and H_{2k+4}

Claim 1: $H_{2k+3} \nsubseteq G$.

Proof: By contradiction, we assume that $H_{2k+3} \subseteq G$, and label the vertices of H_{2k+3} as shown in Fig. 2(a).

Let $x_{k+2}, \ x_{k+3}$ and y_{k+3} be the remaining vertices of V(G). Since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_k, y_{k+3}\})$. Since $C_{2(k+1)} \nsubseteq G$, x_{k+1} is nonadjacent to y_{k-1} or y_k . By symmetry, it is sufficient to consider the five cases. We may assume $x_{k+2}y_{k-1}, x_{k+2}y_{k+3} \in E(G), \ y_{k-1}x_{k+2}, y_{k-1}x_{k+3} \in E(G), \ x_{k+2}y_{k-1}, x_{k+2}y_k \in E(G), \ y_{k+3}x_{k+1}, y_{k+3}x_{k+2} \in E(G)$ or $y_{k+3}x_{k+2}, y_{k+3}x_{k+3} \in E(G)$.

Case 1. Suppose $x_{k+2}y_{k-1}, x_{k+2}y_{k+3} \in E(G)$. Since $C_{2(k+1)} \not\subseteq G$, each vertex of $\{y_{k+1}, y_{k+2}\}$ is nonadjacent to any vertex of $\{x_1, x_{k-1}, x_{k+2}\}$, and y_{k+3} is nonadjacent to x_{k-1} . And since $C_6 \not\subseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_1, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\})$. Hence y_{k+3} has to be adjacent to x_1 . Since $C_{2(k+1)} \not\subseteq G$, y_k is nonadjacent to any vertex of $\{x_{k-1}, x_{k+2}\}$. Hence we have we have $P_3 \not\subseteq G(\{x_1, x_{k-1}, x_{k+2}, y_k, y_{k+1}, y_{k+2}\})$. By Lemma 1, we have $C_6 \subseteq G^c$, a contradiction.

Case 2. Suppose $y_{k-1}x_{k+2}, y_{k-1}x_{k+3} \in E(G)$. Since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_{k-1}, x_{k+2}, x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\})$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\{y_{k+1}, y_{k+2}\}$ is nonadjacent to any vertex of $\{x_{k-1}, x_{k+2}, x_{k+3}\}$. Hence y_{k+3} has to be adjacent to at least one vertex of $\{x_{k+2}, x_{k+3}\}$. The proof is same as Case 1.

Case 3. Suppose $x_{k+2}y_{k-1}, x_{k+2}y_k \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\{y_{k+1}, y_{k+2}\}$ is nonadjacent to any vertex of $\{x_1, x_{k-1}, x_{k+2}\}$. And since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G \setminus \{x_1, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\} \setminus$. Hence y_{k+3} is adjacent to at least two vertices of $\{x_1, x_{k-1}, x_{k+2}\}$. Therefore since $C_{2(k+1)} \nsubseteq G$, we have y_{k+3} has to be adjacent to x_1 and x_{k-1} . Similarly, since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G \setminus \{x_k, x_{k+1}, x_{k+3}, y_1, y_k, y_{k+3}\} \setminus$. Since $C_{2(k+1)} \nsubseteq G$, x_k is nonadjacent to y_1 or y_{k+3} , and x_{k+1} is nonadjacent to any vertex of $\{y_1, y_k, y_{k+3}\}$. If x_{k+3} is adjacent to y_k , the proof is same as Case 2. If x_{k+3} is adjacent to both y_1 and y_{k+3} , we have $C_{2(k+1)} \subseteq G$, a contradiction.

Case 4. Suppose $y_{k+3}x_{k+1}, y_{k+3}x_{k+2} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\{x_1, x_{k-1}\}$ is nonadjacent to any vertex of $\{y_{k+1}, y_{k+2}, y_{k+3}\}$. And since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_1, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\})$. Hence x_{k+2} is adjacent to at least one vertex of $\{y_{k+1}, y_{k+2}\}$, say $x_{k+2}y_{k+1} \in E(G)$ as shown in Fig. 3. And since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_1, x_{k-1}, x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\})$. Hence we have x_{k+3} is adjacent to at least two vertices of $\{y_{k+1}, y_{k+2}, y_{k+3}\}$. In any case, since $C_{2(k+1)} \nsubseteq G$, x_{k+3} is nonadjacent to any vertex of $\{y_{k-2}, y_{k-1}, y_k\}$. And each vertex of $\{x_{k+1}, x_{k+2}\}$ is nonadjacent to any vertex of $\{y_{k-2}, y_{k-1}, y_k\}$. Hence we have $P_3 \nsubseteq G(\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-2}, y_{k-1}, y_k\})$. By Lemma 1, we have $C_6 \subseteq G^c$, a contradiction.

Case 5. Suppose $y_{k+3}x_{k+2}, y_{k+3}x_{k+3} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, x_{k+1} is nonadjacent to y_{k-1} or y_k . Since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G \setminus \{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_k, y_{k+1}\} \setminus$. If there is one edge between $\{x_{k+2}, x_{k+3}\}$ and $\{y_{k-1}, y_k\}$, the proof is same as Case 2. Hence y_{k+1} has to be adjacent to at least one vertex of $\{x_{k+2}, x_{k+3}\}$, say $y_{k+1}x_{k+2} \in E(G)$. And since $C_{2(k+1)} \nsubseteq G$, y_1 is nonadjacent to x_{k+2} or x_{k+3} . Therefore we have $P_3 \nsubseteq G \setminus \{x_{k+1}, x_{k+2}, x_{k+3}, y_1, y_{k-1}, y_k\} \setminus$. By Lemma 1, we have

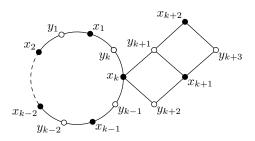


Fig. 3. x_{k+2} being adjacent to y_{k+1}

 $C_6 \subseteq G^c$, a contradiction.

By Cases 1-5, we have $H_{2k+3} \nsubseteq G$.

Claim 2: $H_{2k+4} \nsubseteq G$.

Proof: By contradiction, we assume that $H_{2k+4} \subseteq G$, and label the vertices of H_{2k+4} as shown in Fig. 2(b). Let x_{k+2} and x_{k+3} be the remaining vertices of V(G). Since $C_{2(k+1)} \not\subseteq G$, x_{k+1} is nonadjacent to any vertex of $\{y_{k-1},y_k\}$. If x_{k+1} is adjacent to y_{k+3} , then we have $H_{2k+3} \subseteq G$, a contradiction to Claim 1. And since $C_6 \not\subseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_{k+1},x_{k+2},x_{k+3},y_{k-1},y_k,y_{k+3}\})$. If x_{k+2} (or x_{k+3}) is adjacent to both y_{k-1} and y_{k+3} , we have $C_{2(k+1)} \subseteq G$, a contradiction. By symmetry, we may assume $x_{k+2}y_{k-1},x_{k+2}y_k \in E(G), y_{k-1}x_{k+2},y_{k-1}x_{k+3} \in E(G)$ or $y_{k+3}x_{k+2},y_{k+3}x_{k+3} \in E(G)$.

Case 1. Suppose $x_{k+2}y_{k-1}, x_{k+2}y_k \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\{y_{k+1}, y_{k+3}\}$ is nonadjacent to any vertex of $\{x_1, x_{k-1}, x_{k+2}\}$, and y_{k+2} is nonadjacent to any vertex of $\{x_1, x_{k-1}\}$. Then $P_3 \nsubseteq G\langle\{x_1, x_{k-1}, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\}\rangle$. By Lemma 1, we have $C_6 \subseteq G^c$, a contradiction.

Case 2. Suppose $y_{k-1}x_{k+2}, y_{k-1}x_{k+3} \in E(G)$. Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\{y_{k+1}, y_{k+3}\}$ is nonadjacent to any vertex of $\{x_{k+2}, x_{k+3}\}$, and y_k is nonadjacent to x_{k+1} . If y_k is adjacent to one vertex of $\{x_{k+2}, x_{k+3}\}$, the proof is same as Case 1. If $x_{k+1}y_{k+3} \in E(G)$, then $H_{2k+3} \subseteq G$, a contradiction to Claim 1. Hence $P_3 \nsubseteq G(\{x_{k+1}, x_{k+2}, x_{k+3}, y_k, y_{k+1}, y_{k+3}\})$. By Lemma 1, we have $C_6 \subseteq G^c$, a contradiction.

Case 3. Suppose $y_{k+3}x_{k+2}, y_{k+3}x_{k+3} \in E(G)$. Since $C_{2(k+1)} \not\subseteq G$, each vertex of $\{y_{k-1}, y_k\}$ is nonadjacent to any vertex of $\{x_{k+1}, x_{k+2}, x_{k+3}\}$. And since $C_6 \not\subseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_k, y_{k+1}\})$. Hence y_{k+1} is adjacent to at least one vertex of $\{x_{k+2}, x_{k+3}\}$. In any case, we have $H_{2k+3} \subseteq G$, a contradiction to Claim 1.

By Cases 1-3, we have $H_{2k+4} \nsubseteq G$.

By an argument similar to the above proofs, we can prove Claim 3 and 4. However, their proofs are more complicated than Claim 2.

Claim 3: $(C_{2k} \cup C_4) \nsubseteq G$.

Claim 4: $(C_{2k} \cup P_5) \nsubseteq G$.

Lemma 3: Let G be a spanning subgraph of $K_{k+3,k+3}$ for $k \geq 3$. If $C_{2k} \subseteq G$ and $C_6 \nsubseteq G^c$, then $C_{2(k+1)} \subseteq G$.

Proof: We may assume that $C_{2(k+1)} \nsubseteq G$. Without loss of generality, let $E(C_{2k}) = \{x_1y_1, y_1x_2, x_2y_2, \dots, x_ky_k, y_kx_1\}$. Since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G \setminus \{x_{k+1}, x_{k+2}, x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\} \setminus$, say $x_{k+1}y_{k+1}, x_{k+1}y_{k+2} \in E(G)$.

Similarly, since $C_6 \nsubseteq G^c$, we have $P_3 \subseteq G\langle \{x_k, x_{k+2}, x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3} \} \rangle$. If x_k is adjacent to both y_{k+1} and y_{k+2} , then $H_{2k+3} \subseteq G$, a contradiction to Claim 1. If x_k is adjacent to both y_{k+1} and y_{k+3} (or both y_{k+2} and y_{k+3}), then $H_{2k+4} \subseteq G$, a contradiction to Claim 2. If there exists one vertex of $\{x_{k+2}, x_{k+3}\}$ being adjacent to both y_{k+1} and y_{k+2} , then $(C_{2k} \cup C_4) \subseteq G$, a contradiction to Claim 3. If there exists one vertex of $\{x_{k+2}, x_{k+3}\}$ being adjacent to both y_{k+1} and y_{k+3} (or both y_{k+2} and y_{k+3}), then $(C_{2k} \cup P_5) \subseteq G$, a contradiction to Claim 4. So, by symmetry, it is sufficient to consider the four cases as follows.

Case 1. Suppose $y_{k+1}x_k, y_{k+1}x_{k+2} \in E(G)$. Since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_{k+1}, x_{k+2}, x_{k+3}, y_{k-1}, y_k,$ y_{k+2} \rangle . Since $C_{2(k+1)} \nsubseteq G$, each vertex of $\{x_{k+1}, x_{k+2}\}$ is nonadjacent to any vertex of $\{y_{k-1}, y_k\}$. If x_{k+2} is adjacent to y_{k+2} , then we have $(C_{2k} \cup C_4) \subseteq G$, a contradiction to Claim 3. If x_{k+3} is adjacent to y_{k+2} , then we have $(C_{2k} \cup P_5) \subseteq G$, a contradiction to Claim 4. Hence x_{k+3} has to be adjacent to both y_{k-1} and y_k . Similarly since $C_6 \not\subseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_1, x_{k-1}, x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\})$. Since $C_{2(k+1)} \nsubseteq G$, y_{k+1} is nonadjacent to any vertex of $\{x_1, x_{k-1}, x_{k+3}\}$, y_{k+2} is nonadjacent to any vertex of $\{x_1, x_{k-1}\}$. If $y_{k+2}x_{k+3} \in E(G)$, we have $(C_{2k} \cup P_5) \subseteq G$, a contradiction to Claim 4. If y_{k+3} is adjacent to both x_1 and x_{k+3} (or both x_{k-1} and x_{k+3}), we have $C_{2(k+1)} \subseteq G$, a contradiction too. Hence we have $y_{k+3}x_1, y_{k+3}x_{k-1} \in E(G)$ as shown in Fig. 4. However, since $C_{2(k+1)} \nsubseteq G$, each vertex of $\{x_{k+1}, x_{k+2}\}$ is nonadjacent to any vertex of $\{y_1, y_{k-1}, y_{k+3}\}$ and x_{k+3} is nonadjacent to any vertex of $\{y_1, y_{k+3}\}$. So, we have $P_3 \nsubseteq G(\{x_{k+1}, x_{k+2}, x_{k+3}, y_1, y_{k-1}, y_{k+3}\})$. By Lemma 1, we have $C_6 \subseteq G^c$, a contradiction.

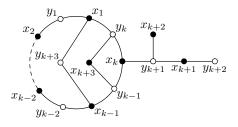


Fig. 4. y_{k+3} being adjacent to both x_1 and x_{k-1}

Case 2. Suppose $y_{k+1}x_{k+2}, y_{k+1}x_{k+3} \in E(G)$. Since $C_6 \nsubseteq$ y_{k+2}, y_{k+3} . If x_{k+1} is adjacent to y_k , the proof is same as Case 1. If there exists one vertex of $\{x_{k+2}, x_{k+3}\}$ being adjacent to y_{k+2} , then we have $(C_{2k} \cup C_4) \subseteq G$, a contradiction to Claim 3. If there exists one vertex of $\{x_{k+2}, x_{k+3}\}$ being adjacent to y_{k+3} , then we have $(C_{2k} \cup P_5) \subseteq G$, a contradiction to Claim 4. If y_k is adjacent to both x_{k+2} and x_{k+3} , we have $H_{2k+3} \subseteq G$, a contradiction to Claim 1. Hence y_{k+3} has to be adjacent to x_{k+1} . Similarly, since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_1, x_k, x_{k+2}, y_{k+1}, y_{k+2}, y_{k+3}\})$. If there exists one vertex of $\{x_1, x_k\}$ being adjacent to y_{k+1} , the proof is same as Case 1. If there exists one vertex of $\{x_1, x_k\}$ being adjacent to both y_{k+2} and y_{k+3} , then we have $H_{2k+3} \subseteq G$, a contradiction to Claim 1. If x_{k+2} is adjacent to y_{k+2} or y_{k+3} , then we have $(C_{2k} \cup C_4) \subseteq G$, a contradiction to Claim 3. If

there exists one vertex of $\{y_{k+2}, y_{k+3}\}$ being adjacent to both x_1 and x_k , the proof is same as Case 1.

Case 3. Suppose $y_{k+3}x_k, y_{k+3}x_{k+2} \in E(G)$. And since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G(\{x_k, x_{k+2}, x_{k+3}, x_{k+3},$ $y_{k-1}, y_{k+1}, y_{k+2}$. If x_k is adjacent to y_{k+1} or y_{k+2} , then we have $H_{2k+4} \subseteq G$, a contradiction to Claim 2. If x_{k+2} is adjacent to y_{k+1} or y_{k+2} , then we have $(C_{2k} \cup P_5) \subseteq G$, a contradiction to Claim 4. If x_{k+3} is adjacent to both y_{k+1} and y_{k+2} , then we have $(C_{2k} \cup C_4) \subseteq G$, a contradiction to Claim 3. Since $C_{2(k+1)} \nsubseteq G$, y_{k-1} is nonadjacent to x_{k+2} . Hence x_{k+3} has to be adjacent to y_{k-1} . Similarly, we have $y_k x_{k+3} \in E(G)$, since otherwise $P_3 \nsubseteq$ $G(\{x_k, x_{k+2}, x_{k+3}, y_k, y_{k+1}, y_{k+2}\}).$

Since $C_6 \nsubseteq G^c$, by Lemma 1, we have $P_3 \subseteq G \setminus \{x_1, x_{k+2}, x_{k+2},$ $\{x_{k+3}, y_{k+1}, y_{k+2}, y_{k+3}\}\$. If there exists one vertex of $\{x_1, x_{k+3}\}$ being adjacent to both y_{k+1} and y_{k+2} , then we have $H_{2k+3} \subseteq G$, a contradiction to Claim 1. If x_{k+2} is adjacent to y_{k+1} or y_{k+2} , then we have $(C_{2k} \cup P_5) \subseteq G$, a contradiction to Claim 4. Since $C_{2(k+1)} \nsubseteq G$, y_{k+3} is nonadjacent to x_1 or x_{k+3} . If there exists one vertex of $\{y_{k+1},y_{k+2}\}$ being adjacent to both x_1 and x_{k+3} , we have $C_{2(k+1)} \subseteq G$, a contradiction.

Case 4. Suppose $y_{k+3}x_{k+2}, y_{k+3}x_{k+3} \in E(G)$. Since $C_6 \nsubseteq$ G^c , by Lemma 1, we have $P_3 \subseteq G \setminus \{x_k, x_{k+2}, x_{k+3}, y_k, y_{k+1}, y_{k+1}, y_k, y_{k+1}, y_{k+1},$ y_{k+2} . If there exists one edge between $\{x_{k+2}, x_{k+3}\}$ and $\{y_{k+1},y_{k+2}\}$, we have $(C_{2k}\cup P_5)\subset G$, a contradiction to Claim 4. If x_k is adjacent to y_{k+1} or y_{k+2} , the proof is same as Case 3. If y_k is adjacent to x_{k+2} or x_{k+3} , the proof is also same as Case 3.

By Cases 1-4, we have $C_{2k+1} \subseteq G$.

Let G be a spanning subgraph of $K_{6,6}$. If $C_6 \nsubseteq G^c$, by Lemma 2, we have $C_6 \subseteq G$. Hence we have the following corollary by Lemma 3.

Corollary 2: $b(C_8; C_6) \leq 6$.

Lemma 4: If $m \geq 4$, we have $b(C_{2m}; C_6) \leq m + 2$.

Proof: We will prove it by induction.

- (1) For m = 4, the lemma holds by Corollary 2.
- (2) Suppose that $b(C_{2k}; C_6) \le k+2$ for $k \ge 5$. We assume that $b(C_{2(k+1)}; C_6) > k+3$ for $k \geq 5$. Since $C_6 \nsubseteq G^c$, we have $C_{2k} \subseteq G$. By Lemma 3, we have $C_{2(k+1)} \subseteq G$, a contradiction. So the assumption does not hold, that is, $b(C_{2(k+1)}; C_6) \le k+3$. This completes the induction step, and the proof is finished.

IV. CONCLUSION

Setting m=3 in Corollary 1, we have $b(C_6; C_6) \geq 6$. By Theorem 1, Lemma 2 and Lemma 4, we obtain the values of $b(C_{2m}; C_6)$ as follows.

Theorem 2: $b(C_{2m}; C_6) = \begin{cases} 6, & m = 3, \\ m+2, & m \ge 4. \end{cases}$

Furthermore, we have the following conjecture,

Conjecture 1: $b(C_{2m}; C_{2n}) = m + n - 1$ for m > n. By the results in [7] and Theorem 2, it is true for n = 2 and 3.

ACKNOWLEDGMENT

This research was supported by NSFC(60973011), SRFDF(20090009120007) and the Fundamental Research Funds for the Central Universities.

REFERENCES

- [1] L. W. Beineke and A. J. Schwenk. On a bipartite form of the Ramsey problem. Proc. 5th British Combin. Conf. 1975, Congressus Number.,
- W. A. Carnielli and E. L. Monte Carmelo. $K_{2,2} K_{1,n}$ and $K_{2,n}$ $K_{2,n}$ bipartite Ramsey numbers. Discrete Math., 223: 83–92, 2000
- [3] R. J. Faudree and R. H. Schelp. Path-path Ramsey-type numbers for the complete bipartite graphs. J. Combin. Theory Ser. B, 19: 161-173, 1975.
- J. H. Hattingh and M. A. Henning. Bipartite Ramsey numbers. Utilitas Math., 53: 217-230, 1998.
- J. H. Hattingh and M. A. Henning. Star-path bipartite Ramsey numbers. Discrete Math., 185: 255-258, 1998.
- R. W. Irving. A bipartite Ramsey problem and the Zarankiewicz numbers.
- Discrete Math., 19: 13–26, 1978. [7] R. Zhang and Y. Q. Sun. The bipartite Ramsey numbers $b(C_{2m}; K_{2,2})$. The Elec. J. of Combin., 18: P51, 2011.