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Boolean Functions
Yu Lou, Chunming Tang, Yanfeng Qi, Maozhi Xu

Abstract—This paper considers the bent and hyper-bent properties
of a class of Boolean functions. For one case, we present a detailed
description for them to be hyper-bent functions, and give a necessary
condition for them to be bent functions for another case.

Keywords—Boolean functions, bent functions, hyper-bent

I. INTRODUCTION

B variables and with the maximal distance to all affine
functions. In fact, the distance of an n-variable bent function
to any affine function equals 2n−1−2

n
2 −1. Bent function was

introduction by Rothaus [9] in 1976, later in 2001 Youssef et
al [10] found a subclass of bent functions with even better
cryptographic properties, which was named as hyper-bent
functions. Thanks to their applications in cryptography, coding
theory and combinatorial design, many interests have been put
in bent and hyper-bent functions recently[2], [3], [4], [6], [7],
[8].

In this paper, we consider a class of Boolean functions
defined on F2n of the form:

f
(r)
a,b (x) := Trn1 (ax

r(2m−1)) + Tr41(bx
2n−1

5 ), (1)

where n = 2m, m ≡ 2k (mod 4), k ∈ {0, 1}, a ∈ F2n

and b ∈ F16. When m = 2 (mod 4), with the help of the
factorization of x5+x+a−1 and Kloosterman sums, this paper
characterizes the cases for f (r)

a,b to be hyper-bent. Further more
, for a ∈ F

2
m
2

, we list all the hyper-bent functions of the form
of f (r)

a,b . When m = 0 (mod 4), we give a necessary condition
for f (r)

a,b to be bent.

we give some notations and recall some basic knowledge
for this paper. Then we describe the hyper-bent properties of
f
(r)
a,b when m ≡ 2 (mod 4) and study the bent properties of
f
(r)
a,b when m ≡ 0 (mod 4) in Section III and Section IV

respectively. Finally, we conclude our work in Section V.

II. PRELIMINARIES

The sign function of Boolean function f is χ(f) := (−1)f .
Definition 1: A Boolean function f : F2n → F2 is called

a bent function, if χ̂f (w) =
∑

x∈F2n
(−1)f(x)+Trn1 (wx) =
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±2
n
2 (∀w ∈ F2n), where Trn1 is the absolute trace function

defined as Trn1 (x) := x+ x2 + x22 + · · ·+ x2n−1

.
Hyper-bent function is an important subclass of bent functions
defined as

Definition 2: A bent function f : F2n → F2 is called a
hyper-bent function, if, for any i satisfying (i, 2n − 1) = 1,
f(xi) is also a bent function.

Charpin and Gong [4] gave the following property to
determine a hyper-bent function.

Proposition 1: Let n = 2m, α be a primitive element
of F2n and f be a Boolean function over F2n satisfying
f(α2m+1

x) = f(x) (∀x ∈ F2n) and f(0) = 0. Let ξ be
a primitive 2m + 1-th root in F∗

2n . Then f is a hyper-bent
function if and only if the cardinality of the set {i|f(ξi) =
1, 0 ≤ i ≤ 2m} is 2m−1.

Kloosterman sum is a powerful tool to study the hyper-bent
properties of some classes of boolean functions.

Kloosterman sums on F2n are defined as

Km(a) :=
∑

x∈F2m

χ(Trm1 (ax+
1

x
)), a ∈ F2m .

Some properties of Kloosterman sums are given by the
following proposition.

Proposition 2: ([5],Theorem 3.4]) Let a ∈ F2m . Then
Km(a) ∈ [1− 2(m+2)/2, 1 + 2(m+2)/2] and 4 | Km(a).
Quintic Weil sums on F2m are

Qm(a) :=
∑

x∈F2m

χ(Trm1 (a(x5 + x3 + x))), a ∈ F2m .

And the value of Qm(a) is related to the factorization of the
polynomial P (x) = x5 + x+ a−1 [1].

When a ∈ F∗
2m1 , m = 2m1, Km(a) and Qm(a) have the

following properties
Proposition 3: (Lemma 3 [1]) If a ∈ F∗

2m1 , m = 2m1,
(1) 1−Km(a) = (1−Km1(a))

2 − 2 · 2m1 .
(1) if m1 ≡ 1 (mod 2), then Qm(a) ∈ {0, 2 · 2m/2,−4 ·

2m/2}.
Proposition 4: [11] The Ramanujan-Nagell equation x2 −

D = 2n+2 has at most 4 solutions (x, n), which are

(x, n) := (2k−3, 1), (2k−1, k), (2k+1, k+1), (3·2k−1, 2k+1),

where k ∈ N and D ∈ N is odd.
With the help of the solutions of Ramanujan-Nagell

equation,
Lemma 1: If a ∈ F2m1 , m = 2m1, m1 > 1, then Km(a) �=

−4.
Proof: By Propostion 3, if Km(a) = −4,

(1−Km1(a))
2 = 2 · 2m1 + 5. (2)
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It is easy to check that when m1 < 5, 2·2m1+5 is not a square.
By Propostion 4, (2) has at most 4 solutions (| (1−Km1(a)) |
, n), which are

(| (1−Km1(a)) |,m1 − 1) =

(2k − 3, 1), (2k − 1, k), (2k + 1, k + 1), (3 · 2k − 1, 2k + 1),

where k ∈ N. We can check all the 4 solutions can not satisfy
(2). For example, if (| (1 − Km1(a)) |,m1 − 1) = (3 · 2k −
1, 2k + 1), then

(3 · 2k − 1)2 = 22k+1+2 + 5. (3)

When k = 1, 2, (3 · 2k − 1)2 �= 22k+1+2 + 5. When k ≥ 3,
(3 ·2k−1)2 > 22k+1+2+5. Thus (3) has no integral solution,
therefore (2) has no integral solution either, which concludes
the proof.

III. THE HYPER-BENT PROPERTY OF f
(r)
a,b WHEN m = 2

(mod 4)

In the this section, we consider the Boolean function f
(r)
a,b

defined by (1), where n = 2m, m ≡ 2 (mod 4), a ∈ F2n

and b ∈ F16. As the cyclotomic coset of 2 module 2n − 1
containing 2n−1

5 is

{2
n − 1

5
, 2 · 2

n − 1

5
, 22 · 2

n − 1

5
, 23 · 2

n − 1

5
}.

Its size is 4, or o( 2
n−1
5 ) = 4, which means f

(r)
a,b is neither in

the class considered by Charpin and Gong [4] nor in the class
studied by Mesanager [6], [7].

Let α be a primitive element of F2n , β = α
2n−1

5 , ξ =
α2m−1, U =< ξ >, V =< ξ5 >. Since 5|(2m + 1), V is the
subgroup of U and #V = 2m+1

5 .
For any i ∈ F2m , define

Si =
∑
v∈V

χ(Trn1 (aξ
i(2m−1)v))

=
∑
v∈V

χ(Trn1 (aξ
−2iv)) =

∑
v∈V

χ(Trn1 (aξ
−5i+3iv))

=
∑
v∈V

χ(Trn1 (aξ
3iv)). (as ξ−5i ∈ V )

From the definition of Si,

Si = Si (mod 5). (4)

To study the hyper-bent properties of f
(r)
a,b , we define the

following character sum

Λr(a, b) :=
∑
u∈U

χ(f
(r)
a,b (u)). (5)

Similar to the proof of Proposition 9 in [1], the hyper-bent
properties of f (r)

a,b can be described as
Proposition 5: f

(r)
a,b is a hyper-bent function if and only if

Λr(a, b) = 1.
Before our work on f

(r)
a,b , let us consider a general case of

f
(r)
a,b which is defined as

f
(r,k)
a,b := Trn1 (ax

r(2m−1)) + Tr41(bx
k 2n−1

5 ), (6)

where a, b is defined as above and k ∈ N.
When k ≡ 0 (mod 5), f (r,k)

a,b = Trn1 (ax
r(2m−1)) + Tr41(b)

is a special case studied by Charpin and Gong in [4]. In this
paper we only consider the case of k �≡ 0 (mod 5).

Proposition 6: The hyper-bent properties of f
(r,k)
a,b can be

represented by that of f (r)
a,b efficiently, where a ∈ F2n , b ∈ F16,

k �≡ 0 (mod 5).
Proof: For b ∈ F∗

16, b can be written as b = ωβj , where
ω3 = 1, 0 ≤ j ≤ 4. Thus

Tr41(bx
k 2n−1

5 ) = Tr41(ωβ
jxk 2n−1

5 ) = Tr41(ω(β
j
k x

2n−1
5 )k).

It is easy to check,

Tr41(ωx
2n−1

5 ) = Tr41(ω
2x2 2n−1

5 )

= Tr41(ωx
4 2n−1

5 ) = Tr41(ω
2x3 2n−1

5 ).

Then Tr41(bx
k 2n−1

5 ) = Tr41(b
′
x

2n−1
5 ), where b

′ ∈ F∗
16.

Hence the result stands.
A step further, f (r)

a,b has following proposition.

Proposition 7: Let f
(r)
a,b be defined as (1) and (r, 5) = 1,

then f
(r)
a,b is a hyper-bent function if and only if f

(r)

a′ ,b′
is a

hyper-bent one, where a = a
′
ξi ∈ F2n , a

′ ∈ F2m , b, b
′
=

bα− i
r

2n−1
5 ∈ F16.

Proof: Notice that ∀a ∈ F2n , a = a
′
ξi, where a

′ ∈ F2m ,
ξ = α2m−1 is a primitive 2m + 1-th root of unity in F2n and
0 ≤ i ≤ 2m. We have

f
(r)
a,b (x) = Trn1 (ax

r(2m−1)) + Tr41(bx
2n−1

5 )

= Trn1 (a
′
(α

i
r x)r(2

m−1)) + Tr41(bα
− i

r
2n−1

5 (α
i
r x)

2n−1
5 )

= f
(r)

a′ ,b′
(α− i

r x),

where b
′
= bα− i

r
2n−1

5 ∈ F16.
Thus f (r)

a,b is linearly equivalent to f
(r)

a′ ,b′
, that is to say, f (r)

a,b

is a hyper-bent function if and only if f
(r)

a′ ,b′
is a hyper-bent

one.
By Proposition 7, if a = a

′
ξi, and β = α

2n−1
5 , we have the

following results

• f
(1)
a,b is linearly equivalent to f

(1)

a′ ,bβ4i .

• f
(2)
a,b is linearly equivalent to f

(2)

a′ ,bβ2i .

• f
(3)
a,b is linearly equivalent to f

(3)

a′ ,bβ3i .

• f
(4)
a,b is linearly equivalent to f

(4)

a′ ,bβi .

By Proposition 7 and Proposition 6, when a ∈ F2n , k ∈
N, b ∈ F16, the hyper-bent properties of f

(r,k)
a,b can be fully

represented by that of f
(r)
a,b , where a ∈ F2m , b ∈ F16. Since

the hyper-bent properties of f (1)
a,b had been studied elaborately

in [1], in the following parts of this Section we only consider
the rest cases of r.

1) The hyper-bent properties of f (5)
a,b , where a ∈ F2m:

Proposition 8: Let n = 2m and m ≡ ±2,±6 (mod 20),
If b ∈ {0}⋃{βi|i = 0, 1, 2, 3, 4}, then the Boolean function

A. The Case of r = 5
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f
(5)
a,b is not a hyper-bent function. Further, if b ∈ F∗

16\{βi|0 ≤
i ≤ 4}, f (5)

a,b is a hyper-bent function if and only if∑
v∈V

χ(Trn1 (av)) = 1.

Proof: By (5),

Λ5(a, b) =
∑
u∈U

χ(f
(5)
a,b (u))

=
∑
u∈U

χ(Trn1 (au
5(2m−1)))χ(Tr41(bu

2n−1
5 )).

Notice that U =< ξ >, V =< ξ5 > and U =
ξ0V

⋃
ξ1V

⋃
ξ2V

⋃
ξ3V

⋃
ξ4V. Then,

Λ5(a, b) = (7)
4∑

i=0

∑
v∈V

χ(Tr41(b(ξ
iv)

2n−1
5 ))χ(Trn1 (a(ξ

iv)5(2
m−1)))

=
4∑

i=0

∑
v∈V

χ(Tr41(b(ξ
iv)

2n−1
5 ))χ(Trn1 (a(ξ

5i)2
m−1v5(2

m−1)))

(8)

Since (ξ5i)2
m−1 ∈ V and m ≡ ±2,±6 (mod 20), (5(2m −

1),#V ) = (5, 2m+1
5 ) = 1. Then v 	−→ (ξ5i)2

m−1v5(2
m−1) is

a permutation of V . Hence,

Λ5(a, b) =
4∑

i=0

∑
v∈V

χ(Tr41(b(ξ
iv)

2n−1
5 ))χ(Trn1 (av))

=(

4∑
i=0

χ(Tr41(bξ
i 2n−1

5 )))(
∑
v∈V

χ(Trn1 (av))).

As ξ
2n−1

5 = (α2m−1)
(2m−1)(2m+1)

5 = β2m−1 = β2m+1−2 =
β3,

Λ5(a, b) =(
4∑

i=0

χ(Tr41(bβ
3i))(

∑
v∈V

χ(Trn1 (av)))

=(
4∑

i=0

χ(Tr41(bβ
i))(

∑
v∈V

χ(Trn1 (av))). (9)

By (9), when b = 0, Λ5(a, 0) = 5
∑
v∈V

χ(Trn1 (av)), and thus

Λ5(a, 0) �= 1. By Proposition 5, f
(5)
a,0 is not a hyper-bent

function.
When b �= 0, b can be represented as b = ωβj , where

ω3 = 1 and 0 ≤ j ≤ 4. Then
4∑

i=0

χ(Tr41(bβ
i)) =

4∑
i=0

χ(Tr41(ωβ
i+j)) =

4∑
i=0

χ(Tr41(ωβ
i)).

(10)

Since ω3 = 1 and ω4 = ω, we have

Tr41(ωβ
i) = Tr41(ω

4β4i) = Tr41(ωβ
4i).

If ω = 1,
4∑

i=0

χ(Tr41(bβ
i) =

4∑
i=0

χ(Tr41(β
i)). As β satisfies

β4 + β3 + β2 + β + 1 = 0, Tr41(β
i) = 1, i �= 0. Then

4∑
i=0

χ(Tr41(bβ
i)) = −3. Therefore,

Λ5(a, b) = −3
∑
v∈V

χ(Trn1 (av)), b = βj , 0 ≤ j ≤ 4.

By Proposition 5, f (5)
a,βj is not a hyper-bent function. When

ω �= 1, we have

Tr41(ωβ) + Tr41(ωβ
2) = Tr41(ω(β + β2))

= ω(β + β2 + β3 + β4) + ω2(β + β2 + β3 + β4)

= 1.

Then χ(Tr41(ωβ)) + χ(Tr41(ωβ
2)) = 0. Similarly,

χ(Tr41(ωβ
3)) + χ(Tr41(ωβ

4)) = 0. Therefore,

Λ5(a, b) =
∑
v∈V

χ(Trn1 (av)), b = ωβj , 0 ≤ j ≤ 4, ω3 = 1, ω �= 1.

By Proposition 5, the second part of this proposition follows.

In Proposition 8, we consider the hyper-bent properties of
the Boolean function f

(5)
a,b for m ≡ ±2,±6 (mod 20). The

proposition below discusses the hyper-bent properties of f (5)
a,b

for m ≡ 10 (mod 20).
Proposition 9: Let n = 2m, m ≡ 10 (mod 20), a ∈ F2m ,

b ∈ F16. then the Boolean function f
(5)
a,b is not a hyper-bent

function.
Proof: Notice that Λ5(a, b) =∑4

i=0

∑
v∈V χ(Tr41(bξ

i 2n−1
5 ))χ(Trn1 (a(ξ

5i)2
m−1v5(2

m−1))).
Since m ≡ 10 (mod 20), 25|(2m + 1) and
(5(2m − 1), 2m+1

5 ) = 5. Then v 	−→ v5(2
m−1) is a 5

to 1 morphism from V to V 5 := {v5|v ∈ V }. Therefore,

Λ5(a, b) = 5

4∑
i=0

∑
v∈V 5

χ(Tr41(bξ
i 2n−1

5 ))χ(Trn1 (a(ξ
5i)2

m−1v)).

Hence, 5|Λ5(a, b) and Λ5(a, b) is not equal to 1, By
Proposition 5, f (5)

a,b is not a hyper-bent function.
By Proposition 8,∑

v∈V

χ(Trn1 (av)) =
∑
v∈V

χ(Trn1 (av
2m−1)).

Notice that
∑
v∈V

χ(Trn1 (av)) = S0 in [1]. By Proposition 15

in [1],

∑
v∈V

χ(Trn1 (av)) =
1

5
[1−Km(a) + 2Qm(a)]. (11)

Further, By Proposition 16 and 18 in [1], we have the
following results.

Proposition 10: Let n = 2m, m ≡ ±2,±6 (mod 20),
m ≥ 6 and b ∈ F∗

16\{βi|0 ≤ i ≤ 4}, then f
(5)
a,b is a hyper-bent

function if and only if one of the assertions (1) and (2) holds.
(1) Qm(a) = 0, Km(a) = −4.
(2) Qm(a) = 2m1 , Km(a) = 2 · 2m1 − 4.
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2) The hyper-bent properties of f
(5)
a,b where a ∈ F2n : In

this part, we always assume n = 2m, m = 2m1, m1 ∈ N.
Lemma 2: Let b ∈ F∗

16, γ ∈ {z ∈ F2n : z5 = 1, z �= 1} =<

α
2n−1

5 >, then
4∑

i=0

χ(Tr41(bγ
i)) =

{
1, b5 �= 1
−3, b5 = 1.

Proof: Firstly, if b5 = 1,

4∑
i=0

χ(Tr41(bγ
i)) =

4∑
i=0

χ(Tr41(γ
i)) = 1 +

3∑
i=0

χ(Tr41(γ
2i))

= 1 + 4χ(Tr41(γ)) = −3.

Secondly, if b5 �= 1,

4∑
i=0

χ(Tr41(bγ
i)) =

4∑
i=0

χ(Tr41(b
2γ2i)) =

4∑
i=0

χ(Tr41(b
2γi)).

Since ∀b ∈ F∗
16, b = ωjγi, 0 ≤ j ≤ 2, 0 ≤ i ≤ 4, we have∑

b∈F16

χ(Tr41(b)) = 1 +
∑
b∈F

∗
16

χ(Tr41(b))

= 1 +
2∑

j=0

4∑
i=0

χ(Tr41(ω
jγi))

= 1 +
4∑

i=0

χ(Tr41(γ
i)) +

4∑
i=0

χ(Tr41(ωγ
i)) +

4∑
i=0

χ(Tr41(ω
2γi))

= 1 + (−3) + 2

4∑
i=0

χ(Tr41(ωγ
i)).

Notice that
∑

b∈F16

χ(Tr41(b)) = 0, hence∑4
i=0 χ(Tr

4
1(bγ

i)) = 1, and the conclusion stands.
Theorem 1: If a = a

′
ξi, a

′ ∈ F2m , the hyper-bent
properties of f (5)

a,b can be described as follows:

(1) when m ≡ 10 (mod 20), f (5)
a,b is not hyper-bent.

(2) when m ≡ ±2,±6 (mod 20), f (5)
a,b is hyper-bent if and

only if S2i = 1.
Proof: To the character sum of f (5)

a,b :

Λ(a
′
ξi, b) =

∑
u∈U

χ(f
(5)

a′ξi,b
(u))

=
∑
u∈U

χ(Trn1 (a
′
ξiu5(2m−1)))χ(Tr41(bu

2n−1
5 ))

=
4∑

j=0

∑
v∈V

χ(Trn1 (a
′
ξi(ξjv)5(2

m−1)))χ(Tr41(b(ξ
jv)

2n−1
5 ))

=
4∑

j=0

∑
v∈V

χ(Tr41(bξ
j 2n−1

5 ))χ(Trn1 (a
′
ξiξ5j(2

m−1)v5(2
m−1))).

(12)

If m ≡ 10 (mod 20), then
(5,#V ) = 5. By (12), Λ(a

′
ξi, b) =

5
∑4

j=0

∑
v′∈V 5 χ(Tr

4
1(bξ

j 2n−1
5 ))χ(Trn1 (a

′
ξiξ5j(2

m−1)v
′
)),

where V 5 = {v5 | v ∈ V }, v 	→ v5(2
m−1) is a 5 to 1

morphism from V to V 5 . Thus Λ(a
′
ξi, b) �= 1, and f

(5)
a,b is

not a hyper-bent function.
If m ≡ ±2,±6 (mod 20), then (5,#V ) = 1. By (12) and

(9),

Λ(a
′
ξi, b) =

4∑
j=0

∑
v∈V

χ(Tr41(bβ
j))χ(Trn1 (a

′
ξiv))

= (
4∑

j=0

χ(Tr41(bβ
j)))(

∑
v∈V

χ(Trn1 (a
′
(ξ

i
2m−1 )2

m−1v))),

where β = α
2n−1

5 , ξ
2n−1

5 = β3. Since 1
2m−1 ≡ 2 (mod 5),

then by (4),

Λ(a
′
ξi, b) = (

4∑
j=0

χ(Tr41(bβ
j)))(

∑
v∈V

χ(Trn1 (a
′
(ξ2i)2

m−1v)))

= (
4∑

j=0

χ(Tr41(bβ
j)))S2i.

By Lemma 2,

Λ(a
′
ξi, b) =

{
S2i, b5 �= 1
−3S2i, b5 = 1.

If b5 = 1, 3 | Λ(a′
ξi, b). Thus f

(5)

a′ξi,b
is not a hyper-bent

function.
If b5 �= 1, then f

(5)

a′ξi,b
is a hyper-bent function if and only

if S2i = 1.

When b = 0, the hyper-bent propriety of f
(2)
a,0 has been

studied by Canteaut et al in [2]. We consider the case of b �= 0.
Proposition 11: Let a ∈ F2m , b ∈ F∗

16, we have
(1) if b = 1, then Λ2(a, b) = S0 − 2(S1 + S2) = 2S0 −

Λ2(a, 0).
(2) if b ∈ {β+β2, β+β3, β2+β4, β3+β4}, then Λ2(a, b) =

S0.
(3) if b = β or β4, then Λ2(a, b) = −S0 − 2S2.
(4) if b = β2 or β3, then Λ2(a, b) = −S0 − 2S1.
(5) if b = 1 + β or 1 + β4, then Λ2(a, b) = −S0 + 2S2.
(6) if b = 1 + β2 or 1 + β3, then Λ2(a, b) = −S0 + 2S1.
(7) if b = β + β4, then Λ2(a, b) = S0 + 2S2 − 2S1.
(8) if b = β2 + β3, then Λ2(a, b) = S0 − 2S2 + 2S1.

Proof: Similar to proof of Proposition 13 in [1] the results
hold.

Corollary 1: Let a ∈ F2m , b ∈ F∗
16, we have

(1) f (2)
a,b holds the same hyper-bent propertyies as f

(1)
a,b2 .

(2) if b satisfies (b+1)(b4+ b+1) = 0, then f
(2)
a,b holds the

same hyper-bent properties as f
(1)
a,b .

Proof: (1) By Proposition 11 and Proposition 13 in [1],

Λ2(a, b) = Λ1(a, b
2).

Hence f
(2)
a,b is a hyper-bent function if and only if f (1)

a,b2 is.
(2) Similarly, if b satisfying (b+ 1)(b4 + b+ 1) = 0, then,

Λ2(a, b) = Λ1(a, b).

Thus f
(2)
a,b holds the same hyper-bent properties as f

(1)
a,b .

B. The Case of r = 2
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Theorem 2: Let n = 2m, m ≡ 2 (mod 4), a ∈ F2m and
b ∈ F16. If (r, 2m+1

5 ) > 1, then f
(r)
a,b is not a hyper-bent

function. Further, if (r, 2m+1
5 ) = 1, then

(1) If r ≡ 0 (mod 5), then f
(r)
a,b and f

(5)
a,b has the same

hyper-bent properties.
(2) If r ≡ ±1 (mod 5), then f

(r)
a,b and f

(1)
a,b has the same

hyper-bent properties.
(3) If r ≡ ±2 (mod 5), then f

(r)
a,b and f

(2)
a,b has the same

hyper-bent properties.
Proof: Notice that

Λr(a, b) =
4∑

i=0

∑
v∈V

χ(Tr41(b(ξ
iv)

2n−1
5 ))χ(Trn1 (a(ξ

iv)r(2
m−1)))

=
4∑

i=0

∑
v∈V

χ(Tr41(bξ
i 2n−1

5 ))χ(Trn1 (aξ
ri(2m−1)vr(2

m−1))).

Let d = (r(2m − 1),#V ) = (r, 2m+1
5 ), then Λr(a, b) =

d
∑4

i=0 χ(Tr
4
1(bξ

i 2n−1
5 ))

∑
v∈V d χ(Tr

n
1 (aξ

ri(2m−1)vr(2
m−1))),

where V d = {vd|v ∈ V }. If d = (r, 2m+1
5 ) > 1, d|Λr(a, b)

and Λr(a, b) �= 1. Hence, f (r)
a,b is not a hyper-bent function.

When d = (r, 2m+1
5 ) = 1,

Λr(a, b) =
4∑

i=0

χ(Tr41(bξ
i 2n−1

5 ))
∑
v∈V

χ(Trn1 (aξ
ri(2m−1)v)).

(13)
If r ≡ 0 (mod 5), from ξ

2n−1
5 = β3, we have

Λr(a, b) =
4∑

i=0

χ(Tr41(bβ
3i))

∑
v∈V

χ(Trn1 (aξ
ri(2m−1)v))

=

4∑
i=0

χ(Tr41(bβ
i))

∑
v∈V

χ(Trn1 (av)).

Then Λr(a, b) = Λ5(a, b). Therefore, f
(r)
a,b and f

(5)
a,b has the

same hyper-bent properties.
If r ≡ 1 (mod 5), then

Λr(a, b) =

4∑
i=0

χ(Tr41(bξ
i 2n−1

5 ))
∑
v∈V

χ(Trn1 (aξ
i(2m−1)v)).

By Proposition 10 in [1], Λr(a, b) = Λ1(a, b). Hence, f
(r)
a,b

and f
(1)
a,b has the same hyper-bent properties.

If r ≡ 2 (mod 5), then

Λr(a, b) =
4∑

i=0

χ(Tr41(bξ
i 2n−1

5 ))
∑
v∈V

χ(Trn1 (aξ
2i(2m−1)v))

=
4∑

i=0

χ(Tr41(bβ
3i))S2i

=
4∑

i=0

χ(Tr41(bβ
9i))S6i =

4∑
i=0

χ(Tr41(bβ
4i))Si.

By Lemma 1 in [1],

Λr(a, b) =χ(Tr41(b))S0 + (χ(Tr41(bβ)) + χ(Tr41(bβ
4)))S1

+ (χ(Tr41(bβ
2)) + χ(Tr41(bβ

3)))S2. (14)

r 2
(r)
a,b

(2)
a,b

hyper-bent properties.
If r ≡ 3 (mod 5),

Λr(a, b) =
4∑

i=0

χ(Tr41(bξ
i 2n−1

5 ))
∑
v∈V

χ(Trn1 (aξ
3i(2m−1)v))

=
4∑

i=0

χ(Tr41(bβ
3i))S3i =

4∑
i=0

χ(Tr41(bβ
i))Si.

From Lemma 1 in [1],

Λr(a, b) =χ(Tr41(b))S0 + (χ(Tr41(bβ)) + χ(Tr41(bβ
4)))S1

+ (χ(Tr41(bβ
2)) + χ(Tr41(bβ

3)))S2. (15)

Hence, Λr(a, b) = Λ3(a, b). From (14) and (15), we have
Λ2(a, b) = Λ3(a, b). Thus, f

(r)
a,b and f

(2)
a,b have the same

hyper-bent properties.
Similarly, if r ≡ 4 (mod 5), then Λr(a, b) = Λ4(a, b) =

Λ1(a, b). Thus, f
(r)
a,b and f

(1)
a,b have the same hyper-bent

properties.
Above all, the results stand.
From the above discussion, we have the following results

on f
(r)
a,b .

Proposition 12: Let a ∈ F2m and (r, 2m+1
5 ) = 1, then

(1) If 1
5 [1 − Km(a) + 2Qm(a)] = 1, then the following

Boolean functions
(a) f (r)

a,b , b ∈ F∗
16\{βi|i = 0, 1, 2, 3, 4}, r ≡ 0 (mod 5).

(b) f (r)
a,b , r �≡ 0 (mod 5), b4 + b+ 1 = 0.

are hyper-bent functions.
(2) If − 1

5 [3(1−Km(a))− 4Qm(a)] = 1, then the Boolean
function f

(r)
a,1 (r �≡ 0 (mod 5)) is a hyper-bent function.

Proof: By Theorem 2, (11), Proposition 8 and Proposition
16 in [1], this proposition follows.

With Proposition 12, we can generalize Theorem 3 in [1]
to the following theorem.

Theorem 3: Let n = 2m, m = 2m1, m1 ≡ 1 (mod 2),
m1 ≥ 3 and (r, 2m+1

5 ) = 1, If one of two assertions (1) and
(2) holds,

(1) p(x) = x5+x+a−1 over F2m is (1)(2)2 and Km(a) =
−4.

(2) p(x) = x5 + x + a−1 is irreducible over F2m . The
quadratic form q(x) = Trm1 (x(ax4 + ax2 + a2x)) over F2m

is even. Km(a) = 2 · 2m1 − 4.
Then the Boolean functions
(a) f (r)

a,b , b ∈ F∗
16\{βi|i = 0, 1, 2, 3, 4}, r ≡ 0 (mod 5).

(b) f (r)
a,b , r �≡ 0 (mod 5), b4 + b+ 1 = 0.

are hyper-bent functions.
Proof: By Proposition 16 and Theorem 3 in [1] and

Proposition 12, this theorem follows.
By Proposition 16 , Proposition 12 and Theorem 2 in [1],

we have the following results for the hyper-bent properties of
f
(r)
a,b :

Theorem 4: Let n = 2m, m = 2m1, m1 ≡ 1 (mod 2),
m1 ≥ 3, (r, 2m+1

5 ) = 1 and r �≡ 0 (mod 5), then f
(r)
a,1 is

a hyper-bent function if and only if the following assertions
holds.

C. The General Case of r Hence, Λ (a, b) = Λ (a, b). f and f has the same
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(1) p(x) = x5 + x+ a−1 is irreducible over F2m .
(2) The quadratic form q(x) = Trm1 (x(ax4 + ax2 + a2x))

over F2m is even.
(3) Km(a) = 4

3 (2− 2m1).
If a ∈ F

2
m
2

, the hyper-bent properties of f (r)
a,b is

Theorem 5: Let n = 2m, m = 2m1, m1 ≡ 1 (mod 2) and
m1 ≥ 3. If n �= 12, 28, any Boolean function in

{f (r)
a,b |a ∈ F

2
m
2
, b ∈ F16} (16)

is not a hyper-bent function. Further, if n = 12, all
the hyper-bent functions in (16) are Tr121 (axr(26−1)) +

Tr41(bx
212−1

5 ), where r �≡ 0 (mod 5), (r, 2m+1
5 ) = 1, (a +

1)(a3 + a2 + 1) = 0 and b = βi, i = 1, 2, 3, 4. If n = 28,
all the hyper-bent functions in (16) are Tr281 (axr(214−1)) +

Tr41(bx
228−1

5 ), where r �≡ 0 (mod 5), (r, 2m+1
5 ) = 1, (a +

1)(a7+a6+a5+a4+a3+a2+1) = 0 and b = βi, i = 1, 2, 3, 4.
Proof: Notice that a ∈ F

2
m
2

. By Theorem 2, if f
(r)
a,b is a

hyper-bent function, (r, 2m+1
5 ) = 1.

Suppose (r, 2m+1
5 ) = 1. we first prove that f

(r)
a,0 is not a

hyper-bent function when r ≡ 0 (mod 5). By Theorem 2,
f
(r)
a,b is a hyper-bent function if and only if f (5)

a,b is a hyper-bent
function. If b = 0,

Λ5(a, 0) =
∑
u∈U

χ(Trn1 (au
5(2m−1))) = 5

∑
v∈V

χ(Trn1 (av
2m−1)).

Hence, 5|Λ5(a, 0) and Λ5(a, 0) �= 1. Therefore, f (5)
a,0 is not a

hyper-bent function. Then f
(r)
a,0 is not a hyper-bent function.

When b �= 0, by Theorem 3, f (r)
a,b is a hyper-bent function if

and only if f (1)
a,b′ (b

′4+b′+1 = 0) is a hyper-bent function. By
Theorem 5 in [1], f (1)

a,b′ (b
′4 + b′ + 1 = 0) is not a hyper-bent

function. Hence, f (r)
a,b is not a hyper-bent function when r ≡ 0

(mod 5).
Now we discuss the case r ≡ ±1 (mod 5) and (r, 2m+1

5 ) =

1. By Theorem 2, f (r)
a,b is a hyper-bent function if and only if

f
(1)
a,b is a hyper-bent function. By Theorem 5 in [1], there are

only two cases. The first case is n = 12, where a and b satisfy

(a+ 1)(a3 + a2 + 1) = 0, b = βi, i = 1, 2, 3, 4.

The second case is n = 28, where a and b satisfy

(a+1)(a7+a6+a5+a4+a3+a2+1) = 0, b = βi, i = 1, 2, 3, 4.

When r ≡ ±2 (mod 5) and (r, 2m+1
5 ) = 1, we have similar

results.
Above all, this theorem follows.

IV. THE BENT PROPERTY OF f
(r)
a,b WHEN m = 0 (mod 4)

In this section we consider the bent properties of f
(r)
a,b ,

where m ≡ 0 (mod 4), a ∈ F2n , b ∈ F16.
Proposition 13: Let a = a

′
ξk ∈ F∗

2n , b ∈ F∗
16, a

′ ∈ F∗
2m ,

0 ≤ k ≤ 2m, m ≡ 0 (mod 4), m = 2m1. One necessary
condition for f

(r)
a,b to be a bent function is: (r, 2m + 1) = 1,

a
′ ∈ F2m \ F2m1 , b5 �= 1, χ̂

f
(r)
a,b

(0) = 2m and Km(a
′
) = −4.

Proof: Notice that ∀x ∈ F∗
2n , x = yu, where y ∈ F∗

2m ,
u ∈ U =< α2m−1 >. Since m ≡ 0 (mod 4), 5 | 2m − 1.

Thus u
2n−1

5 = (u2m+1)
2m−1

5 = 1. Now, consider the Walsh
spectrum of f (r)

a,b at 0, which is

χ̂
f
(r)
a,b

(0) =
∑

x∈F2n

χ(f
(r)
a,b (x)) = 1 +

∑
u∈U

∑
y∈F

∗
2m

χ(f
(r)
a,b (yu))

= 1 +
∑
u∈U

∑
y∈F

∗
2m

χ(Trn1 (a(yu)
r(2m−1)))χ(Tr41(b(yu)

2n−1
5 ))

= 1 +
∑
u∈U

χ(Trn1 (au
r(2m−1)))

∑
y∈F

∗
2m

χ(Tr41(by
2n−1

5 )) (17)

F∗
2m can be written as F∗

2m =
4⋃

i=0

βiV , where V = {z5 |
z ∈ F∗

2m}, β ∈ F∗
2m \ V .

If (r(2m − 1), 2m + 1) = 1, by (17),

χ̂
f
(r)
a,b

(0) =

1 +
∑
u∈U

χ(Trn1 (a
′
ξkur(2m−1)))

4∑
i=0

∑
v∈V

χ(Tr41(b(vβ
i)

2n−1
5 ))

= 1 +
∑
u∈U

χ(Trn1 (a
′
u))

4∑
i=0

∑
v∈V

χ(Tr41(bβ
i 2n−1

5 ))

= 1 +
∑
u∈U

χ(Trn1 (a
′
u))

∑
v∈V

4∑
i=0

χ(Tr41(bγ
i))

= 1 + (1−Km(a
′
))
2m − 1

5

4∑
i=0

χ(Tr41(bγ
i)), (18)

(r(2m−1), 2m+1) = 1, u 	→ ξkur(2m−1) is a permutation in
U ,

∑
u∈U

χ(Trn1 (au
2m−1)) = 1 −Km(a). γ = β

2n−1
5 �= 1 is a

5-th primitive root of unity in F2n . If f (r)
a,b is a bent function,

χ̂
f
(r)
a,b

(0) = 1+(Km(a
′
)−1)(

2m − 1

5
)

4∑
i=0

χ(Tr41(bγ
i)) = ±2m.

By Lemma 2,

(1) if
4∑

i=0

χ(Tr41(bγ
i)) = −3, then Km(a

′
) = 8

3 or 3(2m −
1)(Km(a

′
) − 1) = −5(2m + 1). Since Km(a

′
) is an integer,

however ( 2
m−1
5 , 2m + 1) = 1, Neither of the two equations

stands, thus f
(r)
a,b is not a bent function.

(2) if
4∑

i=0

χ(Tr41(bγ
i)) = 1, which means Km(a

′
) = −4,

χ̂
f
(r)
a,b

(0) = 2m, or (2m − 1)(Km(a
′
) − 1) = 5(2m + 1),

χ̂
f
(r)
a,b

(0) = −2m. Since ( 2
m−1
5 , 2m + 1) = 1, the last group

of equations can not stand. By Lemma 1, if a
′ ∈ F2m1 , then

Km(a
′
) �= −4.
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If (r(2m − 1), 2m + 1) = d > 1. Since 5 | 2m − 1, 5 � d.
By (17),

χ̂
f
(r)
a,b

(0) =

1 +
∑
u∈U

χ(Trn1 (au
r(2m−1)))

4∑
i=0

∑
v∈V

χ(Tr41(b(vβ
i)

2n−1
5 ))

= 1 + d
∑

u′∈Ud

χ(Trn1 (au))
2m − 1

5

4∑
i=0

χ(Tr41(bγ
i))

= 1 + dh
2m − 1

5

4∑
i=0

χ(Tr41(bγ
i)),

where Ud = {ud | u ∈ U}, u 	→ ur(2m−1) is a d to 1

morphism from U to Ud, h =
∑

u′∈Ud χ(Tr
n
1 (au)). If f (r)

a,b is
a bent function,

χ̂
f
(r)
a,b

(0) = 1 + dh(
2m − 1

5
)

4∑
i=0

χ(Tr41(bγ
i)) = ±2m.

By Lemma 2,

(1) if
4∑

i=0

χ(Tr41(bγ
i)) = −3, then 3dh = −5 or 3dh(2m−

1) = 5(2m + 1).

(2) if
4∑

i=0

χ(Tr41(bγ
i)) = 1, then dh = 5 or dh(2m−1) =

−5(2m + 1).
Notice that d > 1, 5 � d, 3 � 2m + 1, (2m − 1, 2m + 1) = 1,
all of the above equations can not stand.

Above all, the results follow.

V. CONCLUSION

This paper considers the bent and hyper-bent properties
of the Boolean functions f

(r)
a,b of the form f

(r)
a,b :=

Trn1 (ax
r(2m−1)) + Tr41(bx

2n−1
5 ), where n = 2m, m = 2k

(mod 4), k ∈ {0, 1}, a ∈ F2n and b ∈ F16. When m = 2
(mod 4), we give a detailed description of the hyper-bent
properties of f (r)

a,b , and prove that the hyper-bent properties of
f
(r)
a,b can be characterized by that of f (r)

a′ ,b′
, where a = a

′
ξi ∈

F2n , a
′ ∈ F2m , b, b

′
= bα− i

r
2n−1

5 ∈ F16. We also prove that
f
(r)
a,b is not a hyper-bent function unless n = 12 or n = 28

when a ∈ F
2

m
2

. Further, we give all the hyper-bent functions
for n = 12 or n = 28. When m = 0 (mod 4), we give a
necessary condition for f

(r)
a,b to be a bent function. To those

strict restrictions, it seems f
(r)
a,b can not be bent. In fact with

the help of computer, we have checked all of the functions
which satisfy Proposition 13 for m = 4, 8, and find that none
of them is bent. Thus we guess when m = 0 (mod 4), f (r)

a,b

can not be bent.
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