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Abstract—in this paper, we propose a numerical method 
for the approximate solution of fuzzy Fredholm functional 
integral equations of the second kind by using an iterative 
interpolation. For this purpose, we convert the linear fuzzy 
Fredholm integral equations to a crisp linear system of integral 
equations. The proposed method is illustrated by some fuzzy 
integral equations in numerical examples. 

Keywords—Fuzzy function integral equations, Iterative method, 
Linear systems, Parametric form of fuzzy number. 

I. INTRODUCTION

HE concept of integration of fuzzy functions was 
introduced by Dubois and Prade [3] for the first time and 

alternative approaches were later suggested by Goetschel and 
Voxman [6], Kaleva [7], Matloka [12], Nanda [13] and others. 
One of the first applications of fuzzy integration was given by 
Wu and Ma [16], who investigated the fuzzy Fredholm 
integral equations of the second type. In recent years some 
methods were introduced to solve fuzzy Fredholm integral 
equations.   In this paper, we propose fuzzy iterative 
interpolation for   solving the following fuzzy integral 
equation.   

bxadssFtskb
atftF ,)(~),()(~)(~       (1)  

Where ),( tsk  is an arbitrary crisp kernel function over the 

square 0,, btsa  and f~  is a fuzzy function. In 
section 2, we briefly present the necessary preliminaries. In 
section 3, we propose the numerical method for solving the 
fuzzy Fredholm integral equations of the second kind based 
on the interpolation scheme. Some numerical examples are 
given in section 4.  

II. PRELIMINARIES

A. Definition 2.1 
For a given set of support points ),,( ii fx ni ,...,1,0 ,  we 

define the iterative interpolation scheme as follow,  
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Where  
kiiip ...10
is the Lagrange polynomial with less or 

equal   

degree of k  ( nk0 ). The 
kiiip ...10

is equal with f in 

kiii xxx ,...,,
10

,  where f  is the exact solution.  

B. Definition 2.2 [8]
A fuzzy number is a map ]1,0[IRu which satisfies  

i) u  is upper semi continues, 
ii) 0)(xu  outside some interval ,],[ Rdc
iii) There exist real numbers a  and b  such that 

dbac  where,
(1) )(xu  is monotonic increasing on ],[ ac
(2) )(xu  is monotonic deccreasing on ],[ db
(3) .,1)( bxaxu

The set of all such fuzzy numbers is represented by 1E

C. Definition 2.3 [1]
An arbitrary fuzzy number in parametric form is presented   

by an ordered pair of functions ))(),(( ruru , ,10 r
which satisfy the following requirements: 

1. )(ru  is a bounded left continuous non-decreasing 
function over [0,1], 

2. )(ru  is a bounded left continuous non-increasing 
function over [0,1], 

3. )(ru )(ru , 0 1.r
 A crisp number a is simply represented by 

aruru )()( , 10 r .For arbitrary 

))(),(( ruruu , ))(),(( rvrvv  and Rk , we 
define addition and multiplation by k  as

vu if and only if )()( rvru and )()( rvru
)),()(),()(( rvrurvruvu
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D. Definition 2.4. 
The nn  linear system  
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 Where, the given matrix of coefficients  )( ijaA , nj1

and ni1 is a real nn  matrix, the right- hand-side         
,1Eyi ni1 , with the unknown ,Ex j nj1 is

called a fuzzy linear system (FLS).   

E. Definition 2.5. 
A fuzzy number vector  t

nxxx ),...,,( 21  given by  

));(),(( rxrxx jjj nj1 , 10 r ,
is called a solution of the fuzzy linear system (2) if  

.

,
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11

ijij
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jjij

n
j

ijij
n
jjij

n
j

yxaxa

yxaxa
  for ni1

If, for a particular i , ,0ija  for all j  we simply get: 

i
n

j jiji

n

j jij yxayxa 11 ,  , ni1 .

In general, an arbitrary equation for either 
i

y or iy may 

include a linear combination of a 
jx ’s and jx ’s.

Consequently, in order to solve the system given by (2), one 
must solve a crisp  nn 22  linear system where the right-
hand side column is the function vector 

.),...,,,,...,,( 2121
t

nn
yyyyyy We get the nn 22

following linear system,  

1111 1 1, 1 1,2 1

111 , 1 ,2

111, 1, 1, 1 1,2 1

112 ,1 2 , 2 , 1 2 ,2

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

nnn n n

nnn nn n n n n n

nnn n n n n n n n

nnn n n n n n n n

s x s x s x s x y

s x s x s x s x y

s x s x s x s x y

s x s x s x s x y

(3)

Where, ijs  are determined as follows: 

,0 ijijij asa ijnjni as , ,

,0 ,ij i j n ija s a ,, ijjni as                     (4) 

and any ijs which is not determined by  (4) is zero. By using 
matrix notation we get,  

,YSX                                                            (5) 
Where,   0)( ijsS , ni 21 , nj 21 and
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The structure of S  implies that 0ijs , ni 21 ,

nj 21 and that
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F. Definition 2.6. [2, 10, 11]

For arbitrary fuzzy number ),( uuu  and ),( vvv , the 
function which is shown as follow is the distance between 
u and v  for 1p .

)1(1

0

1

0
)()()()(),( ppp

p drrvrudrrvruvuD

III. THE MIAN IDEA

In this section, we first replace Eq.(1) by the following    
equations

dsrsFtskrtfrtF b

a
);(),();();(               (6) 

dsrsFtskrtfrtF b

a
);(),();();(              (7) 

Where , 

.0),();(),(

,0),();(),(
);(),(

tskrsFtsk
tskrsFtsk

rsFtsk        (8) 

.0),();(),(
,0),();(),();(),(

tskrsFtsk
tskrsFtskrsFtsk       (9) 
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In substituted method to calculate );(),( rsFtsk  and 

);(),( rsFtsk , we apply the Lagrange interpolation by 1n
distinct points  bsssa n...210  of ],[ ba  as 
follows,

)();(),()();(),(

);(),(

0)(0)(
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Where, 
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By integrating (10) and (11) from a  to b
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Where,  

.)( dsslh j

b

aj

We get a system of linear equations by substituting Eq. (12)
in (6) and (13) in (7), for ni )1(0  , as follows 
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The Eq. (14) and (15) gives a )22()22( nn  crisp 
system of equations that we can obtain );( rsF i

 and );( rsF i

by solving it. Now, by replacing these obtained values in the 
iterative interpolation polynomial, we can achieve the 
approximate value of the exact solution. In this case, we 

consider the following definition. 
Definition 3.1.

Assume that );( rtF  and );( rtF  in the points of ntt ,...,0

have been defined, 
it  and

jt are two distinct  points of 

ntt ,...,0   as .ji tt
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Where, )()(
,...,0

tptp
kii

 and )()( ,...,0
tptp

kii

IV. NUMERICAL EXAMPLES

Example 4.1 [1]
We consider the following fuzzy Fredholm integral 

equation

,
13
3

26
3

13
3

26
32);(

,
13
1

13
1

26
3

26
3);(

222

22

ttrtrrttrtf

rttrrtrtf

and kernel

1,2,0,
13

2),(
22

tststsK

and ,0a 2b . The exact solution in this case is given 
 by  

.)2();(,);( trrtFrtrtF
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Fig. 4.1.a: the comparison between the approximate solutions 
2,1,0,1, ip ii

 with 3n and the exact solution 

Fig..4.1.b: the comparison between the approximate solutions 
1,0,2,1, ip iii

 with 3n and the exact solution  

Example 4.2 [1, 4]
Consider the following fuzzy Fredholm integral equation  

)),4(
15
2)(

15
13)(

2
sin();( 32 rrrrtrtf

)),4(
15
13)(

15
2)(

2
sin();( 32 rrrrtrtf

and kernel 

Fig. 4.1.c: the comparison between the approximate solutions 
0,3,2,1, ip iiii

 with 3n and the exact solution  

),
2

sin()sin(1.0),( tstsK 2,0 ts , 1

and ,0a 2b . The exact solution in this case is given 
 by  

).
2

sin()4();(),
2

sin()();( 32 trrrtFtrrrtF

Fig. 4.2.a: the comparison between the approximate solutions 
2,1,0,1, ip ii

 with 3n and the exact solution 

Fig. 4.2.b: the comparison between the approximate solutions 
1,0,2,1, ip iii

 with 3n and the exact solution  

TABLE I
THE DISTANCE OF THE EXACT SOLUTION AND THE APPROXIMATE SOLUTION    

FOR 3n
i t ))1(~),1(~( 1,2 iipFD ))1(~),1(~( 2,...,2 iipFD ))1(~),1(~( 3,...,2 iipFD

0 0 
  0.2100401063   
1 2/3  0.2564886573  

 0.2719715102  0.2466989373 
2 4/3  0.2373094917  
  0.1510140954   
3 2    
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Fig. 4.2.c: the comparison between the approximate solutions 
0,3,2,1, ip iiii

 with 3n and the exact solution  

Fig. 4.2.d: the comparison between the approximate solutions 
4,3,2,1,0,1, ip ii

 with 5n and the exact solution 

Fig. 4.2.e: the comparison between the approximate solutions 
3,2,1,0,2,1, ip iii

 with 5n and the exact solution 

Fig. 4.2.f: the comparison between the approximate solutions 
2,1,0,3,2,1, ip iiii

with 5n and the exact solution  

Fig. 4.2.k the comparison between the approximate solutions 
1,0,4,3,2,1, ip iiiii

 with 5n  and the exact solution  

TABLE II
THE DISTANCE OF THE EXACT SOLUTION AND THE APPROXIMATE SOLUTION       

FOR 3n

i t 
))(~),(~( 1,2 iipFD ))(~),(~( 2,...,2 iipFD ))(~),(~( 3,...,2 iipFD

0 0    

  2.259333089   
1

3
2  0.9283319588  

 1.074956182  0.8951302347 
2

3
4  0.9799819170  

  0.7256774309   
3 2    
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Fig. 4.2.I the comparison between the approximate solutions 
0,5,4,3,2,1, ip iiiiii

 with 5n  and the exact solution   

TABLE II
THE DISTANCE OF THE EXACT SOLUTION AND THE APPROXIMATE SOLUTION

FOR 3n
i t )~,~( 1,2 iipFD )~,~( 2...2 iipFD )~,~( 3...2 iipFD )~,~( 4...2 iipFD )~,~( 5...2 iipFD
0 0     
  4.686462605     

1
5

2
 0.2727627638    

 0.8741343678  0.5897888721   

2
5

4
 0.6921217462  0.6311281170  

  0.7783754819  0.6573830445  0.6229692921 

3
5

6
0.6449272953  0.6165836167  

  0.3081461179     

4
5

8
 0.1758373651 0.5565625488   

3.235716593     

5 2      
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III. CONCLUSION

In this work, for solving the fuzzy Fredholm integral 
equation of the second kind, we change the integral 
equation into two crisp integral equations. For the 
numerical solution of these equations, we apply an iterative 
interpolation with different r-cuts that is between zero and 
one. Each of them gives a )1()1( nn system of 
equations. Consequently, a linear )22()22( nn
system of equations is constructed. By solving this system, 
we can estimate the value of function in the support points. 
Then, by replacing these values in the iterative interpolation 
polynomial, we can approximate the exact solution of the 
integral equation. Consequently, one can use this method to 
approximate the solution of a fuzzy Fredholm integral 
equation of the second type easily.  
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